summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-dw-dma.c
diff options
context:
space:
mode:
authorSerge Semin <Sergey.Semin@baikalelectronics.ru>2020-05-29 16:11:59 +0300
committerMark Brown <broonie@kernel.org>2020-05-29 15:55:50 +0100
commit6c710c0cb6725bdbe647b958756685aed0295936 (patch)
tree1ca2374e97e0e1b073333d19df8489a4f996a28c /drivers/spi/spi-dw-dma.c
parent77ccff803d27279ccc100dc906c6f456c8fa515c (diff)
spi: dw: Move Non-DMA code to the DW PCIe-SPI driver
This is a preparation patch before adding the DW DMA support into the DW SPI MMIO driver. We need to unpin the Non-DMA-specific code from the intended to be generic DW APB SSI DMA code. This isn't that hard, since the most part of the spi-dw-mid.c driver in fact implements a generic DMA interface for the DW SPI controller driver. The only Intel MID specifics concern getting the max frequency from the MRST Clock Control Unit and fetching the DMA controller channels from corresponding PCIe DMA controller. Since first one is related with the SPI interface configuration we moved it' implementation into the DW PCIe-SPI driver module. After that former spi-dw-mid.c file can be just renamed to be the DW SPI DMA module optionally compiled in to the DW APB SSI core driver. Co-developed-by: Georgy Vlasov <Georgy.Vlasov@baikalelectronics.ru> Co-developed-by: Ramil Zaripov <Ramil.Zaripov@baikalelectronics.ru> Signed-off-by: Georgy Vlasov <Georgy.Vlasov@baikalelectronics.ru> Signed-off-by: Ramil Zaripov <Ramil.Zaripov@baikalelectronics.ru> Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Feng Tang <feng.tang@intel.com> Cc: Rob Herring <robh+dt@kernel.org> Cc: linux-mips@vger.kernel.org Cc: devicetree@vger.kernel.org Link: https://lore.kernel.org/r/20200529131205.31838-11-Sergey.Semin@baikalelectronics.ru Signed-off-by: Mark Brown <broonie@kernel.org>
Diffstat (limited to 'drivers/spi/spi-dw-dma.c')
-rw-r--r--drivers/spi/spi-dw-dma.c481
1 files changed, 481 insertions, 0 deletions
diff --git a/drivers/spi/spi-dw-dma.c b/drivers/spi/spi-dw-dma.c
new file mode 100644
index 000000000000..7ae31682b5de
--- /dev/null
+++ b/drivers/spi/spi-dw-dma.c
@@ -0,0 +1,481 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Special handling for DW DMA core
+ *
+ * Copyright (c) 2009, 2014 Intel Corporation.
+ */
+
+#include <linux/completion.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/irqreturn.h>
+#include <linux/jiffies.h>
+#include <linux/pci.h>
+#include <linux/platform_data/dma-dw.h>
+#include <linux/spi/spi.h>
+#include <linux/types.h>
+
+#include "spi-dw.h"
+
+#define WAIT_RETRIES 5
+#define RX_BUSY 0
+#define RX_BURST_LEVEL 16
+#define TX_BUSY 1
+#define TX_BURST_LEVEL 16
+
+static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
+{
+ struct dw_dma_slave *s = param;
+
+ if (s->dma_dev != chan->device->dev)
+ return false;
+
+ chan->private = s;
+ return true;
+}
+
+static void mid_spi_maxburst_init(struct dw_spi *dws)
+{
+ struct dma_slave_caps caps;
+ u32 max_burst, def_burst;
+ int ret;
+
+ def_burst = dws->fifo_len / 2;
+
+ ret = dma_get_slave_caps(dws->rxchan, &caps);
+ if (!ret && caps.max_burst)
+ max_burst = caps.max_burst;
+ else
+ max_burst = RX_BURST_LEVEL;
+
+ dws->rxburst = min(max_burst, def_burst);
+
+ ret = dma_get_slave_caps(dws->txchan, &caps);
+ if (!ret && caps.max_burst)
+ max_burst = caps.max_burst;
+ else
+ max_burst = TX_BURST_LEVEL;
+
+ dws->txburst = min(max_burst, def_burst);
+}
+
+static int mid_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
+{
+ struct dw_dma_slave slave = {
+ .src_id = 0,
+ .dst_id = 0
+ };
+ struct pci_dev *dma_dev;
+ dma_cap_mask_t mask;
+
+ /*
+ * Get pci device for DMA controller, currently it could only
+ * be the DMA controller of Medfield
+ */
+ dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
+ if (!dma_dev)
+ return -ENODEV;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ /* 1. Init rx channel */
+ slave.dma_dev = &dma_dev->dev;
+ dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, &slave);
+ if (!dws->rxchan)
+ goto err_exit;
+
+ /* 2. Init tx channel */
+ slave.dst_id = 1;
+ dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, &slave);
+ if (!dws->txchan)
+ goto free_rxchan;
+
+ dws->master->dma_rx = dws->rxchan;
+ dws->master->dma_tx = dws->txchan;
+
+ init_completion(&dws->dma_completion);
+
+ mid_spi_maxburst_init(dws);
+
+ return 0;
+
+free_rxchan:
+ dma_release_channel(dws->rxchan);
+ dws->rxchan = NULL;
+err_exit:
+ return -EBUSY;
+}
+
+static int mid_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
+{
+ dws->rxchan = dma_request_slave_channel(dev, "rx");
+ if (!dws->rxchan)
+ return -ENODEV;
+
+ dws->txchan = dma_request_slave_channel(dev, "tx");
+ if (!dws->txchan) {
+ dma_release_channel(dws->rxchan);
+ dws->rxchan = NULL;
+ return -ENODEV;
+ }
+
+ dws->master->dma_rx = dws->rxchan;
+ dws->master->dma_tx = dws->txchan;
+
+ init_completion(&dws->dma_completion);
+
+ mid_spi_maxburst_init(dws);
+
+ return 0;
+}
+
+static void mid_spi_dma_exit(struct dw_spi *dws)
+{
+ if (dws->txchan) {
+ dmaengine_terminate_sync(dws->txchan);
+ dma_release_channel(dws->txchan);
+ }
+
+ if (dws->rxchan) {
+ dmaengine_terminate_sync(dws->rxchan);
+ dma_release_channel(dws->rxchan);
+ }
+
+ dw_writel(dws, DW_SPI_DMACR, 0);
+}
+
+static irqreturn_t dma_transfer(struct dw_spi *dws)
+{
+ u16 irq_status = dw_readl(dws, DW_SPI_ISR);
+
+ if (!irq_status)
+ return IRQ_NONE;
+
+ dw_readl(dws, DW_SPI_ICR);
+ spi_reset_chip(dws);
+
+ dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
+ dws->master->cur_msg->status = -EIO;
+ complete(&dws->dma_completion);
+ return IRQ_HANDLED;
+}
+
+static bool mid_spi_can_dma(struct spi_controller *master,
+ struct spi_device *spi, struct spi_transfer *xfer)
+{
+ struct dw_spi *dws = spi_controller_get_devdata(master);
+
+ return xfer->len > dws->fifo_len;
+}
+
+static enum dma_slave_buswidth convert_dma_width(u8 n_bytes) {
+ if (n_bytes == 1)
+ return DMA_SLAVE_BUSWIDTH_1_BYTE;
+ else if (n_bytes == 2)
+ return DMA_SLAVE_BUSWIDTH_2_BYTES;
+
+ return DMA_SLAVE_BUSWIDTH_UNDEFINED;
+}
+
+static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer)
+{
+ unsigned long long ms;
+
+ ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE;
+ do_div(ms, xfer->effective_speed_hz);
+ ms += ms + 200;
+
+ if (ms > UINT_MAX)
+ ms = UINT_MAX;
+
+ ms = wait_for_completion_timeout(&dws->dma_completion,
+ msecs_to_jiffies(ms));
+
+ if (ms == 0) {
+ dev_err(&dws->master->cur_msg->spi->dev,
+ "DMA transaction timed out\n");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
+{
+ return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
+}
+
+static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
+ struct spi_transfer *xfer)
+{
+ int retry = WAIT_RETRIES;
+ struct spi_delay delay;
+ u32 nents;
+
+ nents = dw_readl(dws, DW_SPI_TXFLR);
+ delay.unit = SPI_DELAY_UNIT_SCK;
+ delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
+
+ while (dw_spi_dma_tx_busy(dws) && retry--)
+ spi_delay_exec(&delay, xfer);
+
+ if (retry < 0) {
+ dev_err(&dws->master->dev, "Tx hanged up\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
+ * channel will clear a corresponding bit.
+ */
+static void dw_spi_dma_tx_done(void *arg)
+{
+ struct dw_spi *dws = arg;
+
+ clear_bit(TX_BUSY, &dws->dma_chan_busy);
+ if (test_bit(RX_BUSY, &dws->dma_chan_busy))
+ return;
+
+ dw_writel(dws, DW_SPI_DMACR, 0);
+ complete(&dws->dma_completion);
+}
+
+static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
+ struct spi_transfer *xfer)
+{
+ struct dma_slave_config txconf;
+ struct dma_async_tx_descriptor *txdesc;
+
+ if (!xfer->tx_buf)
+ return NULL;
+
+ memset(&txconf, 0, sizeof(txconf));
+ txconf.direction = DMA_MEM_TO_DEV;
+ txconf.dst_addr = dws->dma_addr;
+ txconf.dst_maxburst = dws->txburst;
+ txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ txconf.dst_addr_width = convert_dma_width(dws->n_bytes);
+ txconf.device_fc = false;
+
+ dmaengine_slave_config(dws->txchan, &txconf);
+
+ txdesc = dmaengine_prep_slave_sg(dws->txchan,
+ xfer->tx_sg.sgl,
+ xfer->tx_sg.nents,
+ DMA_MEM_TO_DEV,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!txdesc)
+ return NULL;
+
+ txdesc->callback = dw_spi_dma_tx_done;
+ txdesc->callback_param = dws;
+
+ return txdesc;
+}
+
+static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
+{
+ return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
+}
+
+static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
+{
+ int retry = WAIT_RETRIES;
+ struct spi_delay delay;
+ unsigned long ns, us;
+ u32 nents;
+
+ /*
+ * It's unlikely that DMA engine is still doing the data fetching, but
+ * if it's let's give it some reasonable time. The timeout calculation
+ * is based on the synchronous APB/SSI reference clock rate, on a
+ * number of data entries left in the Rx FIFO, times a number of clock
+ * periods normally needed for a single APB read/write transaction
+ * without PREADY signal utilized (which is true for the DW APB SSI
+ * controller).
+ */
+ nents = dw_readl(dws, DW_SPI_RXFLR);
+ ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
+ if (ns <= NSEC_PER_USEC) {
+ delay.unit = SPI_DELAY_UNIT_NSECS;
+ delay.value = ns;
+ } else {
+ us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
+ delay.unit = SPI_DELAY_UNIT_USECS;
+ delay.value = clamp_val(us, 0, USHRT_MAX);
+ }
+
+ while (dw_spi_dma_rx_busy(dws) && retry--)
+ spi_delay_exec(&delay, NULL);
+
+ if (retry < 0) {
+ dev_err(&dws->master->dev, "Rx hanged up\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
+ * channel will clear a corresponding bit.
+ */
+static void dw_spi_dma_rx_done(void *arg)
+{
+ struct dw_spi *dws = arg;
+
+ clear_bit(RX_BUSY, &dws->dma_chan_busy);
+ if (test_bit(TX_BUSY, &dws->dma_chan_busy))
+ return;
+
+ dw_writel(dws, DW_SPI_DMACR, 0);
+ complete(&dws->dma_completion);
+}
+
+static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
+ struct spi_transfer *xfer)
+{
+ struct dma_slave_config rxconf;
+ struct dma_async_tx_descriptor *rxdesc;
+
+ if (!xfer->rx_buf)
+ return NULL;
+
+ memset(&rxconf, 0, sizeof(rxconf));
+ rxconf.direction = DMA_DEV_TO_MEM;
+ rxconf.src_addr = dws->dma_addr;
+ rxconf.src_maxburst = dws->rxburst;
+ rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ rxconf.src_addr_width = convert_dma_width(dws->n_bytes);
+ rxconf.device_fc = false;
+
+ dmaengine_slave_config(dws->rxchan, &rxconf);
+
+ rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
+ xfer->rx_sg.sgl,
+ xfer->rx_sg.nents,
+ DMA_DEV_TO_MEM,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!rxdesc)
+ return NULL;
+
+ rxdesc->callback = dw_spi_dma_rx_done;
+ rxdesc->callback_param = dws;
+
+ return rxdesc;
+}
+
+static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
+{
+ u16 imr = 0, dma_ctrl = 0;
+
+ dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
+ dw_writel(dws, DW_SPI_DMATDLR, dws->fifo_len - dws->txburst);
+
+ if (xfer->tx_buf) {
+ dma_ctrl |= SPI_DMA_TDMAE;
+ imr |= SPI_INT_TXOI;
+ }
+ if (xfer->rx_buf) {
+ dma_ctrl |= SPI_DMA_RDMAE;
+ imr |= SPI_INT_RXUI | SPI_INT_RXOI;
+ }
+ dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
+
+ /* Set the interrupt mask */
+ spi_umask_intr(dws, imr);
+
+ reinit_completion(&dws->dma_completion);
+
+ dws->transfer_handler = dma_transfer;
+
+ return 0;
+}
+
+static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
+{
+ struct dma_async_tx_descriptor *txdesc, *rxdesc;
+ int ret;
+
+ /* Prepare the TX dma transfer */
+ txdesc = dw_spi_dma_prepare_tx(dws, xfer);
+
+ /* Prepare the RX dma transfer */
+ rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
+
+ /* rx must be started before tx due to spi instinct */
+ if (rxdesc) {
+ set_bit(RX_BUSY, &dws->dma_chan_busy);
+ dmaengine_submit(rxdesc);
+ dma_async_issue_pending(dws->rxchan);
+ }
+
+ if (txdesc) {
+ set_bit(TX_BUSY, &dws->dma_chan_busy);
+ dmaengine_submit(txdesc);
+ dma_async_issue_pending(dws->txchan);
+ }
+
+ ret = dw_spi_dma_wait(dws, xfer);
+ if (ret)
+ return ret;
+
+ if (txdesc && dws->master->cur_msg->status == -EINPROGRESS) {
+ ret = dw_spi_dma_wait_tx_done(dws, xfer);
+ if (ret)
+ return ret;
+ }
+
+ if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS)
+ ret = dw_spi_dma_wait_rx_done(dws);
+
+ return ret;
+}
+
+static void mid_spi_dma_stop(struct dw_spi *dws)
+{
+ if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
+ dmaengine_terminate_sync(dws->txchan);
+ clear_bit(TX_BUSY, &dws->dma_chan_busy);
+ }
+ if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
+ dmaengine_terminate_sync(dws->rxchan);
+ clear_bit(RX_BUSY, &dws->dma_chan_busy);
+ }
+
+ dw_writel(dws, DW_SPI_DMACR, 0);
+}
+
+static const struct dw_spi_dma_ops mfld_dma_ops = {
+ .dma_init = mid_spi_dma_init_mfld,
+ .dma_exit = mid_spi_dma_exit,
+ .dma_setup = mid_spi_dma_setup,
+ .can_dma = mid_spi_can_dma,
+ .dma_transfer = mid_spi_dma_transfer,
+ .dma_stop = mid_spi_dma_stop,
+};
+
+void dw_spi_mid_setup_dma_mfld(struct dw_spi *dws)
+{
+ dws->dma_ops = &mfld_dma_ops;
+}
+EXPORT_SYMBOL_GPL(dw_spi_mid_setup_dma_mfld);
+
+static const struct dw_spi_dma_ops generic_dma_ops = {
+ .dma_init = mid_spi_dma_init_generic,
+ .dma_exit = mid_spi_dma_exit,
+ .dma_setup = mid_spi_dma_setup,
+ .can_dma = mid_spi_can_dma,
+ .dma_transfer = mid_spi_dma_transfer,
+ .dma_stop = mid_spi_dma_stop,
+};
+
+void dw_spi_mid_setup_dma_generic(struct dw_spi *dws)
+{
+ dws->dma_ops = &generic_dma_ops;
+}
+EXPORT_SYMBOL_GPL(dw_spi_mid_setup_dma_generic);