summaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
authorDavidlohr Bueso <dave@stgolabs.net>2014-12-12 16:54:24 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2014-12-13 12:42:45 -0800
commitc8c06efa8b552608493b7066c234cfa82c47fcea (patch)
tree7e206c669149766fb5a77a3ef85cdd4fac63be78 /mm
parent83cde9e8ba95d180eaefefe834958fbf7008cf39 (diff)
mm: convert i_mmap_mutex to rwsem
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting similar data, one for file backed pages and the other for anon memory. To this end, this lock can also be a rwsem. In addition, there are some important opportunities to share the lock when there are no tree modifications. This conversion is straightforward. For now, all users take the write lock. [sfr@canb.auug.org.au: update fremap.c] Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name> Acked-by: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm')
-rw-r--r--mm/filemap.c10
-rw-r--r--mm/hugetlb.c10
-rw-r--r--mm/mmap.c8
-rw-r--r--mm/mremap.c2
-rw-r--r--mm/rmap.c6
5 files changed, 18 insertions, 18 deletions
diff --git a/mm/filemap.c b/mm/filemap.c
index 14b4642279f1..e8905bc3cbd7 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -62,16 +62,16 @@
/*
* Lock ordering:
*
- * ->i_mmap_mutex (truncate_pagecache)
+ * ->i_mmap_rwsem (truncate_pagecache)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
*
* ->i_mutex
- * ->i_mmap_mutex (truncate->unmap_mapping_range)
+ * ->i_mmap_rwsem (truncate->unmap_mapping_range)
*
* ->mmap_sem
- * ->i_mmap_mutex
+ * ->i_mmap_rwsem
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
*
@@ -85,7 +85,7 @@
* sb_lock (fs/fs-writeback.c)
* ->mapping->tree_lock (__sync_single_inode)
*
- * ->i_mmap_mutex
+ * ->i_mmap_rwsem
* ->anon_vma.lock (vma_adjust)
*
* ->anon_vma.lock
@@ -105,7 +105,7 @@
* ->inode->i_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
*
- * ->i_mmap_mutex
+ * ->i_mmap_rwsem
* ->tasklist_lock (memory_failure, collect_procs_ao)
*/
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index ffe19304cc09..989cb032eaf5 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -2726,9 +2726,9 @@ void __unmap_hugepage_range_final(struct mmu_gather *tlb,
* on its way out. We're lucky that the flag has such an appropriate
* name, and can in fact be safely cleared here. We could clear it
* before the __unmap_hugepage_range above, but all that's necessary
- * is to clear it before releasing the i_mmap_mutex. This works
+ * is to clear it before releasing the i_mmap_rwsem. This works
* because in the context this is called, the VMA is about to be
- * destroyed and the i_mmap_mutex is held.
+ * destroyed and the i_mmap_rwsem is held.
*/
vma->vm_flags &= ~VM_MAYSHARE;
}
@@ -3370,9 +3370,9 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
spin_unlock(ptl);
}
/*
- * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
+ * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
* may have cleared our pud entry and done put_page on the page table:
- * once we release i_mmap_mutex, another task can do the final put_page
+ * once we release i_mmap_rwsem, another task can do the final put_page
* and that page table be reused and filled with junk.
*/
flush_tlb_range(vma, start, end);
@@ -3525,7 +3525,7 @@ static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
* and returns the corresponding pte. While this is not necessary for the
* !shared pmd case because we can allocate the pmd later as well, it makes the
* code much cleaner. pmd allocation is essential for the shared case because
- * pud has to be populated inside the same i_mmap_mutex section - otherwise
+ * pud has to be populated inside the same i_mmap_rwsem section - otherwise
* racing tasks could either miss the sharing (see huge_pte_offset) or select a
* bad pmd for sharing.
*/
diff --git a/mm/mmap.c b/mm/mmap.c
index ecd6ecf48778..0d84b2f86f3b 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -232,7 +232,7 @@ error:
}
/*
- * Requires inode->i_mapping->i_mmap_mutex
+ * Requires inode->i_mapping->i_mmap_rwsem
*/
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
struct file *file, struct address_space *mapping)
@@ -2791,7 +2791,7 @@ void exit_mmap(struct mm_struct *mm)
/* Insert vm structure into process list sorted by address
* and into the inode's i_mmap tree. If vm_file is non-NULL
- * then i_mmap_mutex is taken here.
+ * then i_mmap_rwsem is taken here.
*/
int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
{
@@ -3086,7 +3086,7 @@ static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
*/
if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
BUG();
- mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
+ down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
}
}
@@ -3113,7 +3113,7 @@ static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
* vma in this mm is backed by the same anon_vma or address_space.
*
* We can take all the locks in random order because the VM code
- * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
+ * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
* takes more than one of them in a row. Secondly we're protected
* against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
*
diff --git a/mm/mremap.c b/mm/mremap.c
index 426b448d6447..84aa36f9f308 100644
--- a/mm/mremap.c
+++ b/mm/mremap.c
@@ -99,7 +99,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
spinlock_t *old_ptl, *new_ptl;
/*
- * When need_rmap_locks is true, we take the i_mmap_mutex and anon_vma
+ * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
* locks to ensure that rmap will always observe either the old or the
* new ptes. This is the easiest way to avoid races with
* truncate_pagecache(), page migration, etc...
diff --git a/mm/rmap.c b/mm/rmap.c
index bea03f6bec61..18247f89f1a8 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -23,7 +23,7 @@
* inode->i_mutex (while writing or truncating, not reading or faulting)
* mm->mmap_sem
* page->flags PG_locked (lock_page)
- * mapping->i_mmap_mutex
+ * mapping->i_mmap_rwsem
* anon_vma->rwsem
* mm->page_table_lock or pte_lock
* zone->lru_lock (in mark_page_accessed, isolate_lru_page)
@@ -1260,7 +1260,7 @@ out_mlock:
/*
* We need mmap_sem locking, Otherwise VM_LOCKED check makes
* unstable result and race. Plus, We can't wait here because
- * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
+ * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
* if trylock failed, the page remain in evictable lru and later
* vmscan could retry to move the page to unevictable lru if the
* page is actually mlocked.
@@ -1684,7 +1684,7 @@ static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
* The page lock not only makes sure that page->mapping cannot
* suddenly be NULLified by truncation, it makes sure that the
* structure at mapping cannot be freed and reused yet,
- * so we can safely take mapping->i_mmap_mutex.
+ * so we can safely take mapping->i_mmap_rwsem.
*/
VM_BUG_ON_PAGE(!PageLocked(page), page);