summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu/mmu.c
diff options
context:
space:
mode:
authorSean Christopherson <seanjc@google.com>2023-07-28 18:35:29 -0700
committerPaolo Bonzini <pbonzini@redhat.com>2023-08-31 14:08:14 -0400
commit338068b5bec4dfa11cf50eb8c1839d1e27749395 (patch)
treecdf1fda2ffdc3f526268b965ebb1f2451e79ee7c /arch/x86/kvm/mmu/mmu.c
parente998fb1a30131fdc7c734bc7422000b41146b631 (diff)
KVM: x86/mmu: Drop infrastructure for multiple page-track modes
Drop "support" for multiple page-track modes, as there is no evidence that array-based and refcounted metadata is the optimal solution for other modes, nor is there any evidence that other use cases, e.g. for access-tracking, will be a good fit for the page-track machinery in general. E.g. one potential use case of access-tracking would be to prevent guest access to poisoned memory (from the guest's perspective). In that case, the number of poisoned pages is likely to be a very small percentage of the guest memory, and there is no need to reference count the number of access-tracking users, i.e. expanding gfn_track[] for a new mode would be grossly inefficient. And for poisoned memory, host userspace would also likely want to trap accesses, e.g. to inject #MC into the guest, and that isn't currently supported by the page-track framework. A better alternative for that poisoned page use case is likely a variation of the proposed per-gfn attributes overlay (linked), which would allow efficiently tracking the sparse set of poisoned pages, and by default would exit to userspace on access. Link: https://lore.kernel.org/all/Y2WB48kD0J4VGynX@google.com Cc: Ben Gardon <bgardon@google.com> Tested-by: Yongwei Ma <yongwei.ma@intel.com> Link: https://lore.kernel.org/r/20230729013535.1070024-24-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r--arch/x86/kvm/mmu/mmu.c14
1 files changed, 6 insertions, 8 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 14b5c74a9247..2d76ead9ddac 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -831,8 +831,7 @@ static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
/* the non-leaf shadow pages are keeping readonly. */
if (sp->role.level > PG_LEVEL_4K)
- return kvm_slot_page_track_add_page(kvm, slot, gfn,
- KVM_PAGE_TRACK_WRITE);
+ return kvm_slot_page_track_add_page(kvm, slot, gfn);
kvm_mmu_gfn_disallow_lpage(slot, gfn);
@@ -878,8 +877,7 @@ static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
slots = kvm_memslots_for_spte_role(kvm, sp->role);
slot = __gfn_to_memslot(slots, gfn);
if (sp->role.level > PG_LEVEL_4K)
- return kvm_slot_page_track_remove_page(kvm, slot, gfn,
- KVM_PAGE_TRACK_WRITE);
+ return kvm_slot_page_track_remove_page(kvm, slot, gfn);
kvm_mmu_gfn_allow_lpage(slot, gfn);
}
@@ -2809,7 +2807,7 @@ int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
* track machinery is used to write-protect upper-level shadow pages,
* i.e. this guards the role.level == 4K assertion below!
*/
- if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
+ if (kvm_slot_page_track_is_active(kvm, slot, gfn))
return -EPERM;
/*
@@ -4203,7 +4201,7 @@ static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
* guest is writing the page which is write tracked which can
* not be fixed by page fault handler.
*/
- if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
+ if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn))
return true;
return false;
@@ -5422,8 +5420,8 @@ void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
* physical address properties) in a single VM would require tracking
* all relevant CPUID information in kvm_mmu_page_role. That is very
* undesirable as it would increase the memory requirements for
- * gfn_track (see struct kvm_mmu_page_role comments). For now that
- * problem is swept under the rug; KVM's CPUID API is horrific and
+ * gfn_write_track (see struct kvm_mmu_page_role comments). For now
+ * that problem is swept under the rug; KVM's CPUID API is horrific and
* it's all but impossible to solve it without introducing a new API.
*/
vcpu->arch.root_mmu.root_role.word = 0;