summaryrefslogtreecommitdiff
path: root/mm/slab.h
diff options
context:
space:
mode:
authorRoman Gushchin <guro@fb.com>2020-12-01 13:58:27 -0800
committerAlexei Starovoitov <ast@kernel.org>2020-12-02 18:28:05 -0800
commitbcfe06bf2622f7c4899468e427683aec49070687 (patch)
treec8e5c08deffc56d37c05ad2afcc2f4b2114826c7 /mm/slab.h
parent9e83f54f532bf2e66f6808922a4646cab7123033 (diff)
mm: memcontrol: Use helpers to read page's memcg data
Patch series "mm: allow mapping accounted kernel pages to userspace", v6. Currently a non-slab kernel page which has been charged to a memory cgroup can't be mapped to userspace. The underlying reason is simple: PageKmemcg flag is defined as a page type (like buddy, offline, etc), so it takes a bit from a page->mapped counter. Pages with a type set can't be mapped to userspace. But in general the kmemcg flag has nothing to do with mapping to userspace. It only means that the page has been accounted by the page allocator, so it has to be properly uncharged on release. Some bpf maps are mapping the vmalloc-based memory to userspace, and their memory can't be accounted because of this implementation detail. This patchset removes this limitation by moving the PageKmemcg flag into one of the free bits of the page->mem_cgroup pointer. Also it formalizes accesses to the page->mem_cgroup and page->obj_cgroups using new helpers, adds several checks and removes a couple of obsolete functions. As the result the code became more robust with fewer open-coded bit tricks. This patch (of 4): Currently there are many open-coded reads of the page->mem_cgroup pointer, as well as a couple of read helpers, which are barely used. It creates an obstacle on a way to reuse some bits of the pointer for storing additional bits of information. In fact, we already do this for slab pages, where the last bit indicates that a pointer has an attached vector of objcg pointers instead of a regular memcg pointer. This commits uses 2 existing helpers and introduces a new helper to converts all read sides to calls of these helpers: struct mem_cgroup *page_memcg(struct page *page); struct mem_cgroup *page_memcg_rcu(struct page *page); struct mem_cgroup *page_memcg_check(struct page *page); page_memcg_check() is intended to be used in cases when the page can be a slab page and have a memcg pointer pointing at objcg vector. It does check the lowest bit, and if set, returns NULL. page_memcg() contains a VM_BUG_ON_PAGE() check for the page not being a slab page. To make sure nobody uses a direct access, struct page's mem_cgroup/obj_cgroups is converted to unsigned long memcg_data. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
Diffstat (limited to 'mm/slab.h')
-rw-r--r--mm/slab.h9
1 files changed, 4 insertions, 5 deletions
diff --git a/mm/slab.h b/mm/slab.h
index 6d7c6a5056ba..e2535cee0d33 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -242,18 +242,17 @@ static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t fla
static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
{
/*
- * page->mem_cgroup and page->obj_cgroups are sharing the same
+ * Page's memory cgroup and obj_cgroups vector are sharing the same
* space. To distinguish between them in case we don't know for sure
* that the page is a slab page (e.g. page_cgroup_ino()), let's
* always set the lowest bit of obj_cgroups.
*/
- return (struct obj_cgroup **)
- ((unsigned long)page->obj_cgroups & ~0x1UL);
+ return (struct obj_cgroup **)(page->memcg_data & ~0x1UL);
}
static inline bool page_has_obj_cgroups(struct page *page)
{
- return ((unsigned long)page->obj_cgroups & 0x1UL);
+ return page->memcg_data & 0x1UL;
}
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
@@ -262,7 +261,7 @@ int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
static inline void memcg_free_page_obj_cgroups(struct page *page)
{
kfree(page_obj_cgroups(page));
- page->obj_cgroups = NULL;
+ page->memcg_data = 0;
}
static inline size_t obj_full_size(struct kmem_cache *s)