summaryrefslogtreecommitdiff
path: root/mm/memcontrol-v1.c
diff options
context:
space:
mode:
authorRoman Gushchin <roman.gushchin@linux.dev>2024-06-24 17:58:54 -0700
committerAndrew Morton <akpm@linux-foundation.org>2024-07-04 18:05:51 -0700
commitd12f6d22416bb77e76a93903a717e029b66df002 (patch)
tree38c1d6bd5feb18473ad2626f78ef748d76aabe44 /mm/memcontrol-v1.c
parent1b1e13440c1c17efac1000788730468cde16bdd3 (diff)
mm: memcg: move soft limit reclaim code to memcontrol-v1.c
Soft limits are cgroup v1-specific and are not supported by cgroup v2, so let's move the corresponding code into memcontrol-v1.c. Aside from simple moving the code, this commits introduces a trivial memcg1_soft_limit_reset() function to reset soft limits and also moves the global soft limit tree initialization code into a new memcg1_init() function. It also moves corresponding declarations shared between memcontrol.c and memcontrol-v1.c into mm/memcontrol-v1.h. Link: https://lkml.kernel.org/r/20240625005906.106920-3-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'mm/memcontrol-v1.c')
-rw-r--r--mm/memcontrol-v1.c342
1 files changed, 342 insertions, 0 deletions
diff --git a/mm/memcontrol-v1.c b/mm/memcontrol-v1.c
index a941446ba575..2ccb8406fa84 100644
--- a/mm/memcontrol-v1.c
+++ b/mm/memcontrol-v1.c
@@ -1,3 +1,345 @@
// SPDX-License-Identifier: GPL-2.0-or-later
+#include <linux/memcontrol.h>
+#include <linux/swap.h>
+#include <linux/mm_inline.h>
+
#include "memcontrol-v1.h"
+
+/*
+ * Cgroups above their limits are maintained in a RB-Tree, independent of
+ * their hierarchy representation
+ */
+
+struct mem_cgroup_tree_per_node {
+ struct rb_root rb_root;
+ struct rb_node *rb_rightmost;
+ spinlock_t lock;
+};
+
+struct mem_cgroup_tree {
+ struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
+};
+
+static struct mem_cgroup_tree soft_limit_tree __read_mostly;
+
+/*
+ * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
+ * limit reclaim to prevent infinite loops, if they ever occur.
+ */
+#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
+#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
+
+static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
+ struct mem_cgroup_tree_per_node *mctz,
+ unsigned long new_usage_in_excess)
+{
+ struct rb_node **p = &mctz->rb_root.rb_node;
+ struct rb_node *parent = NULL;
+ struct mem_cgroup_per_node *mz_node;
+ bool rightmost = true;
+
+ if (mz->on_tree)
+ return;
+
+ mz->usage_in_excess = new_usage_in_excess;
+ if (!mz->usage_in_excess)
+ return;
+ while (*p) {
+ parent = *p;
+ mz_node = rb_entry(parent, struct mem_cgroup_per_node,
+ tree_node);
+ if (mz->usage_in_excess < mz_node->usage_in_excess) {
+ p = &(*p)->rb_left;
+ rightmost = false;
+ } else {
+ p = &(*p)->rb_right;
+ }
+ }
+
+ if (rightmost)
+ mctz->rb_rightmost = &mz->tree_node;
+
+ rb_link_node(&mz->tree_node, parent, p);
+ rb_insert_color(&mz->tree_node, &mctz->rb_root);
+ mz->on_tree = true;
+}
+
+static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
+ struct mem_cgroup_tree_per_node *mctz)
+{
+ if (!mz->on_tree)
+ return;
+
+ if (&mz->tree_node == mctz->rb_rightmost)
+ mctz->rb_rightmost = rb_prev(&mz->tree_node);
+
+ rb_erase(&mz->tree_node, &mctz->rb_root);
+ mz->on_tree = false;
+}
+
+static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
+ struct mem_cgroup_tree_per_node *mctz)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&mctz->lock, flags);
+ __mem_cgroup_remove_exceeded(mz, mctz);
+ spin_unlock_irqrestore(&mctz->lock, flags);
+}
+
+static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
+{
+ unsigned long nr_pages = page_counter_read(&memcg->memory);
+ unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
+ unsigned long excess = 0;
+
+ if (nr_pages > soft_limit)
+ excess = nr_pages - soft_limit;
+
+ return excess;
+}
+
+void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
+{
+ unsigned long excess;
+ struct mem_cgroup_per_node *mz;
+ struct mem_cgroup_tree_per_node *mctz;
+
+ if (lru_gen_enabled()) {
+ if (soft_limit_excess(memcg))
+ lru_gen_soft_reclaim(memcg, nid);
+ return;
+ }
+
+ mctz = soft_limit_tree.rb_tree_per_node[nid];
+ if (!mctz)
+ return;
+ /*
+ * Necessary to update all ancestors when hierarchy is used.
+ * because their event counter is not touched.
+ */
+ for (; memcg; memcg = parent_mem_cgroup(memcg)) {
+ mz = memcg->nodeinfo[nid];
+ excess = soft_limit_excess(memcg);
+ /*
+ * We have to update the tree if mz is on RB-tree or
+ * mem is over its softlimit.
+ */
+ if (excess || mz->on_tree) {
+ unsigned long flags;
+
+ spin_lock_irqsave(&mctz->lock, flags);
+ /* if on-tree, remove it */
+ if (mz->on_tree)
+ __mem_cgroup_remove_exceeded(mz, mctz);
+ /*
+ * Insert again. mz->usage_in_excess will be updated.
+ * If excess is 0, no tree ops.
+ */
+ __mem_cgroup_insert_exceeded(mz, mctz, excess);
+ spin_unlock_irqrestore(&mctz->lock, flags);
+ }
+ }
+}
+
+void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup_tree_per_node *mctz;
+ struct mem_cgroup_per_node *mz;
+ int nid;
+
+ for_each_node(nid) {
+ mz = memcg->nodeinfo[nid];
+ mctz = soft_limit_tree.rb_tree_per_node[nid];
+ if (mctz)
+ mem_cgroup_remove_exceeded(mz, mctz);
+ }
+}
+
+static struct mem_cgroup_per_node *
+__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
+{
+ struct mem_cgroup_per_node *mz;
+
+retry:
+ mz = NULL;
+ if (!mctz->rb_rightmost)
+ goto done; /* Nothing to reclaim from */
+
+ mz = rb_entry(mctz->rb_rightmost,
+ struct mem_cgroup_per_node, tree_node);
+ /*
+ * Remove the node now but someone else can add it back,
+ * we will to add it back at the end of reclaim to its correct
+ * position in the tree.
+ */
+ __mem_cgroup_remove_exceeded(mz, mctz);
+ if (!soft_limit_excess(mz->memcg) ||
+ !css_tryget(&mz->memcg->css))
+ goto retry;
+done:
+ return mz;
+}
+
+static struct mem_cgroup_per_node *
+mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
+{
+ struct mem_cgroup_per_node *mz;
+
+ spin_lock_irq(&mctz->lock);
+ mz = __mem_cgroup_largest_soft_limit_node(mctz);
+ spin_unlock_irq(&mctz->lock);
+ return mz;
+}
+
+static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
+ pg_data_t *pgdat,
+ gfp_t gfp_mask,
+ unsigned long *total_scanned)
+{
+ struct mem_cgroup *victim = NULL;
+ int total = 0;
+ int loop = 0;
+ unsigned long excess;
+ unsigned long nr_scanned;
+ struct mem_cgroup_reclaim_cookie reclaim = {
+ .pgdat = pgdat,
+ };
+
+ excess = soft_limit_excess(root_memcg);
+
+ while (1) {
+ victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
+ if (!victim) {
+ loop++;
+ if (loop >= 2) {
+ /*
+ * If we have not been able to reclaim
+ * anything, it might because there are
+ * no reclaimable pages under this hierarchy
+ */
+ if (!total)
+ break;
+ /*
+ * We want to do more targeted reclaim.
+ * excess >> 2 is not to excessive so as to
+ * reclaim too much, nor too less that we keep
+ * coming back to reclaim from this cgroup
+ */
+ if (total >= (excess >> 2) ||
+ (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
+ break;
+ }
+ continue;
+ }
+ total += mem_cgroup_shrink_node(victim, gfp_mask, false,
+ pgdat, &nr_scanned);
+ *total_scanned += nr_scanned;
+ if (!soft_limit_excess(root_memcg))
+ break;
+ }
+ mem_cgroup_iter_break(root_memcg, victim);
+ return total;
+}
+
+unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
+ gfp_t gfp_mask,
+ unsigned long *total_scanned)
+{
+ unsigned long nr_reclaimed = 0;
+ struct mem_cgroup_per_node *mz, *next_mz = NULL;
+ unsigned long reclaimed;
+ int loop = 0;
+ struct mem_cgroup_tree_per_node *mctz;
+ unsigned long excess;
+
+ if (lru_gen_enabled())
+ return 0;
+
+ if (order > 0)
+ return 0;
+
+ mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
+
+ /*
+ * Do not even bother to check the largest node if the root
+ * is empty. Do it lockless to prevent lock bouncing. Races
+ * are acceptable as soft limit is best effort anyway.
+ */
+ if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
+ return 0;
+
+ /*
+ * This loop can run a while, specially if mem_cgroup's continuously
+ * keep exceeding their soft limit and putting the system under
+ * pressure
+ */
+ do {
+ if (next_mz)
+ mz = next_mz;
+ else
+ mz = mem_cgroup_largest_soft_limit_node(mctz);
+ if (!mz)
+ break;
+
+ reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
+ gfp_mask, total_scanned);
+ nr_reclaimed += reclaimed;
+ spin_lock_irq(&mctz->lock);
+
+ /*
+ * If we failed to reclaim anything from this memory cgroup
+ * it is time to move on to the next cgroup
+ */
+ next_mz = NULL;
+ if (!reclaimed)
+ next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
+
+ excess = soft_limit_excess(mz->memcg);
+ /*
+ * One school of thought says that we should not add
+ * back the node to the tree if reclaim returns 0.
+ * But our reclaim could return 0, simply because due
+ * to priority we are exposing a smaller subset of
+ * memory to reclaim from. Consider this as a longer
+ * term TODO.
+ */
+ /* If excess == 0, no tree ops */
+ __mem_cgroup_insert_exceeded(mz, mctz, excess);
+ spin_unlock_irq(&mctz->lock);
+ css_put(&mz->memcg->css);
+ loop++;
+ /*
+ * Could not reclaim anything and there are no more
+ * mem cgroups to try or we seem to be looping without
+ * reclaiming anything.
+ */
+ if (!nr_reclaimed &&
+ (next_mz == NULL ||
+ loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
+ break;
+ } while (!nr_reclaimed);
+ if (next_mz)
+ css_put(&next_mz->memcg->css);
+ return nr_reclaimed;
+}
+
+static int __init memcg1_init(void)
+{
+ int node;
+
+ for_each_node(node) {
+ struct mem_cgroup_tree_per_node *rtpn;
+
+ rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
+
+ rtpn->rb_root = RB_ROOT;
+ rtpn->rb_rightmost = NULL;
+ spin_lock_init(&rtpn->lock);
+ soft_limit_tree.rb_tree_per_node[node] = rtpn;
+ }
+
+ return 0;
+}
+subsys_initcall(memcg1_init);