summaryrefslogtreecommitdiff
path: root/Documentation/process/2.Process.rst
diff options
context:
space:
mode:
authorTony Fischetti <tony.fischetti@gmail.com>2020-02-16 19:08:26 -0500
committerJonathan Corbet <corbet@lwn.net>2020-02-19 04:03:54 -0700
commitfb0e0ffe7fc8e0e91481e67665f1d646bfd071f2 (patch)
treecf9ee4da0287875f8a8f56f8d6da0b6c67b1acbc /Documentation/process/2.Process.rst
parentdff2c2e69f308c1c7d296d49d2b0467e9675b58e (diff)
Documentation: bring process docs up to date
The guide to the kernel dev process documentation, for example, contains references to older kernels and their timelines. In addition, one of the "long term support kernels" listed have since reached EOL, and a new one has been named. This patch brings information/tables up to date. Additionally, some very trivial grammatical errors, unclear sentences, and potentially unsavory diction have been edited. Signed-off-by: Tony Fischetti <tony.fischetti@gmail.com> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/process/2.Process.rst')
-rw-r--r--Documentation/process/2.Process.rst108
1 files changed, 55 insertions, 53 deletions
diff --git a/Documentation/process/2.Process.rst b/Documentation/process/2.Process.rst
index ae020d84d7c4..b21b5b245d13 100644
--- a/Documentation/process/2.Process.rst
+++ b/Documentation/process/2.Process.rst
@@ -18,18 +18,18 @@ major kernel release happening every two or three months. The recent
release history looks like this:
====== =================
- 4.11 April 30, 2017
- 4.12 July 2, 2017
- 4.13 September 3, 2017
- 4.14 November 12, 2017
- 4.15 January 28, 2018
- 4.16 April 1, 2018
+ 5.0 March 3, 2019
+ 5.1 May 5, 2019
+ 5.2 July 7, 2019
+ 5.3 September 15, 2019
+ 5.4 November 24, 2019
+ 5.5 January 6, 2020
====== =================
-Every 4.x release is a major kernel release with new features, internal
-API changes, and more. A typical 4.x release contain about 13,000
-changesets with changes to several hundred thousand lines of code. 4.x is
-thus the leading edge of Linux kernel development; the kernel uses a
+Every 5.x release is a major kernel release with new features, internal
+API changes, and more. A typical release can contain about 13,000
+changesets with changes to several hundred thousand lines of code. 5.x is
+the leading edge of Linux kernel development; the kernel uses a
rolling development model which is continually integrating major changes.
A relatively straightforward discipline is followed with regard to the
@@ -48,9 +48,9 @@ detail later on).
The merge window lasts for approximately two weeks. At the end of this
time, Linus Torvalds will declare that the window is closed and release the
-first of the "rc" kernels. For the kernel which is destined to be 2.6.40,
+first of the "rc" kernels. For the kernel which is destined to be 5.6,
for example, the release which happens at the end of the merge window will
-be called 2.6.40-rc1. The -rc1 release is the signal that the time to
+be called 5.6-rc1. The -rc1 release is the signal that the time to
merge new features has passed, and that the time to stabilize the next
kernel has begun.
@@ -67,22 +67,23 @@ add at any time).
As fixes make their way into the mainline, the patch rate will slow over
time. Linus releases new -rc kernels about once a week; a normal series
will get up to somewhere between -rc6 and -rc9 before the kernel is
-considered to be sufficiently stable and the final 2.6.x release is made.
+considered to be sufficiently stable and the final release is made.
At that point the whole process starts over again.
-As an example, here is how the 4.16 development cycle went (all dates in
-2018):
+As an example, here is how the 5.4 development cycle went (all dates in
+2019):
============== ===============================
- January 28 4.15 stable release
- February 11 4.16-rc1, merge window closes
- February 18 4.16-rc2
- February 25 4.16-rc3
- March 4 4.16-rc4
- March 11 4.16-rc5
- March 18 4.16-rc6
- March 25 4.16-rc7
- April 1 4.16 stable release
+ September 15 5.3 stable release
+ September 30 5.4-rc1, merge window closes
+ October 6 5.4-rc2
+ October 13 5.4-rc3
+ October 20 5.4-rc4
+ October 27 5.4-rc5
+ November 3 5.4-rc6
+ November 10 5.4-rc7
+ November 17 5.4-rc8
+ November 24 5.4 stable release
============== ===============================
How do the developers decide when to close the development cycle and create
@@ -98,43 +99,44 @@ release is made. In the real world, this kind of perfection is hard to
achieve; there are just too many variables in a project of this size.
There comes a point where delaying the final release just makes the problem
worse; the pile of changes waiting for the next merge window will grow
-larger, creating even more regressions the next time around. So most 4.x
+larger, creating even more regressions the next time around. So most 5.x
kernels go out with a handful of known regressions though, hopefully, none
of them are serious.
Once a stable release is made, its ongoing maintenance is passed off to the
-"stable team," currently consisting of Greg Kroah-Hartman. The stable team
-will release occasional updates to the stable release using the 4.x.y
-numbering scheme. To be considered for an update release, a patch must (1)
-fix a significant bug, and (2) already be merged into the mainline for the
-next development kernel. Kernels will typically receive stable updates for
-a little more than one development cycle past their initial release. So,
-for example, the 4.13 kernel's history looked like:
+"stable team," currently Greg Kroah-Hartman. The stable team will release
+occasional updates to the stable release using the 5.x.y numbering scheme.
+To be considered for an update release, a patch must (1) fix a significant
+bug, and (2) already be merged into the mainline for the next development
+kernel. Kernels will typically receive stable updates for a little more
+than one development cycle past their initial release. So, for example, the
+5.2 kernel's history looked like this (all dates in 2019):
============== ===============================
- September 3 4.13 stable release
- September 13 4.13.1
- September 20 4.13.2
- September 27 4.13.3
- October 5 4.13.4
- October 12 4.13.5
+ September 15 5.2 stable release
+ July 14 5.2.1
+ July 21 5.2.2
+ July 26 5.2.3
+ July 28 5.2.4
+ July 31 5.2.5
... ...
- November 24 4.13.16
+ October 11 5.2.21
============== ===============================
-4.13.16 was the final stable update of the 4.13 release.
+5.2.21 was the final stable update of the 5.2 release.
Some kernels are designated "long term" kernels; they will receive support
for a longer period. As of this writing, the current long term kernels
and their maintainers are:
- ====== ====================== ==============================
- 3.16 Ben Hutchings (very long-term stable kernel)
- 4.1 Sasha Levin
- 4.4 Greg Kroah-Hartman (very long-term stable kernel)
- 4.9 Greg Kroah-Hartman
- 4.14 Greg Kroah-Hartman
- ====== ====================== ==============================
+ ====== ================================ =======================
+ 3.16 Ben Hutchings (very long-term kernel)
+ 4.4 Greg Kroah-Hartman & Sasha Levin (very long-term kernel)
+ 4.9 Greg Kroah-Hartman & Sasha Levin
+ 4.14 Greg Kroah-Hartman & Sasha Levin
+ 4.19 Greg Kroah-Hartman & Sasha Levin
+ 5.4 Greg Kroah-Hartman & Sasha Levin
+ ====== ================================ =======================
The selection of a kernel for long-term support is purely a matter of a
maintainer having the need and the time to maintain that release. There
@@ -215,12 +217,12 @@ How patches get into the Kernel
-------------------------------
There is exactly one person who can merge patches into the mainline kernel
-repository: Linus Torvalds. But, of the over 9,500 patches which went
-into the 2.6.38 kernel, only 112 (around 1.3%) were directly chosen by Linus
-himself. The kernel project has long since grown to a size where no single
-developer could possibly inspect and select every patch unassisted. The
-way the kernel developers have addressed this growth is through the use of
-a lieutenant system built around a chain of trust.
+repository: Linus Torvalds. But, for example, of the over 9,500 patches
+which went into the 2.6.38 kernel, only 112 (around 1.3%) were directly
+chosen by Linus himself. The kernel project has long since grown to a size
+where no single developer could possibly inspect and select every patch
+unassisted. The way the kernel developers have addressed this growth is
+through the use of a lieutenant system built around a chain of trust.
The kernel code base is logically broken down into a set of subsystems:
networking, specific architecture support, memory management, video