1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
*
* Based on former do_div() implementation from asm-parisc/div64.h:
* Copyright (C) 1999 Hewlett-Packard Co
* Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
*
*
* Generic C version of 64bit/32bit division and modulo, with
* 64bit result and 32bit remainder.
*
* The fast case for (n>>32 == 0) is handled inline by do_div().
*
* Code generated for this function might be very inefficient
* for some CPUs. __div64_32() can be overridden by linking arch-specific
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
* or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/log2.h>
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
#ifndef __div64_32
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
{
uint64_t rem = *n;
uint64_t b = base;
uint64_t res, d = 1;
uint32_t high = rem >> 32;
/* Reduce the thing a bit first */
res = 0;
if (high >= base) {
high /= base;
res = (uint64_t) high << 32;
rem -= (uint64_t) (high*base) << 32;
}
while ((int64_t)b > 0 && b < rem) {
b = b+b;
d = d+d;
}
do {
if (rem >= b) {
rem -= b;
res += d;
}
b >>= 1;
d >>= 1;
} while (d);
*n = res;
return rem;
}
EXPORT_SYMBOL(__div64_32);
#endif
#ifndef div_s64_rem
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
{
u64 quotient;
if (dividend < 0) {
quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
*remainder = -*remainder;
if (divisor > 0)
quotient = -quotient;
} else {
quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
if (divisor < 0)
quotient = -quotient;
}
return quotient;
}
EXPORT_SYMBOL(div_s64_rem);
#endif
/*
* div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
* @dividend: 64bit dividend
* @divisor: 64bit divisor
* @remainder: 64bit remainder
*
* This implementation is a comparable to algorithm used by div64_u64.
* But this operation, which includes math for calculating the remainder,
* is kept distinct to avoid slowing down the div64_u64 operation on 32bit
* systems.
*/
#ifndef div64_u64_rem
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
{
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
u32 rem32;
quot = div_u64_rem(dividend, divisor, &rem32);
*remainder = rem32;
} else {
int n = fls(high);
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
*remainder = dividend - quot * divisor;
if (*remainder >= divisor) {
quot++;
*remainder -= divisor;
}
}
return quot;
}
EXPORT_SYMBOL(div64_u64_rem);
#endif
/*
* div64_u64 - unsigned 64bit divide with 64bit divisor
* @dividend: 64bit dividend
* @divisor: 64bit divisor
*
* This implementation is a modified version of the algorithm proposed
* by the book 'Hacker's Delight'. The original source and full proof
* can be found here and is available for use without restriction.
*
* 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
*/
#ifndef div64_u64
u64 div64_u64(u64 dividend, u64 divisor)
{
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
quot = div_u64(dividend, divisor);
} else {
int n = fls(high);
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
if ((dividend - quot * divisor) >= divisor)
quot++;
}
return quot;
}
EXPORT_SYMBOL(div64_u64);
#endif
#ifndef div64_s64
s64 div64_s64(s64 dividend, s64 divisor)
{
s64 quot, t;
quot = div64_u64(abs(dividend), abs(divisor));
t = (dividend ^ divisor) >> 63;
return (quot ^ t) - t;
}
EXPORT_SYMBOL(div64_s64);
#endif
#endif /* BITS_PER_LONG == 32 */
/*
* Iterative div/mod for use when dividend is not expected to be much
* bigger than divisor.
*/
#ifndef iter_div_u64_rem
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
{
return __iter_div_u64_rem(dividend, divisor, remainder);
}
EXPORT_SYMBOL(iter_div_u64_rem);
#endif
#if !defined(mul_u64_add_u64_div_u64) || defined(test_mul_u64_add_u64_div_u64)
#define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c)
#if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64)
static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
{
/* native 64x64=128 bits multiplication */
u128 prod = (u128)a * b + c;
*p_lo = prod;
return prod >> 64;
}
#else
static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
{
/* perform a 64x64=128 bits multiplication in 32bit chunks */
u64 x, y, z;
/* Since (x-1)(x-1) + 2(x-1) == x.x - 1 two u32 can be added to a u64 */
x = mul_add(a, b, c);
y = mul_add(a, b >> 32, c >> 32);
y = add_u64_u32(y, x >> 32);
z = mul_add(a >> 32, b >> 32, y >> 32);
y = mul_add(a >> 32, b, y);
*p_lo = (y << 32) + (u32)x;
return add_u64_u32(z, y >> 32);
}
#endif
#ifndef BITS_PER_ITER
#define BITS_PER_ITER (__LONG_WIDTH__ >= 64 ? 32 : 16)
#endif
#if BITS_PER_ITER == 32
#define mul_u64_long_add_u64(p_lo, a, b, c) mul_u64_u64_add_u64(p_lo, a, b, c)
#define add_u64_long(a, b) ((a) + (b))
#else
#undef BITS_PER_ITER
#define BITS_PER_ITER 16
static inline u32 mul_u64_long_add_u64(u64 *p_lo, u64 a, u32 b, u64 c)
{
u64 n_lo = mul_add(a, b, c);
u64 n_med = mul_add(a >> 32, b, c >> 32);
n_med = add_u64_u32(n_med, n_lo >> 32);
*p_lo = n_med << 32 | (u32)n_lo;
return n_med >> 32;
}
#define add_u64_long(a, b) add_u64_u32(a, b)
#endif
u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
{
unsigned long d_msig, q_digit;
unsigned int reps, d_z_hi;
u64 quotient, n_lo, n_hi;
u32 overflow;
n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c);
if (!n_hi)
return div64_u64(n_lo, d);
if (unlikely(n_hi >= d)) {
/* trigger runtime exception if divisor is zero */
if (d == 0) {
unsigned long zero = 0;
OPTIMIZER_HIDE_VAR(zero);
return ~0UL/zero;
}
/* overflow: result is unrepresentable in a u64 */
return ~0ULL;
}
/* Left align the divisor, shifting the dividend to match */
d_z_hi = __builtin_clzll(d);
if (d_z_hi) {
d <<= d_z_hi;
n_hi = n_hi << d_z_hi | n_lo >> (64 - d_z_hi);
n_lo <<= d_z_hi;
}
reps = 64 / BITS_PER_ITER;
/* Optimise loop count for small dividends */
if (!(u32)(n_hi >> 32)) {
reps -= 32 / BITS_PER_ITER;
n_hi = n_hi << 32 | n_lo >> 32;
n_lo <<= 32;
}
#if BITS_PER_ITER == 16
if (!(u32)(n_hi >> 48)) {
reps--;
n_hi = add_u64_u32(n_hi << 16, n_lo >> 48);
n_lo <<= 16;
}
#endif
/* Invert the dividend so we can use add instead of subtract. */
n_lo = ~n_lo;
n_hi = ~n_hi;
/*
* Get the most significant BITS_PER_ITER bits of the divisor.
* This is used to get a low 'guestimate' of the quotient digit.
*/
d_msig = (d >> (64 - BITS_PER_ITER)) + 1;
/*
* Now do a 'long division' with BITS_PER_ITER bit 'digits'.
* The 'guess' quotient digit can be low and BITS_PER_ITER+1 bits.
* The worst case is dividing ~0 by 0x8000 which requires two subtracts.
*/
quotient = 0;
while (reps--) {
q_digit = (unsigned long)(~n_hi >> (64 - 2 * BITS_PER_ITER)) / d_msig;
/* Shift 'n' left to align with the product q_digit * d */
overflow = n_hi >> (64 - BITS_PER_ITER);
n_hi = add_u64_u32(n_hi << BITS_PER_ITER, n_lo >> (64 - BITS_PER_ITER));
n_lo <<= BITS_PER_ITER;
/* Add product to negated divisor */
overflow += mul_u64_long_add_u64(&n_hi, d, q_digit, n_hi);
/* Adjust for the q_digit 'guestimate' being low */
while (overflow < 0xffffffff >> (32 - BITS_PER_ITER)) {
q_digit++;
n_hi += d;
overflow += n_hi < d;
}
quotient = add_u64_long(quotient << BITS_PER_ITER, q_digit);
}
/*
* The above only ensures the remainder doesn't overflow,
* it can still be possible to add (aka subtract) another copy
* of the divisor.
*/
if ((n_hi + d) > n_hi)
quotient++;
return quotient;
}
#if !defined(test_mul_u64_add_u64_div_u64)
EXPORT_SYMBOL(mul_u64_add_u64_div_u64);
#endif
#endif
|