summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_log_cil.c
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2022-07-02 02:12:52 +1000
committerDave Chinner <david@fromorbit.com>2022-07-02 02:12:52 +1000
commit31151cc342dd9cc2c5a5954f3e7b2dcf2fb50f64 (patch)
tree62935586bf2c09b7e68d11812f7680d7201717c3 /fs/xfs/xfs_log_cil.c
parent12380d237b819bd6cf2183f10b55ab47cdaab5e6 (diff)
xfs: rework per-iclog header CIL reservation
For every iclog that a CIL push will use up, we need to ensure we have space reserved for the iclog header in each iclog. It is extremely difficult to do this accurately with a per-cpu counter without expensive summing of the counter in every commit. However, we know what the maximum CIL size is going to be because of the hard space limit we have, and hence we know exactly how many iclogs we are going to need to write out the CIL. We are constrained by the requirement that small transactions only have reservation space for a single iclog header built into them. At commit time we don't know how much of the current transaction reservation is made up of iclog header reservations as calculated by xfs_log_calc_unit_res() when the ticket was reserved. As larger reservations have multiple header spaces reserved, we can steal more than one iclog header reservation at a time, but we only steal the exact number needed for the given log vector size delta. As a result, we don't know exactly when we are going to steal iclog header reservations, nor do we know exactly how many we are going to need for a given CIL. To make things simple, start by calculating the worst case number of iclog headers a full CIL push will require. Record this into an atomic variable in the CIL. Then add a byte counter to the log ticket that records exactly how much iclog header space has been reserved in this ticket by xfs_log_calc_unit_res(). This tells us exactly how much space we can steal from the ticket at transaction commit time. Now, at transaction commit time, we can check if the CIL has a full iclog header reservation and, if not, steal the entire reservation the current ticket holds for iclog headers. This minimises the number of times we need to do atomic operations in the fast path, but still guarantees we get all the reservations we need. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Diffstat (limited to 'fs/xfs/xfs_log_cil.c')
-rw-r--r--fs/xfs/xfs_log_cil.c55
1 files changed, 42 insertions, 13 deletions
diff --git a/fs/xfs/xfs_log_cil.c b/fs/xfs/xfs_log_cil.c
index 8a83d901e465..880ea9536f82 100644
--- a/fs/xfs/xfs_log_cil.c
+++ b/fs/xfs/xfs_log_cil.c
@@ -44,9 +44,20 @@ xlog_cil_ticket_alloc(
* transaction overhead reservation from the first transaction commit.
*/
tic->t_curr_res = 0;
+ tic->t_iclog_hdrs = 0;
return tic;
}
+static inline void
+xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
+{
+ struct xlog *log = cil->xc_log;
+
+ atomic_set(&cil->xc_iclog_hdrs,
+ (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
+ (log->l_iclog_size - log->l_iclog_hsize)));
+}
+
/*
* Check if the current log item was first committed in this sequence.
* We can't rely on just the log item being in the CIL, we have to check
@@ -102,6 +113,7 @@ xlog_cil_ctx_switch(
struct xfs_cil *cil,
struct xfs_cil_ctx *ctx)
{
+ xlog_cil_set_iclog_hdr_count(cil);
set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
ctx->sequence = ++cil->xc_current_sequence;
ctx->cil = cil;
@@ -124,6 +136,7 @@ xlog_cil_init_post_recovery(
{
log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
log->l_cilp->xc_ctx->sequence = 1;
+ xlog_cil_set_iclog_hdr_count(log->l_cilp);
}
static inline int
@@ -451,7 +464,6 @@ xlog_cil_insert_items(
struct xfs_cil_ctx *ctx = cil->xc_ctx;
struct xfs_log_item *lip;
int len = 0;
- int iclog_space;
int iovhdr_res = 0, split_res = 0, ctx_res = 0;
ASSERT(tp);
@@ -474,19 +486,36 @@ xlog_cil_insert_items(
test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
ctx_res = ctx->ticket->t_unit_res;
- spin_lock(&cil->xc_cil_lock);
-
- /* do we need space for more log record headers? */
- iclog_space = log->l_iclog_size - log->l_iclog_hsize;
- if (len > 0 && (ctx->space_used / iclog_space !=
- (ctx->space_used + len) / iclog_space)) {
- split_res = (len + iclog_space - 1) / iclog_space;
- /* need to take into account split region headers, too */
- split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
- ctx->ticket->t_unit_res += split_res;
+ /*
+ * Check if we need to steal iclog headers. atomic_read() is not a
+ * locked atomic operation, so we can check the value before we do any
+ * real atomic ops in the fast path. If we've already taken the CIL unit
+ * reservation from this commit, we've already got one iclog header
+ * space reserved so we have to account for that otherwise we risk
+ * overrunning the reservation on this ticket.
+ *
+ * If the CIL is already at the hard limit, we might need more header
+ * space that originally reserved. So steal more header space from every
+ * commit that occurs once we are over the hard limit to ensure the CIL
+ * push won't run out of reservation space.
+ *
+ * This can steal more than we need, but that's OK.
+ */
+ if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
+ ctx->space_used + len >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log)) {
+ int split_res = log->l_iclog_hsize +
+ sizeof(struct xlog_op_header);
+ if (ctx_res)
+ ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
+ else
+ ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
+ atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
}
- tp->t_ticket->t_curr_res -= split_res + ctx_res + len;
- ctx->ticket->t_curr_res += split_res + ctx_res;
+
+ spin_lock(&cil->xc_cil_lock);
+ tp->t_ticket->t_curr_res -= ctx_res + len;
+ ctx->ticket->t_unit_res += ctx_res;
+ ctx->ticket->t_curr_res += ctx_res;
ctx->space_used += len;
tp->t_ticket->t_curr_res += released_space;