summaryrefslogtreecommitdiff
path: root/arch/powerpc/kvm/bookehv_interrupts.S
diff options
context:
space:
mode:
authorMihai Caraman <mihai.caraman@freescale.com>2014-07-23 19:06:22 +0300
committerAlexander Graf <agraf@suse.de>2014-07-28 15:23:14 +0200
commitf5250471b2d6ad27d536cb34ce39d76b91b2b36b (patch)
treefea4367c59322123c48ba1b04c414ed0fb8f5987 /arch/powerpc/kvm/bookehv_interrupts.S
parent51f047261e717b74b226f837a16455994b61ae30 (diff)
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation
On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
Diffstat (limited to 'arch/powerpc/kvm/bookehv_interrupts.S')
-rw-r--r--arch/powerpc/kvm/bookehv_interrupts.S37
1 files changed, 9 insertions, 28 deletions
diff --git a/arch/powerpc/kvm/bookehv_interrupts.S b/arch/powerpc/kvm/bookehv_interrupts.S
index 6ff448046301..e000b397ece3 100644
--- a/arch/powerpc/kvm/bookehv_interrupts.S
+++ b/arch/powerpc/kvm/bookehv_interrupts.S
@@ -121,38 +121,14 @@
1:
.if \flags & NEED_EMU
- /*
- * This assumes you have external PID support.
- * To support a bookehv CPU without external PID, you'll
- * need to look up the TLB entry and create a temporary mapping.
- *
- * FIXME: we don't currently handle if the lwepx faults. PR-mode
- * booke doesn't handle it either. Since Linux doesn't use
- * broadcast tlbivax anymore, the only way this should happen is
- * if the guest maps its memory execute-but-not-read, or if we
- * somehow take a TLB miss in the middle of this entry code and
- * evict the relevant entry. On e500mc, all kernel lowmem is
- * bolted into TLB1 large page mappings, and we don't use
- * broadcast invalidates, so we should not take a TLB miss here.
- *
- * Later we'll need to deal with faults here. Disallowing guest
- * mappings that are execute-but-not-read could be an option on
- * e500mc, but not on chips with an LRAT if it is used.
- */
-
- mfspr r3, SPRN_EPLC /* will already have correct ELPID and EGS */
PPC_STL r15, VCPU_GPR(R15)(r4)
PPC_STL r16, VCPU_GPR(R16)(r4)
PPC_STL r17, VCPU_GPR(R17)(r4)
PPC_STL r18, VCPU_GPR(R18)(r4)
PPC_STL r19, VCPU_GPR(R19)(r4)
- mr r8, r3
PPC_STL r20, VCPU_GPR(R20)(r4)
- rlwimi r8, r6, EPC_EAS_SHIFT - MSR_IR_LG, EPC_EAS
PPC_STL r21, VCPU_GPR(R21)(r4)
- rlwimi r8, r6, EPC_EPR_SHIFT - MSR_PR_LG, EPC_EPR
PPC_STL r22, VCPU_GPR(R22)(r4)
- rlwimi r8, r10, EPC_EPID_SHIFT, EPC_EPID
PPC_STL r23, VCPU_GPR(R23)(r4)
PPC_STL r24, VCPU_GPR(R24)(r4)
PPC_STL r25, VCPU_GPR(R25)(r4)
@@ -162,10 +138,15 @@
PPC_STL r29, VCPU_GPR(R29)(r4)
PPC_STL r30, VCPU_GPR(R30)(r4)
PPC_STL r31, VCPU_GPR(R31)(r4)
- mtspr SPRN_EPLC, r8
- isync
- lwepx r9, 0, r5
- mtspr SPRN_EPLC, r3
+
+ /*
+ * We don't use external PID support. lwepx faults would need to be
+ * handled by KVM and this implies aditional code in DO_KVM (for
+ * DTB_MISS, DSI and LRAT) to check ESR[EPID] and EPLC[EGS] which
+ * is too intrusive for the host. Get last instuction in
+ * kvmppc_get_last_inst().
+ */
+ li r9, KVM_INST_FETCH_FAILED
stw r9, VCPU_LAST_INST(r4)
.endif