summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/x86.c
diff options
context:
space:
mode:
authorSean Christopherson <seanjc@google.com>2023-10-18 12:56:38 -0700
committerSean Christopherson <seanjc@google.com>2023-11-30 12:47:06 -0800
commitc52ffadc65e28ab461fd055e9991e8d8106a0056 (patch)
treeddcf68829baf159d91f226090e5dec9f09670ade /arch/x86/kvm/x86.c
parent80c883db87d9ffe2d685e91ba07a087b1c246c78 (diff)
KVM: x86: Don't unnecessarily force masterclock update on vCPU hotplug
Don't force a masterclock update when a vCPU synchronizes to the current TSC generation, e.g. when userspace hotplugs a pre-created vCPU into the VM. Unnecessarily updating the masterclock is undesirable as it can cause kvmclock's time to jump, which is particularly painful on systems with a stable TSC as kvmclock _should_ be fully reliable on such systems. The unexpected time jumps are due to differences in the TSC=>nanoseconds conversion algorithms between kvmclock and the host's CLOCK_MONOTONIC_RAW (the pvclock algorithm is inherently lossy). When updating the masterclock, KVM refreshes the "base", i.e. moves the elapsed time since the last update from the kvmclock/pvclock algorithm to the CLOCK_MONOTONIC_RAW algorithm. Synchronizing kvmclock with CLOCK_MONOTONIC_RAW is the lesser of evils when the TSC is unstable, but adds no real value when the TSC is stable. Prior to commit 7f187922ddf6 ("KVM: x86: update masterclock values on TSC writes"), KVM did NOT force an update when synchronizing a vCPU to the current generation. commit 7f187922ddf6b67f2999a76dcb71663097b75497 Author: Marcelo Tosatti <mtosatti@redhat.com> Date: Tue Nov 4 21:30:44 2014 -0200 KVM: x86: update masterclock values on TSC writes When the guest writes to the TSC, the masterclock TSC copy must be updated as well along with the TSC_OFFSET update, otherwise a negative tsc_timestamp is calculated at kvm_guest_time_update. Once "if (!vcpus_matched && ka->use_master_clock)" is simplified to "if (ka->use_master_clock)", the corresponding "if (!ka->use_master_clock)" becomes redundant, so remove the do_request boolean and collapse everything into a single condition. Before that, KVM only re-synced the masterclock if the masterclock was enabled or disabled Note, at the time of the above commit, VMX synchronized TSC on *guest* writes to MSR_IA32_TSC: case MSR_IA32_TSC: kvm_write_tsc(vcpu, msr_info); break; which is why the changelog specifically says "guest writes", but the bug that was being fixed wasn't unique to guest write, i.e. a TSC write from the host would suffer the same problem. So even though KVM stopped synchronizing on guest writes as of commit 0c899c25d754 ("KVM: x86: do not attempt TSC synchronization on guest writes"), simply reverting commit 7f187922ddf6 is not an option. Figuring out how a negative tsc_timestamp could be computed requires a bit more sleuthing. In kvm_write_tsc() (at the time), except for KVM's "less than 1 second" hack, KVM snapshotted the vCPU's current TSC *and* the current time in nanoseconds, where kvm->arch.cur_tsc_nsec is the current host kernel time in nanoseconds: ns = get_kernel_ns(); ... if (usdiff < USEC_PER_SEC && vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { ... } else { /* * We split periods of matched TSC writes into generations. * For each generation, we track the original measured * nanosecond time, offset, and write, so if TSCs are in * sync, we can match exact offset, and if not, we can match * exact software computation in compute_guest_tsc() * * These values are tracked in kvm->arch.cur_xxx variables. */ kvm->arch.cur_tsc_generation++; kvm->arch.cur_tsc_nsec = ns; kvm->arch.cur_tsc_write = data; kvm->arch.cur_tsc_offset = offset; matched = false; pr_debug("kvm: new tsc generation %llu, clock %llu\n", kvm->arch.cur_tsc_generation, data); } ... /* Keep track of which generation this VCPU has synchronized to */ vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; Note that the above creates a new generation and sets "matched" to false! But because kvm_track_tsc_matching() looks for matched+1, i.e. doesn't require the vCPU that creates the new generation to match itself, KVM would immediately compute vcpus_matched as true for VMs with a single vCPU. As a result, KVM would skip the masterlock update, even though a new TSC generation was created: vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == atomic_read(&vcpu->kvm->online_vcpus)); if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) if (!ka->use_master_clock) do_request = 1; if (!vcpus_matched && ka->use_master_clock) do_request = 1; if (do_request) kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); On hardware without TSC scaling support, vcpu->tsc_catchup is set to true if the guest TSC frequency is faster than the host TSC frequency, even if the TSC is otherwise stable. And for that mode, kvm_guest_time_update(), by way of compute_guest_tsc(), uses vcpu->arch.this_tsc_nsec, a.k.a. the kernel time at the last TSC write, to compute the guest TSC relative to kernel time: static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) { u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, vcpu->arch.virtual_tsc_mult, vcpu->arch.virtual_tsc_shift); tsc += vcpu->arch.this_tsc_write; return tsc; } Except the "kernel_ns" passed to compute_guest_tsc() isn't the current kernel time, it's the masterclock snapshot! spin_lock(&ka->pvclock_gtod_sync_lock); use_master_clock = ka->use_master_clock; if (use_master_clock) { host_tsc = ka->master_cycle_now; kernel_ns = ka->master_kernel_ns; } spin_unlock(&ka->pvclock_gtod_sync_lock); if (vcpu->tsc_catchup) { u64 tsc = compute_guest_tsc(v, kernel_ns); if (tsc > tsc_timestamp) { adjust_tsc_offset_guest(v, tsc - tsc_timestamp); tsc_timestamp = tsc; } } And so when KVM skips the masterclock update after a TSC write, i.e. after a new TSC generation is started, the "kernel_ns-vcpu->arch.this_tsc_nsec" is *guaranteed* to generate a negative value, because this_tsc_nsec was captured after ka->master_kernel_ns. Forcing a masterclock update essentially fudged around that problem, but in a heavy handed way that introduced undesirable side effects, i.e. unnecessarily forces a masterclock update when a new vCPU joins the party via hotplug. Note, KVM forces masterclock updates in other weird ways that are also likely unnecessary, e.g. when establishing a new Xen shared info page and when userspace creates a brand new vCPU. But the Xen thing is firmly a separate mess, and there are no known userspace VMMs that utilize kvmclock *and* create new vCPUs after the VM is up and running. I.e. the other issues are future problems. Reported-by: Dongli Zhang <dongli.zhang@oracle.com> Closes: https://lore.kernel.org/all/20230926230649.67852-1-dongli.zhang@oracle.com Fixes: 7f187922ddf6 ("KVM: x86: update masterclock values on TSC writes") Cc: David Woodhouse <dwmw2@infradead.org> Reviewed-by: Dongli Zhang <dongli.zhang@oracle.com> Tested-by: Dongli Zhang <dongli.zhang@oracle.com> Link: https://lore.kernel.org/r/20231018195638.1898375-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
Diffstat (limited to 'arch/x86/kvm/x86.c')
-rw-r--r--arch/x86/kvm/x86.c29
1 files changed, 16 insertions, 13 deletions
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index 6d0772b47041..99ec48203667 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -2510,26 +2510,29 @@ static inline int gtod_is_based_on_tsc(int mode)
}
#endif
-static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
+static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
{
#ifdef CONFIG_X86_64
- bool vcpus_matched;
struct kvm_arch *ka = &vcpu->kvm->arch;
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
- vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
- atomic_read(&vcpu->kvm->online_vcpus));
+ /*
+ * To use the masterclock, the host clocksource must be based on TSC
+ * and all vCPUs must have matching TSCs. Note, the count for matching
+ * vCPUs doesn't include the reference vCPU, hence "+1".
+ */
+ bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
+ atomic_read(&vcpu->kvm->online_vcpus)) &&
+ gtod_is_based_on_tsc(gtod->clock.vclock_mode);
/*
- * Once the masterclock is enabled, always perform request in
- * order to update it.
- *
- * In order to enable masterclock, the host clocksource must be TSC
- * and the vcpus need to have matched TSCs. When that happens,
- * perform request to enable masterclock.
+ * Request a masterclock update if the masterclock needs to be toggled
+ * on/off, or when starting a new generation and the masterclock is
+ * enabled (compute_guest_tsc() requires the masterclock snapshot to be
+ * taken _after_ the new generation is created).
*/
- if (ka->use_master_clock ||
- (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
+ if ((ka->use_master_clock && new_generation) ||
+ (ka->use_master_clock != use_master_clock))
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
@@ -2706,7 +2709,7 @@ static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
- kvm_track_tsc_matching(vcpu);
+ kvm_track_tsc_matching(vcpu, !matched);
}
static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)