1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
|
// SPDX-License-Identifier: GPL-2.0
//! String representations.
use crate::{
alloc::{flags::*, AllocError, KVec},
error::{to_result, Result},
fmt::{self, Write},
prelude::*,
};
use core::{
marker::PhantomData,
ops::{Deref, DerefMut, Index},
};
pub use crate::prelude::CStr;
pub mod parse_int;
/// Byte string without UTF-8 validity guarantee.
#[repr(transparent)]
pub struct BStr([u8]);
impl BStr {
/// Returns the length of this string.
#[inline]
pub const fn len(&self) -> usize {
self.0.len()
}
/// Returns `true` if the string is empty.
#[inline]
pub const fn is_empty(&self) -> bool {
self.len() == 0
}
/// Creates a [`BStr`] from a `[u8]`.
#[inline]
pub const fn from_bytes(bytes: &[u8]) -> &Self {
// SAFETY: `BStr` is transparent to `[u8]`.
unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
}
/// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
///
/// # Examples
///
/// ```
/// # use kernel::b_str;
/// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
/// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
/// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
/// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
/// ```
pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
self.deref()
.strip_prefix(pattern.as_ref().deref())
.map(Self::from_bytes)
}
}
impl fmt::Display for BStr {
/// Formats printable ASCII characters, escaping the rest.
///
/// ```
/// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
/// let ascii = b_str!("Hello, BStr!");
/// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
/// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
///
/// let non_ascii = b_str!("🦀");
/// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
/// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
/// # Ok::<(), kernel::error::Error>(())
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for &b in &self.0 {
match b {
// Common escape codes.
b'\t' => f.write_str("\\t")?,
b'\n' => f.write_str("\\n")?,
b'\r' => f.write_str("\\r")?,
// Printable characters.
0x20..=0x7e => f.write_char(b as char)?,
_ => write!(f, "\\x{b:02x}")?,
}
}
Ok(())
}
}
impl fmt::Debug for BStr {
/// Formats printable ASCII characters with a double quote on either end,
/// escaping the rest.
///
/// ```
/// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
/// // Embedded double quotes are escaped.
/// let ascii = b_str!("Hello, \"BStr\"!");
/// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
/// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
///
/// let non_ascii = b_str!("😺");
/// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
/// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
/// # Ok::<(), kernel::error::Error>(())
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_char('"')?;
for &b in &self.0 {
match b {
// Common escape codes.
b'\t' => f.write_str("\\t")?,
b'\n' => f.write_str("\\n")?,
b'\r' => f.write_str("\\r")?,
// String escape characters.
b'\"' => f.write_str("\\\"")?,
b'\\' => f.write_str("\\\\")?,
// Printable characters.
0x20..=0x7e => f.write_char(b as char)?,
_ => write!(f, "\\x{b:02x}")?,
}
}
f.write_char('"')
}
}
impl Deref for BStr {
type Target = [u8];
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl PartialEq for BStr {
fn eq(&self, other: &Self) -> bool {
self.deref().eq(other.deref())
}
}
impl<Idx> Index<Idx> for BStr
where
[u8]: Index<Idx, Output = [u8]>,
{
type Output = Self;
fn index(&self, index: Idx) -> &Self::Output {
BStr::from_bytes(&self.0[index])
}
}
impl AsRef<BStr> for [u8] {
fn as_ref(&self) -> &BStr {
BStr::from_bytes(self)
}
}
impl AsRef<BStr> for BStr {
fn as_ref(&self) -> &BStr {
self
}
}
/// Creates a new [`BStr`] from a string literal.
///
/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
/// characters can be included.
///
/// # Examples
///
/// ```
/// # use kernel::b_str;
/// # use kernel::str::BStr;
/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
/// ```
#[macro_export]
macro_rules! b_str {
($str:literal) => {{
const S: &'static str = $str;
const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
C
}};
}
/// Returns a C pointer to the string.
// It is a free function rather than a method on an extension trait because:
//
// - error[E0379]: functions in trait impls cannot be declared const
#[inline]
pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
c_str.as_ptr().cast()
}
mod private {
pub trait Sealed {}
impl Sealed for super::CStr {}
}
/// Extensions to [`CStr`].
pub trait CStrExt: private::Sealed {
/// Wraps a raw C string pointer.
///
/// # Safety
///
/// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
/// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
/// must not be mutated.
// This function exists to paper over the fact that `CStr::from_ptr` takes a `*const
// core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self;
/// Creates a mutable [`CStr`] from a `[u8]` without performing any
/// additional checks.
///
/// # Safety
///
/// `bytes` *must* end with a `NUL` byte, and should only have a single
/// `NUL` byte (or the string will be truncated).
unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self;
/// Returns a C pointer to the string.
// This function exists to paper over the fact that `CStr::as_ptr` returns a `*const
// core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
fn as_char_ptr(&self) -> *const c_char;
/// Convert this [`CStr`] into a [`CString`] by allocating memory and
/// copying over the string data.
fn to_cstring(&self) -> Result<CString, AllocError>;
/// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
///
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
/// but non-ASCII letters are unchanged.
///
/// To return a new lowercased value without modifying the existing one, use
/// [`to_ascii_lowercase()`].
///
/// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
fn make_ascii_lowercase(&mut self);
/// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
///
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
/// but non-ASCII letters are unchanged.
///
/// To return a new uppercased value without modifying the existing one, use
/// [`to_ascii_uppercase()`].
///
/// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
fn make_ascii_uppercase(&mut self);
/// Returns a copy of this [`CString`] where each character is mapped to its
/// ASCII lower case equivalent.
///
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
/// but non-ASCII letters are unchanged.
///
/// To lowercase the value in-place, use [`make_ascii_lowercase`].
///
/// [`make_ascii_lowercase`]: str::make_ascii_lowercase
fn to_ascii_lowercase(&self) -> Result<CString, AllocError>;
/// Returns a copy of this [`CString`] where each character is mapped to its
/// ASCII upper case equivalent.
///
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
/// but non-ASCII letters are unchanged.
///
/// To uppercase the value in-place, use [`make_ascii_uppercase`].
///
/// [`make_ascii_uppercase`]: str::make_ascii_uppercase
fn to_ascii_uppercase(&self) -> Result<CString, AllocError>;
}
impl fmt::Display for CStr {
/// Formats printable ASCII characters, escaping the rest.
///
/// ```
/// # use kernel::prelude::fmt;
/// # use kernel::str::CStr;
/// # use kernel::str::CString;
/// let penguin = c"🐧";
/// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
/// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
///
/// let ascii = c"so \"cool\"";
/// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
/// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
/// # Ok::<(), kernel::error::Error>(())
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for &c in self.to_bytes() {
if (0x20..0x7f).contains(&c) {
// Printable character.
f.write_char(c as char)?;
} else {
write!(f, "\\x{c:02x}")?;
}
}
Ok(())
}
}
/// Converts a mutable C string to a mutable byte slice.
///
/// # Safety
///
/// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before
/// the borrow ends and the underlying [`CStr`] is used.
unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] {
// SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]`
// (this is technically not guaranteed, but we rely on it here). The pointer dereference is
// safe since it comes from a mutable reference which is guaranteed to be valid for writes.
unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) }
}
impl CStrExt for CStr {
#[inline]
unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
// SAFETY: The safety preconditions are the same as for `CStr::from_ptr`.
unsafe { CStr::from_ptr(ptr.cast()) }
}
#[inline]
unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self {
// SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are
// guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is
// technically not guaranteed, but we rely on it here). The pointer dereference is safe
// since it comes from a mutable reference which is guaranteed to be valid for writes.
unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
}
#[inline]
fn as_char_ptr(&self) -> *const c_char {
self.as_ptr().cast()
}
fn to_cstring(&self) -> Result<CString, AllocError> {
CString::try_from(self)
}
fn make_ascii_lowercase(&mut self) {
// SAFETY: This doesn't introduce or remove NUL bytes in the C string.
unsafe { to_bytes_mut(self) }.make_ascii_lowercase();
}
fn make_ascii_uppercase(&mut self) {
// SAFETY: This doesn't introduce or remove NUL bytes in the C string.
unsafe { to_bytes_mut(self) }.make_ascii_uppercase();
}
fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
let mut s = self.to_cstring()?;
s.make_ascii_lowercase();
Ok(s)
}
fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
let mut s = self.to_cstring()?;
s.make_ascii_uppercase();
Ok(s)
}
}
impl AsRef<BStr> for CStr {
#[inline]
fn as_ref(&self) -> &BStr {
BStr::from_bytes(self.to_bytes())
}
}
/// Creates a new [`CStr`] from a string literal.
///
/// The string literal should not contain any `NUL` bytes.
///
/// # Examples
///
/// ```
/// # use kernel::c_str;
/// # use kernel::str::CStr;
/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
/// ```
#[macro_export]
macro_rules! c_str {
($str:expr) => {{
const S: &str = concat!($str, "\0");
const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
Ok(v) => v,
Err(_) => panic!("string contains interior NUL"),
};
C
}};
}
#[kunit_tests(rust_kernel_str)]
mod tests {
use super::*;
impl From<core::ffi::FromBytesWithNulError> for Error {
#[inline]
fn from(_: core::ffi::FromBytesWithNulError) -> Error {
EINVAL
}
}
macro_rules! format {
($($f:tt)*) => ({
CString::try_from_fmt(fmt!($($f)*))?.to_str()?
})
}
const ALL_ASCII_CHARS: &str =
"\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
\\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
!\"#$%&'()*+,-./0123456789:;<=>?@\
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
\\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
\\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
\\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
\\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
\\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
\\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
\\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
\\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
#[test]
fn test_cstr_to_str() -> Result {
let cstr = c"\xf0\x9f\xa6\x80";
let checked_str = cstr.to_str()?;
assert_eq!(checked_str, "🦀");
Ok(())
}
#[test]
fn test_cstr_to_str_invalid_utf8() -> Result {
let cstr = c"\xc3\x28";
assert!(cstr.to_str().is_err());
Ok(())
}
#[test]
fn test_cstr_display() -> Result {
let hello_world = c"hello, world!";
assert_eq!(format!("{hello_world}"), "hello, world!");
let non_printables = c"\x01\x09\x0a";
assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
let non_ascii = c"d\xe9j\xe0 vu";
assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
let good_bytes = c"\xf0\x9f\xa6\x80";
assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
Ok(())
}
#[test]
fn test_cstr_display_all_bytes() -> Result {
let mut bytes: [u8; 256] = [0; 256];
// fill `bytes` with [1..=255] + [0]
for i in u8::MIN..=u8::MAX {
bytes[i as usize] = i.wrapping_add(1);
}
let cstr = CStr::from_bytes_with_nul(&bytes)?;
assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
Ok(())
}
#[test]
fn test_cstr_debug() -> Result {
let hello_world = c"hello, world!";
assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
let non_printables = c"\x01\x09\x0a";
assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\"");
let non_ascii = c"d\xe9j\xe0 vu";
assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
Ok(())
}
#[test]
fn test_bstr_display() -> Result {
let hello_world = BStr::from_bytes(b"hello, world!");
assert_eq!(format!("{hello_world}"), "hello, world!");
let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
let others = BStr::from_bytes(b"\x01");
assert_eq!(format!("{others}"), "\\x01");
let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
Ok(())
}
#[test]
fn test_bstr_debug() -> Result {
let hello_world = BStr::from_bytes(b"hello, world!");
assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
let others = BStr::from_bytes(b"\x01");
assert_eq!(format!("{others:?}"), "\"\\x01\"");
let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
Ok(())
}
}
/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
///
/// It does not fail if callers write past the end of the buffer so that they can calculate the
/// size required to fit everything.
///
/// # Invariants
///
/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
/// is less than `end`.
pub struct RawFormatter {
// Use `usize` to use `saturating_*` functions.
beg: usize,
pos: usize,
end: usize,
}
impl RawFormatter {
/// Creates a new instance of [`RawFormatter`] with an empty buffer.
fn new() -> Self {
// INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
Self {
beg: 0,
pos: 0,
end: 0,
}
}
/// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
///
/// # Safety
///
/// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
/// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
// INVARIANT: The safety requirements guarantee the type invariants.
Self {
beg: pos as usize,
pos: pos as usize,
end: end as usize,
}
}
/// Creates a new instance of [`RawFormatter`] with the given buffer.
///
/// # Safety
///
/// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
/// for the lifetime of the returned [`RawFormatter`].
pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
let pos = buf as usize;
// INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
// guarantees that the memory region is valid for writes.
Self {
pos,
beg: pos,
end: pos.saturating_add(len),
}
}
/// Returns the current insert position.
///
/// N.B. It may point to invalid memory.
pub(crate) fn pos(&self) -> *mut u8 {
self.pos as *mut u8
}
/// Returns the number of bytes written to the formatter.
pub fn bytes_written(&self) -> usize {
self.pos - self.beg
}
}
impl fmt::Write for RawFormatter {
fn write_str(&mut self, s: &str) -> fmt::Result {
// `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
// don't want it to wrap around to 0.
let pos_new = self.pos.saturating_add(s.len());
// Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
if len_to_copy > 0 {
// SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
// yet, so it is valid for write per the type invariants.
unsafe {
core::ptr::copy_nonoverlapping(
s.as_bytes().as_ptr(),
self.pos as *mut u8,
len_to_copy,
)
};
}
self.pos = pos_new;
Ok(())
}
}
/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
///
/// Fails if callers attempt to write more than will fit in the buffer.
pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
impl Formatter<'_> {
/// Creates a new instance of [`Formatter`] with the given buffer.
///
/// # Safety
///
/// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
/// for the lifetime of the returned [`Formatter`].
pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
// SAFETY: The safety requirements of this function satisfy those of the callee.
Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
}
/// Create a new [`Self`] instance.
pub fn new(buffer: &mut [u8]) -> Self {
// SAFETY: `buffer` is valid for writes for the entire length for
// the lifetime of `Self`.
unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
}
}
impl Deref for Formatter<'_> {
type Target = RawFormatter;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl fmt::Write for Formatter<'_> {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.0.write_str(s)?;
// Fail the request if we go past the end of the buffer.
if self.0.pos > self.0.end {
Err(fmt::Error)
} else {
Ok(())
}
}
}
/// A mutable reference to a byte buffer where a string can be written into.
///
/// The buffer will be automatically null terminated after the last written character.
///
/// # Invariants
///
/// * The first byte of `buffer` is always zero.
/// * The length of `buffer` is at least 1.
pub(crate) struct NullTerminatedFormatter<'a> {
buffer: &'a mut [u8],
}
impl<'a> NullTerminatedFormatter<'a> {
/// Create a new [`Self`] instance.
pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
*(buffer.first_mut()?) = 0;
// INVARIANT:
// - We wrote zero to the first byte above.
// - If buffer was not at least length 1, `buffer.first_mut()` would return None.
Some(Self { buffer })
}
}
impl Write for NullTerminatedFormatter<'_> {
fn write_str(&mut self, s: &str) -> fmt::Result {
let bytes = s.as_bytes();
let len = bytes.len();
// We want space for a zero. By type invariant, buffer length is always at least 1, so no
// underflow.
if len > self.buffer.len() - 1 {
return Err(fmt::Error);
}
let buffer = core::mem::take(&mut self.buffer);
// We break the zero start invariant for a short while.
buffer[..len].copy_from_slice(bytes);
// INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
self.buffer = &mut buffer[len..];
// INVARIANT: We write zero to the first byte of the buffer.
self.buffer[0] = 0;
Ok(())
}
}
/// # Safety
///
/// - `string` must point to a null terminated string that is valid for read.
unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
let mut result: bool = false;
// SAFETY:
// - By function safety requirement, `string` is a valid null-terminated string.
// - `result` is a valid `bool` that we own.
to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
Ok(result)
}
/// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
///
/// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
/// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
///
/// # Examples
///
/// ```
/// # use kernel::str::kstrtobool;
///
/// // Lowercase
/// assert_eq!(kstrtobool(c"true"), Ok(true));
/// assert_eq!(kstrtobool(c"tr"), Ok(true));
/// assert_eq!(kstrtobool(c"t"), Ok(true));
/// assert_eq!(kstrtobool(c"twrong"), Ok(true));
/// assert_eq!(kstrtobool(c"false"), Ok(false));
/// assert_eq!(kstrtobool(c"f"), Ok(false));
/// assert_eq!(kstrtobool(c"yes"), Ok(true));
/// assert_eq!(kstrtobool(c"no"), Ok(false));
/// assert_eq!(kstrtobool(c"on"), Ok(true));
/// assert_eq!(kstrtobool(c"off"), Ok(false));
///
/// // Camel case
/// assert_eq!(kstrtobool(c"True"), Ok(true));
/// assert_eq!(kstrtobool(c"False"), Ok(false));
/// assert_eq!(kstrtobool(c"Yes"), Ok(true));
/// assert_eq!(kstrtobool(c"No"), Ok(false));
/// assert_eq!(kstrtobool(c"On"), Ok(true));
/// assert_eq!(kstrtobool(c"Off"), Ok(false));
///
/// // All caps
/// assert_eq!(kstrtobool(c"TRUE"), Ok(true));
/// assert_eq!(kstrtobool(c"FALSE"), Ok(false));
/// assert_eq!(kstrtobool(c"YES"), Ok(true));
/// assert_eq!(kstrtobool(c"NO"), Ok(false));
/// assert_eq!(kstrtobool(c"ON"), Ok(true));
/// assert_eq!(kstrtobool(c"OFF"), Ok(false));
///
/// // Numeric
/// assert_eq!(kstrtobool(c"1"), Ok(true));
/// assert_eq!(kstrtobool(c"0"), Ok(false));
///
/// // Invalid input
/// assert_eq!(kstrtobool(c"invalid"), Err(EINVAL));
/// assert_eq!(kstrtobool(c"2"), Err(EINVAL));
/// ```
pub fn kstrtobool(string: &CStr) -> Result<bool> {
// SAFETY:
// - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
// null terminated.
// - `string` is live and thus the string is valid for read.
unsafe { kstrtobool_raw(string.as_char_ptr()) }
}
/// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
///
/// Only considers at most the first two bytes of `bytes`.
pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
// `ktostrbool` only considers the first two bytes of the input.
let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
// SAFETY: `stack_string` is null terminated and it is live on the stack so
// it is valid for read.
unsafe { kstrtobool_raw(stack_string.as_ptr()) }
}
/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
///
/// Used for interoperability with kernel APIs that take C strings.
///
/// # Invariants
///
/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
///
/// # Examples
///
/// ```
/// use kernel::{str::CString, prelude::fmt};
///
/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
/// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
///
/// let tmp = "testing";
/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
/// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
///
/// // This fails because it has an embedded `NUL` byte.
/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
/// assert_eq!(s.is_ok(), false);
/// # Ok::<(), kernel::error::Error>(())
/// ```
pub struct CString {
buf: KVec<u8>,
}
impl CString {
/// Creates an instance of [`CString`] from the given formatted arguments.
pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
// Calculate the size needed (formatted string plus `NUL` terminator).
let mut f = RawFormatter::new();
f.write_fmt(args)?;
f.write_str("\0")?;
let size = f.bytes_written();
// Allocate a vector with the required number of bytes, and write to it.
let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
// SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
f.write_fmt(args)?;
f.write_str("\0")?;
// SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
// `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
unsafe { buf.inc_len(f.bytes_written()) };
// Check that there are no `NUL` bytes before the end.
// SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
// (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
// so `f.bytes_written() - 1` doesn't underflow.
let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
if !ptr.is_null() {
return Err(EINVAL);
}
// INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
// exist in the buffer.
Ok(Self { buf })
}
}
impl Deref for CString {
type Target = CStr;
fn deref(&self) -> &Self::Target {
// SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
// other `NUL` bytes exist.
unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
}
}
impl DerefMut for CString {
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: A `CString` is always NUL-terminated and contains no other
// NUL bytes.
unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
}
}
impl<'a> TryFrom<&'a CStr> for CString {
type Error = AllocError;
fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
let mut buf = KVec::new();
buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
// INVARIANT: The `CStr` and `CString` types have the same invariants for
// the string data, and we copied it over without changes.
Ok(CString { buf })
}
}
impl fmt::Debug for CString {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
|