diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2018-08-15 15:04:25 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-08-15 15:04:25 -0700 |
commit | 9a76aba02a37718242d7cdc294f0a3901928aa57 (patch) | |
tree | 2040d038f85d2120f21af83b0793efd5af1864e3 /include/linux/reciprocal_div.h | |
parent | 0a957467c5fd46142bc9c52758ffc552d4c5e2f7 (diff) | |
parent | 26a1ccc6c117be8e33e0410fce8c5298b0015b99 (diff) |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
"Highlights:
- Gustavo A. R. Silva keeps working on the implicit switch fallthru
changes.
- Support 802.11ax High-Efficiency wireless in cfg80211 et al, From
Luca Coelho.
- Re-enable ASPM in r8169, from Kai-Heng Feng.
- Add virtual XFRM interfaces, which avoids all of the limitations of
existing IPSEC tunnels. From Steffen Klassert.
- Convert GRO over to use a hash table, so that when we have many
flows active we don't traverse a long list during accumluation.
- Many new self tests for routing, TC, tunnels, etc. Too many
contributors to mention them all, but I'm really happy to keep
seeing this stuff.
- Hardware timestamping support for dpaa_eth/fsl-fman from Yangbo Lu.
- Lots of cleanups and fixes in L2TP code from Guillaume Nault.
- Add IPSEC offload support to netdevsim, from Shannon Nelson.
- Add support for slotting with non-uniform distribution to netem
packet scheduler, from Yousuk Seung.
- Add UDP GSO support to mlx5e, from Boris Pismenny.
- Support offloading of Team LAG in NFP, from John Hurley.
- Allow to configure TX queue selection based upon RX queue, from
Amritha Nambiar.
- Support ethtool ring size configuration in aquantia, from Anton
Mikaev.
- Support DSCP and flowlabel per-transport in SCTP, from Xin Long.
- Support list based batching and stack traversal of SKBs, this is
very exciting work. From Edward Cree.
- Busyloop optimizations in vhost_net, from Toshiaki Makita.
- Introduce the ETF qdisc, which allows time based transmissions. IGB
can offload this in hardware. From Vinicius Costa Gomes.
- Add parameter support to devlink, from Moshe Shemesh.
- Several multiplication and division optimizations for BPF JIT in
nfp driver, from Jiong Wang.
- Lots of prepatory work to make more of the packet scheduler layer
lockless, when possible, from Vlad Buslov.
- Add ACK filter and NAT awareness to sch_cake packet scheduler, from
Toke Høiland-Jørgensen.
- Support regions and region snapshots in devlink, from Alex Vesker.
- Allow to attach XDP programs to both HW and SW at the same time on
a given device, with initial support in nfp. From Jakub Kicinski.
- Add TLS RX offload and support in mlx5, from Ilya Lesokhin.
- Use PHYLIB in r8169 driver, from Heiner Kallweit.
- All sorts of changes to support Spectrum 2 in mlxsw driver, from
Ido Schimmel.
- PTP support in mv88e6xxx DSA driver, from Andrew Lunn.
- Make TCP_USER_TIMEOUT socket option more accurate, from Jon
Maxwell.
- Support for templates in packet scheduler classifier, from Jiri
Pirko.
- IPV6 support in RDS, from Ka-Cheong Poon.
- Native tproxy support in nf_tables, from Máté Eckl.
- Maintain IP fragment queue in an rbtree, but optimize properly for
in-order frags. From Peter Oskolkov.
- Improvde handling of ACKs on hole repairs, from Yuchung Cheng"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1996 commits)
bpf: test: fix spelling mistake "REUSEEPORT" -> "REUSEPORT"
hv/netvsc: Fix NULL dereference at single queue mode fallback
net: filter: mark expected switch fall-through
xen-netfront: fix warn message as irq device name has '/'
cxgb4: Add new T5 PCI device ids 0x50af and 0x50b0
net: dsa: mv88e6xxx: missing unlock on error path
rds: fix building with IPV6=m
inet/connection_sock: prefer _THIS_IP_ to current_text_addr
net: dsa: mv88e6xxx: bitwise vs logical bug
net: sock_diag: Fix spectre v1 gadget in __sock_diag_cmd()
ieee802154: hwsim: using right kind of iteration
net: hns3: Add vlan filter setting by ethtool command -K
net: hns3: Set tx ring' tc info when netdev is up
net: hns3: Remove tx ring BD len register in hns3_enet
net: hns3: Fix desc num set to default when setting channel
net: hns3: Fix for phy link issue when using marvell phy driver
net: hns3: Fix for information of phydev lost problem when down/up
net: hns3: Fix for command format parsing error in hclge_is_all_function_id_zero
net: hns3: Add support for serdes loopback selftest
bnxt_en: take coredump_record structure off stack
...
Diffstat (limited to 'include/linux/reciprocal_div.h')
-rw-r--r-- | include/linux/reciprocal_div.h | 68 |
1 files changed, 68 insertions, 0 deletions
diff --git a/include/linux/reciprocal_div.h b/include/linux/reciprocal_div.h index e031e9f2f9d8..585ce89c0f33 100644 --- a/include/linux/reciprocal_div.h +++ b/include/linux/reciprocal_div.h @@ -25,6 +25,9 @@ struct reciprocal_value { u8 sh1, sh2; }; +/* "reciprocal_value" and "reciprocal_divide" together implement the basic + * version of the algorithm described in Figure 4.1 of the paper. + */ struct reciprocal_value reciprocal_value(u32 d); static inline u32 reciprocal_divide(u32 a, struct reciprocal_value R) @@ -33,4 +36,69 @@ static inline u32 reciprocal_divide(u32 a, struct reciprocal_value R) return (t + ((a - t) >> R.sh1)) >> R.sh2; } +struct reciprocal_value_adv { + u32 m; + u8 sh, exp; + bool is_wide_m; +}; + +/* "reciprocal_value_adv" implements the advanced version of the algorithm + * described in Figure 4.2 of the paper except when "divisor > (1U << 31)" whose + * ceil(log2(d)) result will be 32 which then requires u128 divide on host. The + * exception case could be easily handled before calling "reciprocal_value_adv". + * + * The advanced version requires more complex calculation to get the reciprocal + * multiplier and other control variables, but then could reduce the required + * emulation operations. + * + * It makes no sense to use this advanced version for host divide emulation, + * those extra complexities for calculating multiplier etc could completely + * waive our saving on emulation operations. + * + * However, it makes sense to use it for JIT divide code generation for which + * we are willing to trade performance of JITed code with that of host. As shown + * by the following pseudo code, the required emulation operations could go down + * from 6 (the basic version) to 3 or 4. + * + * To use the result of "reciprocal_value_adv", suppose we want to calculate + * n/d, the pseudo C code will be: + * + * struct reciprocal_value_adv rvalue; + * u8 pre_shift, exp; + * + * // handle exception case. + * if (d >= (1U << 31)) { + * result = n >= d; + * return; + * } + * + * rvalue = reciprocal_value_adv(d, 32) + * exp = rvalue.exp; + * if (rvalue.is_wide_m && !(d & 1)) { + * // floor(log2(d & (2^32 -d))) + * pre_shift = fls(d & -d) - 1; + * rvalue = reciprocal_value_adv(d >> pre_shift, 32 - pre_shift); + * } else { + * pre_shift = 0; + * } + * + * // code generation starts. + * if (imm == 1U << exp) { + * result = n >> exp; + * } else if (rvalue.is_wide_m) { + * // pre_shift must be zero when reached here. + * t = (n * rvalue.m) >> 32; + * result = n - t; + * result >>= 1; + * result += t; + * result >>= rvalue.sh - 1; + * } else { + * if (pre_shift) + * result = n >> pre_shift; + * result = ((u64)result * rvalue.m) >> 32; + * result >>= rvalue.sh; + * } + */ +struct reciprocal_value_adv reciprocal_value_adv(u32 d, u8 prec); + #endif /* _LINUX_RECIPROCAL_DIV_H */ |