summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/pgtable_64_types.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-10-10 17:53:04 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2022-10-10 17:53:04 -0700
commit27bc50fc90647bbf7b734c3fc306a5e61350da53 (patch)
tree75fc525fbfec8c07a97a7875a89592317bcad4ca /arch/x86/include/asm/pgtable_64_types.h
parent70442fc54e6889a2a77f0e9554e8188a1557f00e (diff)
parentbbff39cc6cbcb86ccfacb2dcafc79912a9f9df69 (diff)
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
Diffstat (limited to 'arch/x86/include/asm/pgtable_64_types.h')
-rw-r--r--arch/x86/include/asm/pgtable_64_types.h47
1 files changed, 46 insertions, 1 deletions
diff --git a/arch/x86/include/asm/pgtable_64_types.h b/arch/x86/include/asm/pgtable_64_types.h
index 70e360a2e5fb..04f36063ad54 100644
--- a/arch/x86/include/asm/pgtable_64_types.h
+++ b/arch/x86/include/asm/pgtable_64_types.h
@@ -139,7 +139,52 @@ extern unsigned int ptrs_per_p4d;
# define VMEMMAP_START __VMEMMAP_BASE_L4
#endif /* CONFIG_DYNAMIC_MEMORY_LAYOUT */
-#define VMALLOC_END (VMALLOC_START + (VMALLOC_SIZE_TB << 40) - 1)
+/*
+ * End of the region for which vmalloc page tables are pre-allocated.
+ * For non-KMSAN builds, this is the same as VMALLOC_END.
+ * For KMSAN builds, VMALLOC_START..VMEMORY_END is 4 times bigger than
+ * VMALLOC_START..VMALLOC_END (see below).
+ */
+#define VMEMORY_END (VMALLOC_START + (VMALLOC_SIZE_TB << 40) - 1)
+
+#ifndef CONFIG_KMSAN
+#define VMALLOC_END VMEMORY_END
+#else
+/*
+ * In KMSAN builds vmalloc area is four times smaller, and the remaining 3/4
+ * are used to keep the metadata for virtual pages. The memory formerly
+ * belonging to vmalloc area is now laid out as follows:
+ *
+ * 1st quarter: VMALLOC_START to VMALLOC_END - new vmalloc area
+ * 2nd quarter: KMSAN_VMALLOC_SHADOW_START to
+ * VMALLOC_END+KMSAN_VMALLOC_SHADOW_OFFSET - vmalloc area shadow
+ * 3rd quarter: KMSAN_VMALLOC_ORIGIN_START to
+ * VMALLOC_END+KMSAN_VMALLOC_ORIGIN_OFFSET - vmalloc area origins
+ * 4th quarter: KMSAN_MODULES_SHADOW_START to KMSAN_MODULES_ORIGIN_START
+ * - shadow for modules,
+ * KMSAN_MODULES_ORIGIN_START to
+ * KMSAN_MODULES_ORIGIN_START + MODULES_LEN - origins for modules.
+ */
+#define VMALLOC_QUARTER_SIZE ((VMALLOC_SIZE_TB << 40) >> 2)
+#define VMALLOC_END (VMALLOC_START + VMALLOC_QUARTER_SIZE - 1)
+
+/*
+ * vmalloc metadata addresses are calculated by adding shadow/origin offsets
+ * to vmalloc address.
+ */
+#define KMSAN_VMALLOC_SHADOW_OFFSET VMALLOC_QUARTER_SIZE
+#define KMSAN_VMALLOC_ORIGIN_OFFSET (VMALLOC_QUARTER_SIZE << 1)
+
+#define KMSAN_VMALLOC_SHADOW_START (VMALLOC_START + KMSAN_VMALLOC_SHADOW_OFFSET)
+#define KMSAN_VMALLOC_ORIGIN_START (VMALLOC_START + KMSAN_VMALLOC_ORIGIN_OFFSET)
+
+/*
+ * The shadow/origin for modules are placed one by one in the last 1/4 of
+ * vmalloc space.
+ */
+#define KMSAN_MODULES_SHADOW_START (VMALLOC_END + KMSAN_VMALLOC_ORIGIN_OFFSET + 1)
+#define KMSAN_MODULES_ORIGIN_START (KMSAN_MODULES_SHADOW_START + MODULES_LEN)
+#endif /* CONFIG_KMSAN */
#define MODULES_VADDR (__START_KERNEL_map + KERNEL_IMAGE_SIZE)
/* The module sections ends with the start of the fixmap */