summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--drivers/gpu/drm/i915/gt/intel_lrc.c15
-rw-r--r--drivers/gpu/drm/i915/i915_request.c25
2 files changed, 34 insertions, 6 deletions
diff --git a/drivers/gpu/drm/i915/gt/intel_lrc.c b/drivers/gpu/drm/i915/gt/intel_lrc.c
index 24322ef08aa4..9eeaca957a7e 100644
--- a/drivers/gpu/drm/i915/gt/intel_lrc.c
+++ b/drivers/gpu/drm/i915/gt/intel_lrc.c
@@ -2060,6 +2060,14 @@ static inline void clear_ports(struct i915_request **ports, int count)
memset_p((void **)ports, NULL, count);
}
+static inline void
+copy_ports(struct i915_request **dst, struct i915_request **src, int count)
+{
+ /* A memcpy_p() would be very useful here! */
+ while (count--)
+ WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
+}
+
static void execlists_dequeue(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
@@ -2648,10 +2656,9 @@ static void process_csb(struct intel_engine_cs *engine)
/* switch pending to inflight */
GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
- memcpy(execlists->inflight,
- execlists->pending,
- execlists_num_ports(execlists) *
- sizeof(*execlists->pending));
+ copy_ports(execlists->inflight,
+ execlists->pending,
+ execlists_num_ports(execlists));
smp_wmb(); /* complete the seqlock */
WRITE_ONCE(execlists->active, execlists->inflight);
diff --git a/drivers/gpu/drm/i915/i915_request.c b/drivers/gpu/drm/i915/i915_request.c
index 0b2fe55e6194..781a6783affe 100644
--- a/drivers/gpu/drm/i915/i915_request.c
+++ b/drivers/gpu/drm/i915/i915_request.c
@@ -388,17 +388,38 @@ static bool __request_in_flight(const struct i915_request *signal)
* As we know that there are always preemption points between
* requests, we know that only the currently executing request
* may be still active even though we have cleared the flag.
- * However, we can't rely on our tracking of ELSP[0] to known
+ * However, we can't rely on our tracking of ELSP[0] to know
* which request is currently active and so maybe stuck, as
* the tracking maybe an event behind. Instead assume that
* if the context is still inflight, then it is still active
* even if the active flag has been cleared.
+ *
+ * To further complicate matters, if there a pending promotion, the HW
+ * may either perform a context switch to the second inflight execlists,
+ * or it may switch to the pending set of execlists. In the case of the
+ * latter, it may send the ACK and we process the event copying the
+ * pending[] over top of inflight[], _overwriting_ our *active. Since
+ * this implies the HW is arbitrating and not struck in *active, we do
+ * not worry about complete accuracy, but we do require no read/write
+ * tearing of the pointer [the read of the pointer must be valid, even
+ * as the array is being overwritten, for which we require the writes
+ * to avoid tearing.]
+ *
+ * Note that the read of *execlists->active may race with the promotion
+ * of execlists->pending[] to execlists->inflight[], overwritting
+ * the value at *execlists->active. This is fine. The promotion implies
+ * that we received an ACK from the HW, and so the context is not
+ * stuck -- if we do not see ourselves in *active, the inflight status
+ * is valid. If instead we see ourselves being copied into *active,
+ * we are inflight and may signal the callback.
*/
if (!intel_context_inflight(signal->context))
return false;
rcu_read_lock();
- for (port = __engine_active(signal->engine); (rq = *port); port++) {
+ for (port = __engine_active(signal->engine);
+ (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
+ port++) {
if (rq->context == signal->context) {
inflight = i915_seqno_passed(rq->fence.seqno,
signal->fence.seqno);