// SPDX-License-Identifier: GPL-2.0 /* * Qualcomm ICE (Inline Crypto Engine) support. * * Copyright (c) 2013-2019, The Linux Foundation. All rights reserved. * Copyright (c) 2019, Google LLC * Copyright (c) 2023, Linaro Limited */ #include #include #include #include #include #include #include #include #include #include #include #define AES_256_XTS_KEY_SIZE 64 /* for raw keys only */ #define QCOM_ICE_HWKM_WRAPPED_KEY_SIZE 100 /* assuming HWKM v2 */ /* QCOM ICE registers */ #define QCOM_ICE_REG_CONTROL 0x0000 #define QCOM_ICE_LEGACY_MODE_ENABLED BIT(0) #define QCOM_ICE_REG_VERSION 0x0008 #define QCOM_ICE_REG_FUSE_SETTING 0x0010 #define QCOM_ICE_FUSE_SETTING_MASK BIT(0) #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK BIT(1) #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK BIT(2) #define QCOM_ICE_REG_BIST_STATUS 0x0070 #define QCOM_ICE_BIST_STATUS_MASK GENMASK(31, 28) #define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000 #define QCOM_ICE_REG_CRYPTOCFG_BASE 0x4040 #define QCOM_ICE_REG_CRYPTOCFG_SIZE 0x80 #define QCOM_ICE_REG_CRYPTOCFG(slot) (QCOM_ICE_REG_CRYPTOCFG_BASE + \ QCOM_ICE_REG_CRYPTOCFG_SIZE * (slot)) union crypto_cfg { __le32 regval; struct { u8 dusize; u8 capidx; u8 reserved; #define QCOM_ICE_HWKM_CFG_ENABLE_VAL BIT(7) u8 cfge; }; }; /* QCOM ICE HWKM (Hardware Key Manager) registers */ #define HWKM_OFFSET 0x8000 #define QCOM_ICE_REG_HWKM_TZ_KM_CTL (HWKM_OFFSET + 0x1000) #define QCOM_ICE_HWKM_DISABLE_CRC_CHECKS_VAL (BIT(1) | BIT(2)) #define QCOM_ICE_REG_HWKM_TZ_KM_STATUS (HWKM_OFFSET + 0x1004) #define QCOM_ICE_HWKM_KT_CLEAR_DONE BIT(0) #define QCOM_ICE_HWKM_BOOT_CMD_LIST0_DONE BIT(1) #define QCOM_ICE_HWKM_BOOT_CMD_LIST1_DONE BIT(2) #define QCOM_ICE_HWKM_CRYPTO_BIST_DONE_V2 BIT(7) #define QCOM_ICE_HWKM_BIST_DONE_V2 BIT(9) #define QCOM_ICE_REG_HWKM_BANK0_BANKN_IRQ_STATUS (HWKM_OFFSET + 0x2008) #define QCOM_ICE_HWKM_RSP_FIFO_CLEAR_VAL BIT(3) #define QCOM_ICE_REG_HWKM_BANK0_BBAC_0 (HWKM_OFFSET + 0x5000) #define QCOM_ICE_REG_HWKM_BANK0_BBAC_1 (HWKM_OFFSET + 0x5004) #define QCOM_ICE_REG_HWKM_BANK0_BBAC_2 (HWKM_OFFSET + 0x5008) #define QCOM_ICE_REG_HWKM_BANK0_BBAC_3 (HWKM_OFFSET + 0x500C) #define QCOM_ICE_REG_HWKM_BANK0_BBAC_4 (HWKM_OFFSET + 0x5010) #define qcom_ice_writel(engine, val, reg) \ writel((val), (engine)->base + (reg)) #define qcom_ice_readl(engine, reg) \ readl((engine)->base + (reg)) static bool qcom_ice_use_wrapped_keys; module_param_named(use_wrapped_keys, qcom_ice_use_wrapped_keys, bool, 0660); MODULE_PARM_DESC(use_wrapped_keys, "Support wrapped keys instead of raw keys, if available on the platform"); struct qcom_ice { struct device *dev; void __iomem *base; struct clk *core_clk; bool use_hwkm; bool hwkm_init_complete; }; static bool qcom_ice_check_supported(struct qcom_ice *ice) { u32 regval = qcom_ice_readl(ice, QCOM_ICE_REG_VERSION); struct device *dev = ice->dev; int major = FIELD_GET(GENMASK(31, 24), regval); int minor = FIELD_GET(GENMASK(23, 16), regval); int step = FIELD_GET(GENMASK(15, 0), regval); /* For now this driver only supports ICE version 3 and 4. */ if (major != 3 && major != 4) { dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n", major, minor, step); return false; } dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n", major, minor, step); /* If fuses are blown, ICE might not work in the standard way. */ regval = qcom_ice_readl(ice, QCOM_ICE_REG_FUSE_SETTING); if (regval & (QCOM_ICE_FUSE_SETTING_MASK | QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK | QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) { dev_warn(dev, "Fuses are blown; ICE is unusable!\n"); return false; } /* * Check for HWKM support and decide whether to use it or not. ICE * v3.2.1 and later have HWKM v2. ICE v3.2.0 has HWKM v1. Earlier ICE * versions don't have HWKM at all. However, for HWKM to be fully * usable by Linux, the TrustZone software also needs to support certain * SCM calls including the ones to generate and prepare keys. That * effectively makes the earliest supported SoC be SM8650, which has * HWKM v2. Therefore, this driver doesn't include support for HWKM v1, * and it checks for the SCM call support before it decides to use HWKM. * * Also, since HWKM and legacy mode are mutually exclusive, and * ICE-capable storage driver(s) need to know early on whether to * advertise support for raw keys or wrapped keys, HWKM cannot be used * unconditionally. A module parameter is used to opt into using it. */ if ((major >= 4 || (major == 3 && (minor >= 3 || (minor == 2 && step >= 1)))) && qcom_scm_has_wrapped_key_support()) { if (qcom_ice_use_wrapped_keys) { dev_info(dev, "Using HWKM. Supporting wrapped keys only.\n"); ice->use_hwkm = true; } else { dev_info(dev, "Not using HWKM. Supporting raw keys only.\n"); } } else if (qcom_ice_use_wrapped_keys) { dev_warn(dev, "A supported HWKM is not present. Ignoring qcom_ice.use_wrapped_keys=1.\n"); } else { dev_info(dev, "A supported HWKM is not present. Supporting raw keys only.\n"); } return true; } static void qcom_ice_low_power_mode_enable(struct qcom_ice *ice) { u32 regval; regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL); /* Enable low power mode sequence */ regval |= 0x7000; qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL); } static void qcom_ice_optimization_enable(struct qcom_ice *ice) { u32 regval; /* ICE Optimizations Enable Sequence */ regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL); regval |= 0xd807100; /* ICE HPG requires delay before writing */ udelay(5); qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL); udelay(5); } /* * Wait until the ICE BIST (built-in self-test) has completed. * * This may be necessary before ICE can be used. * Note that we don't really care whether the BIST passed or failed; * we really just want to make sure that it isn't still running. This is * because (a) the BIST is a FIPS compliance thing that never fails in * practice, (b) ICE is documented to reject crypto requests if the BIST * fails, so we needn't do it in software too, and (c) properly testing * storage encryption requires testing the full storage stack anyway, * and not relying on hardware-level self-tests. */ static int qcom_ice_wait_bist_status(struct qcom_ice *ice) { u32 regval; int err; err = readl_poll_timeout(ice->base + QCOM_ICE_REG_BIST_STATUS, regval, !(regval & QCOM_ICE_BIST_STATUS_MASK), 50, 5000); if (err) { dev_err(ice->dev, "Timed out waiting for ICE self-test to complete\n"); return err; } if (ice->use_hwkm && qcom_ice_readl(ice, QCOM_ICE_REG_HWKM_TZ_KM_STATUS) != (QCOM_ICE_HWKM_KT_CLEAR_DONE | QCOM_ICE_HWKM_BOOT_CMD_LIST0_DONE | QCOM_ICE_HWKM_BOOT_CMD_LIST1_DONE | QCOM_ICE_HWKM_CRYPTO_BIST_DONE_V2 | QCOM_ICE_HWKM_BIST_DONE_V2)) { dev_err(ice->dev, "HWKM self-test error!\n"); /* * Too late to revoke use_hwkm here, as it was already * propagated up the stack into the crypto capabilities. */ } return 0; } static void qcom_ice_hwkm_init(struct qcom_ice *ice) { u32 regval; if (!ice->use_hwkm) return; BUILD_BUG_ON(QCOM_ICE_HWKM_WRAPPED_KEY_SIZE > BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE); /* * When ICE is in HWKM mode, it only supports wrapped keys. * When ICE is in legacy mode, it only supports raw keys. * * Put ICE in HWKM mode. ICE defaults to legacy mode. */ regval = qcom_ice_readl(ice, QCOM_ICE_REG_CONTROL); regval &= ~QCOM_ICE_LEGACY_MODE_ENABLED; qcom_ice_writel(ice, regval, QCOM_ICE_REG_CONTROL); /* Disable CRC checks. This HWKM feature is not used. */ qcom_ice_writel(ice, QCOM_ICE_HWKM_DISABLE_CRC_CHECKS_VAL, QCOM_ICE_REG_HWKM_TZ_KM_CTL); /* * Allow the HWKM slave to read and write the keyslots in the ICE HWKM * slave. Without this, TrustZone cannot program keys into ICE. */ qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_0); qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_1); qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_2); qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_3); qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_4); /* Clear the HWKM response FIFO. */ qcom_ice_writel(ice, QCOM_ICE_HWKM_RSP_FIFO_CLEAR_VAL, QCOM_ICE_REG_HWKM_BANK0_BANKN_IRQ_STATUS); ice->hwkm_init_complete = true; } int qcom_ice_enable(struct qcom_ice *ice) { qcom_ice_low_power_mode_enable(ice); qcom_ice_optimization_enable(ice); qcom_ice_hwkm_init(ice); return qcom_ice_wait_bist_status(ice); } EXPORT_SYMBOL_GPL(qcom_ice_enable); int qcom_ice_resume(struct qcom_ice *ice) { struct device *dev = ice->dev; int err; err = clk_prepare_enable(ice->core_clk); if (err) { dev_err(dev, "failed to enable core clock (%d)\n", err); return err; } qcom_ice_hwkm_init(ice); return qcom_ice_wait_bist_status(ice); } EXPORT_SYMBOL_GPL(qcom_ice_resume); int qcom_ice_suspend(struct qcom_ice *ice) { clk_disable_unprepare(ice->core_clk); ice->hwkm_init_complete = false; return 0; } EXPORT_SYMBOL_GPL(qcom_ice_suspend); static unsigned int translate_hwkm_slot(struct qcom_ice *ice, unsigned int slot) { return slot * 2; } static int qcom_ice_program_wrapped_key(struct qcom_ice *ice, unsigned int slot, const struct blk_crypto_key *bkey) { struct device *dev = ice->dev; union crypto_cfg cfg = { .dusize = bkey->crypto_cfg.data_unit_size / 512, .capidx = QCOM_SCM_ICE_CIPHER_AES_256_XTS, .cfge = QCOM_ICE_HWKM_CFG_ENABLE_VAL, }; int err; if (!ice->use_hwkm) { dev_err_ratelimited(dev, "Got wrapped key when not using HWKM\n"); return -EINVAL; } if (!ice->hwkm_init_complete) { dev_err_ratelimited(dev, "HWKM not yet initialized\n"); return -EINVAL; } /* Clear CFGE before programming the key. */ qcom_ice_writel(ice, 0x0, QCOM_ICE_REG_CRYPTOCFG(slot)); /* Call into TrustZone to program the wrapped key using HWKM. */ err = qcom_scm_ice_set_key(translate_hwkm_slot(ice, slot), bkey->bytes, bkey->size, cfg.capidx, cfg.dusize); if (err) { dev_err_ratelimited(dev, "qcom_scm_ice_set_key failed; err=%d, slot=%u\n", err, slot); return err; } /* Set CFGE after programming the key. */ qcom_ice_writel(ice, le32_to_cpu(cfg.regval), QCOM_ICE_REG_CRYPTOCFG(slot)); return 0; } int qcom_ice_program_key(struct qcom_ice *ice, unsigned int slot, const struct blk_crypto_key *blk_key) { struct device *dev = ice->dev; union { u8 bytes[AES_256_XTS_KEY_SIZE]; u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)]; } key; int i; int err; /* Only AES-256-XTS has been tested so far. */ if (blk_key->crypto_cfg.crypto_mode != BLK_ENCRYPTION_MODE_AES_256_XTS) { dev_err_ratelimited(dev, "Unsupported crypto mode: %d\n", blk_key->crypto_cfg.crypto_mode); return -EINVAL; } if (blk_key->crypto_cfg.key_type == BLK_CRYPTO_KEY_TYPE_HW_WRAPPED) return qcom_ice_program_wrapped_key(ice, slot, blk_key); if (ice->use_hwkm) { dev_err_ratelimited(dev, "Got raw key when using HWKM\n"); return -EINVAL; } if (blk_key->size != AES_256_XTS_KEY_SIZE) { dev_err_ratelimited(dev, "Incorrect key size\n"); return -EINVAL; } memcpy(key.bytes, blk_key->bytes, AES_256_XTS_KEY_SIZE); /* The SCM call requires that the key words are encoded in big endian */ for (i = 0; i < ARRAY_SIZE(key.words); i++) __cpu_to_be32s(&key.words[i]); err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE, QCOM_SCM_ICE_CIPHER_AES_256_XTS, blk_key->crypto_cfg.data_unit_size / 512); memzero_explicit(&key, sizeof(key)); return err; } EXPORT_SYMBOL_GPL(qcom_ice_program_key); int qcom_ice_evict_key(struct qcom_ice *ice, int slot) { if (ice->hwkm_init_complete) slot = translate_hwkm_slot(ice, slot); return qcom_scm_ice_invalidate_key(slot); } EXPORT_SYMBOL_GPL(qcom_ice_evict_key); /** * qcom_ice_get_supported_key_type() - Get the supported key type * @ice: ICE driver data * * Return: the blk-crypto key type that the ICE driver is configured to use. * This is the key type that ICE-capable storage drivers should advertise as * supported in the crypto capabilities of any disks they register. */ enum blk_crypto_key_type qcom_ice_get_supported_key_type(struct qcom_ice *ice) { if (ice->use_hwkm) return BLK_CRYPTO_KEY_TYPE_HW_WRAPPED; return BLK_CRYPTO_KEY_TYPE_RAW; } EXPORT_SYMBOL_GPL(qcom_ice_get_supported_key_type); /** * qcom_ice_derive_sw_secret() - Derive software secret from wrapped key * @ice: ICE driver data * @eph_key: an ephemerally-wrapped key * @eph_key_size: size of @eph_key in bytes * @sw_secret: output buffer for the software secret * * Use HWKM to derive the "software secret" from a hardware-wrapped key that is * given in ephemerally-wrapped form. * * Return: 0 on success; -EBADMSG if the given ephemerally-wrapped key is * invalid; or another -errno value. */ int qcom_ice_derive_sw_secret(struct qcom_ice *ice, const u8 *eph_key, size_t eph_key_size, u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]) { int err = qcom_scm_derive_sw_secret(eph_key, eph_key_size, sw_secret, BLK_CRYPTO_SW_SECRET_SIZE); if (err == -EIO || err == -EINVAL) err = -EBADMSG; /* probably invalid key */ return err; } EXPORT_SYMBOL_GPL(qcom_ice_derive_sw_secret); /** * qcom_ice_generate_key() - Generate a wrapped key for inline encryption * @ice: ICE driver data * @lt_key: output buffer for the long-term wrapped key * * Use HWKM to generate a new key and return it as a long-term wrapped key. * * Return: the size of the resulting wrapped key on success; -errno on failure. */ int qcom_ice_generate_key(struct qcom_ice *ice, u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) { int err; err = qcom_scm_generate_ice_key(lt_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE); if (err) return err; return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE; } EXPORT_SYMBOL_GPL(qcom_ice_generate_key); /** * qcom_ice_prepare_key() - Prepare a wrapped key for inline encryption * @ice: ICE driver data * @lt_key: a long-term wrapped key * @lt_key_size: size of @lt_key in bytes * @eph_key: output buffer for the ephemerally-wrapped key * * Use HWKM to re-wrap a long-term wrapped key with the per-boot ephemeral key. * * Return: the size of the resulting wrapped key on success; -EBADMSG if the * given long-term wrapped key is invalid; or another -errno value. */ int qcom_ice_prepare_key(struct qcom_ice *ice, const u8 *lt_key, size_t lt_key_size, u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) { int err; err = qcom_scm_prepare_ice_key(lt_key, lt_key_size, eph_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE); if (err == -EIO || err == -EINVAL) err = -EBADMSG; /* probably invalid key */ if (err) return err; return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE; } EXPORT_SYMBOL_GPL(qcom_ice_prepare_key); /** * qcom_ice_import_key() - Import a raw key for inline encryption * @ice: ICE driver data * @raw_key: the raw key to import * @raw_key_size: size of @raw_key in bytes * @lt_key: output buffer for the long-term wrapped key * * Use HWKM to import a raw key and return it as a long-term wrapped key. * * Return: the size of the resulting wrapped key on success; -errno on failure. */ int qcom_ice_import_key(struct qcom_ice *ice, const u8 *raw_key, size_t raw_key_size, u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) { int err; err = qcom_scm_import_ice_key(raw_key, raw_key_size, lt_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE); if (err) return err; return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE; } EXPORT_SYMBOL_GPL(qcom_ice_import_key); static struct qcom_ice *qcom_ice_create(struct device *dev, void __iomem *base) { struct qcom_ice *engine; if (!qcom_scm_is_available()) return ERR_PTR(-EPROBE_DEFER); if (!qcom_scm_ice_available()) { dev_warn(dev, "ICE SCM interface not found\n"); return NULL; } engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); if (!engine) return ERR_PTR(-ENOMEM); engine->dev = dev; engine->base = base; /* * Legacy DT binding uses different clk names for each consumer, * so lets try those first. If none of those are a match, it means * the we only have one clock and it is part of the dedicated DT node. * Also, enable the clock before we check what HW version the driver * supports. */ engine->core_clk = devm_clk_get_optional_enabled(dev, "ice_core_clk"); if (!engine->core_clk) engine->core_clk = devm_clk_get_optional_enabled(dev, "ice"); if (!engine->core_clk) engine->core_clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(engine->core_clk)) return ERR_CAST(engine->core_clk); if (!qcom_ice_check_supported(engine)) return ERR_PTR(-EOPNOTSUPP); dev_dbg(dev, "Registered Qualcomm Inline Crypto Engine\n"); return engine; } /** * of_qcom_ice_get() - get an ICE instance from a DT node * @dev: device pointer for the consumer device * * This function will provide an ICE instance either by creating one for the * consumer device if its DT node provides the 'ice' reg range and the 'ice' * clock (for legacy DT style). On the other hand, if consumer provides a * phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already * be created and so this function will return that instead. * * Return: ICE pointer on success, NULL if there is no ICE data provided by the * consumer or ERR_PTR() on error. */ static struct qcom_ice *of_qcom_ice_get(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct qcom_ice *ice; struct resource *res; void __iomem *base; struct device_link *link; if (!dev || !dev->of_node) return ERR_PTR(-ENODEV); /* * In order to support legacy style devicetree bindings, we need * to create the ICE instance using the consumer device and the reg * range called 'ice' it provides. */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice"); if (res) { base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return ERR_CAST(base); /* create ICE instance using consumer dev */ return qcom_ice_create(&pdev->dev, base); } /* * If the consumer node does not provider an 'ice' reg range * (legacy DT binding), then it must at least provide a phandle * to the ICE devicetree node, otherwise ICE is not supported. */ struct device_node *node __free(device_node) = of_parse_phandle(dev->of_node, "qcom,ice", 0); if (!node) return NULL; pdev = of_find_device_by_node(node); if (!pdev) { dev_err(dev, "Cannot find device node %s\n", node->name); return ERR_PTR(-EPROBE_DEFER); } ice = platform_get_drvdata(pdev); if (!ice) { dev_err(dev, "Cannot get ice instance from %s\n", dev_name(&pdev->dev)); platform_device_put(pdev); return ERR_PTR(-EPROBE_DEFER); } link = device_link_add(dev, &pdev->dev, DL_FLAG_AUTOREMOVE_SUPPLIER); if (!link) { dev_err(&pdev->dev, "Failed to create device link to consumer %s\n", dev_name(dev)); platform_device_put(pdev); ice = ERR_PTR(-EINVAL); } return ice; } static void qcom_ice_put(const struct qcom_ice *ice) { struct platform_device *pdev = to_platform_device(ice->dev); if (!platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice")) platform_device_put(pdev); } static void devm_of_qcom_ice_put(struct device *dev, void *res) { qcom_ice_put(*(struct qcom_ice **)res); } /** * devm_of_qcom_ice_get() - Devres managed helper to get an ICE instance from * a DT node. * @dev: device pointer for the consumer device. * * This function will provide an ICE instance either by creating one for the * consumer device if its DT node provides the 'ice' reg range and the 'ice' * clock (for legacy DT style). On the other hand, if consumer provides a * phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already * be created and so this function will return that instead. * * Return: ICE pointer on success, NULL if there is no ICE data provided by the * consumer or ERR_PTR() on error. */ struct qcom_ice *devm_of_qcom_ice_get(struct device *dev) { struct qcom_ice *ice, **dr; dr = devres_alloc(devm_of_qcom_ice_put, sizeof(*dr), GFP_KERNEL); if (!dr) return ERR_PTR(-ENOMEM); ice = of_qcom_ice_get(dev); if (!IS_ERR_OR_NULL(ice)) { *dr = ice; devres_add(dev, dr); } else { devres_free(dr); } return ice; } EXPORT_SYMBOL_GPL(devm_of_qcom_ice_get); static int qcom_ice_probe(struct platform_device *pdev) { struct qcom_ice *engine; void __iomem *base; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) { dev_warn(&pdev->dev, "ICE registers not found\n"); return PTR_ERR(base); } engine = qcom_ice_create(&pdev->dev, base); if (IS_ERR(engine)) return PTR_ERR(engine); platform_set_drvdata(pdev, engine); return 0; } static const struct of_device_id qcom_ice_of_match_table[] = { { .compatible = "qcom,inline-crypto-engine" }, { }, }; MODULE_DEVICE_TABLE(of, qcom_ice_of_match_table); static struct platform_driver qcom_ice_driver = { .probe = qcom_ice_probe, .driver = { .name = "qcom-ice", .of_match_table = qcom_ice_of_match_table, }, }; module_platform_driver(qcom_ice_driver); MODULE_DESCRIPTION("Qualcomm Inline Crypto Engine driver"); MODULE_LICENSE("GPL");