summaryrefslogtreecommitdiff
path: root/include/linux/dsa
diff options
context:
space:
mode:
authorVladimir Oltean <vladimir.oltean@nxp.com>2021-07-26 19:55:34 +0300
committerDavid S. Miller <davem@davemloft.net>2021-07-26 22:35:22 +0100
commit884be12f85666c6e9ff1cf3ead06a7371f6863dc (patch)
tree1bdb349800dee8fcc738085f90f23b93ab7208e9 /include/linux/dsa
parent19fa937a391e58f4bb74ea52a5cdb4f259e67db2 (diff)
net: dsa: sja1105: add support for imprecise RX
This is already common knowledge by now, but the sja1105 does not have hardware support for DSA tagging for data plane packets, and tag_8021q sets up a unique pvid per port, transmitted as VLAN-tagged towards the CPU, for the source port to be decoded nonetheless. When the port is part of a VLAN-aware bridge, the pvid committed to hardware is taken from the bridge and not from tag_8021q, so we need to work with that the best we can. Configure the switches to send all packets to the CPU as VLAN-tagged (even ones that were originally untagged on the wire) and make use of dsa_untag_bridge_pvid() to get rid of it before we send those packets up the network stack. With the classified VLAN used by hardware known to the tagger, we first peek at the VID in an attempt to figure out if the packet was received from a VLAN-unaware port (standalone or under a VLAN-unaware bridge), case in which we can continue to call dsa_8021q_rcv(). If that is not the case, the packet probably came from a VLAN-aware bridge. So we call the DSA helper that finds for us a "designated bridge port" - one that is a member of the VLAN ID from the packet, and is in the proper STP state - basically these are all checks performed by br_handle_frame() in the software RX data path. The bridge will accept the packet as valid even if the source port was maybe wrong. So it will maybe learn the MAC SA of the packet on the wrong port, and its software FDB will be out of sync with the hardware FDB. So replies towards this same MAC DA will not work, because the bridge will send towards a different netdev. This is where the bridge data plane offload ("imprecise TX") added by the next patch comes in handy. The software FDB is wrong, true, but the hardware FDB isn't, and by offloading the bridge forwarding plane we have a chance to right a wrong, and have the hardware look up the FDB for us for the reply packet. So it all cancels out. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'include/linux/dsa')
0 files changed, 0 insertions, 0 deletions