diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2024-11-05 09:14:54 +0100 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2024-11-07 02:14:45 +0100 |
commit | df7a996b4dab03c889fa86d849447b716f07b069 (patch) | |
tree | 7c027850c3059d20465f98a0216a7450de61996a /include/linux/posix-timers.h | |
parent | caf77435dd8a52cb39c602bdf67d35d6f782f553 (diff) |
signal: Queue ignored posixtimers on ignore list
Queue posixtimers which have their signal ignored on the ignored list:
1) When the timer fires and the signal has SIG_IGN set
2) When SIG_IGN is installed via sigaction() and a timer signal
is already queued
This only happens when the signal is for a valid timer, which delivered the
signal in periodic mode. One-shot timer signals are correctly dropped.
Due to the lock order constraints (sighand::siglock nests inside
timer::lock) the signal code cannot access any of the timer fields which
are relevant to make this decision, e.g. timer::it_status.
This is addressed by establishing a protection scheme which requires to
lock both locks on the timer side for modifying decision fields in the
timer struct and therefore makes it possible for the signal delivery to
evaluate with only sighand:siglock being held:
1) Move the NULLification of timer->it_signal into the sighand::siglock
protected section of timer_delete() and check timer::it_signal in the
code path which determines whether the signal is dropped or queued on
the ignore list.
This ensures that a deleted timer cannot be moved onto the ignore
list, which would prevent it from being freed on exit() as it is not
longer in the process' posix timer list.
If the timer got moved to the ignored list before deletion then it is
removed from the ignored list under sighand lock in timer_delete().
2) Provide a new timer::it_sig_periodic flag, which gets set in the
signal queue path with both timer and sighand locks held if the timer
is actually in periodic mode at expiry time.
The ignore list code checks this flag under sighand::siglock and drops
the signal when it is not set.
If it is set, then the signal is moved to the ignored list independent
of the actual state of the timer.
When the signal is un-ignored later then the signal is moved back to
the signal queue. On signal delivery the posix timer side decides
about dropping the signal if the timer was re-armed, dis-armed or
deleted based on the signal sequence counter check.
If the thread/process exits then not yet delivered signals are
discarded which means the reference of the timer containing the
sigqueue is dropped and frees the timer.
This is way cheaper than requiring all code paths to lock
sighand::siglock of the target thread/process on any modification of
timer::it_status or going all the way and removing pending signals
from the signal queues on every rearm, disarm or delete operation.
So the protection scheme here is that on the timer side both timer::lock
and sighand::siglock have to be held for modifying
timer::it_signal
timer::it_sig_periodic
which means that on the signal side holding sighand::siglock is enough to
evaluate these fields.
In posixtimer_deliver_signal() holding timer::lock is sufficient to do the
sequence validation against timer::it_signal_seq because a concurrent
expiry is waiting on timer::lock to be released.
This completes the SIG_IGN handling and such timers are not longer self
rearmed which avoids pointless wakeups.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.120756416@linutronix.de
Diffstat (limited to 'include/linux/posix-timers.h')
-rw-r--r-- | include/linux/posix-timers.h | 2 |
1 files changed, 2 insertions, 0 deletions
diff --git a/include/linux/posix-timers.h b/include/linux/posix-timers.h index 1608b52a44d5..43ea6e784a25 100644 --- a/include/linux/posix-timers.h +++ b/include/linux/posix-timers.h @@ -160,6 +160,7 @@ static inline void posix_cputimers_init_work(void) { } * @it_clock: The posix timer clock id * @it_id: The posix timer id for identifying the timer * @it_status: The status of the timer + * @it_sig_periodic: The periodic status at signal delivery * @it_overrun: The overrun counter for pending signals * @it_overrun_last: The overrun at the time of the last delivered signal * @it_signal_seq: Sequence count to control signal delivery @@ -184,6 +185,7 @@ struct k_itimer { clockid_t it_clock; timer_t it_id; int it_status; + bool it_sig_periodic; s64 it_overrun; s64 it_overrun_last; unsigned int it_signal_seq; |