summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--fs/nfs/callback_proc.c5
-rw-r--r--include/linux/bitops.h11
-rw-r--r--include/linux/dcache.h1
-rw-r--r--include/linux/iommu-helper.h4
-rw-r--r--include/linux/kernel.h173
-rw-r--r--include/linux/math.h177
-rw-r--r--include/linux/rcu_node_tree.h2
-rw-r--r--include/linux/units.h2
-rw-r--r--lib/errname.c1
-rw-r--r--lib/errseq.c1
-rw-r--r--lib/find_bit.c3
-rw-r--r--lib/math/div64.c4
-rw-r--r--lib/math/int_pow.c2
-rw-r--r--lib/math/int_sqrt.c3
-rw-r--r--lib/math/reciprocal_div.c9
15 files changed, 215 insertions, 183 deletions
diff --git a/fs/nfs/callback_proc.c b/fs/nfs/callback_proc.c
index e61dbc9b86ae..f7786e00a6a7 100644
--- a/fs/nfs/callback_proc.c
+++ b/fs/nfs/callback_proc.c
@@ -6,10 +6,15 @@
*
* NFSv4 callback procedures
*/
+
+#include <linux/errno.h>
+#include <linux/math.h>
#include <linux/nfs4.h>
#include <linux/nfs_fs.h>
#include <linux/slab.h>
#include <linux/rcupdate.h>
+#include <linux/types.h>
+
#include "nfs4_fs.h"
#include "callback.h"
#include "delegation.h"
diff --git a/include/linux/bitops.h b/include/linux/bitops.h
index 5b74bdf159d6..a61f192c096b 100644
--- a/include/linux/bitops.h
+++ b/include/linux/bitops.h
@@ -1,9 +1,12 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_BITOPS_H
#define _LINUX_BITOPS_H
+
#include <asm/types.h>
#include <linux/bits.h>
+#include <uapi/linux/kernel.h>
+
/* Set bits in the first 'n' bytes when loaded from memory */
#ifdef __LITTLE_ENDIAN
# define aligned_byte_mask(n) ((1UL << 8*(n))-1)
@@ -12,10 +15,10 @@
#endif
#define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE)
-#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(long))
-#define BITS_TO_U64(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(u64))
-#define BITS_TO_U32(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(u32))
-#define BITS_TO_BYTES(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(char))
+#define BITS_TO_LONGS(nr) __KERNEL_DIV_ROUND_UP(nr, BITS_PER_TYPE(long))
+#define BITS_TO_U64(nr) __KERNEL_DIV_ROUND_UP(nr, BITS_PER_TYPE(u64))
+#define BITS_TO_U32(nr) __KERNEL_DIV_ROUND_UP(nr, BITS_PER_TYPE(u32))
+#define BITS_TO_BYTES(nr) __KERNEL_DIV_ROUND_UP(nr, BITS_PER_TYPE(char))
extern unsigned int __sw_hweight8(unsigned int w);
extern unsigned int __sw_hweight16(unsigned int w);
diff --git a/include/linux/dcache.h b/include/linux/dcache.h
index 6f95c3300cbb..d7b369fc15d3 100644
--- a/include/linux/dcache.h
+++ b/include/linux/dcache.h
@@ -4,6 +4,7 @@
#include <linux/atomic.h>
#include <linux/list.h>
+#include <linux/math.h>
#include <linux/rculist.h>
#include <linux/rculist_bl.h>
#include <linux/spinlock.h>
diff --git a/include/linux/iommu-helper.h b/include/linux/iommu-helper.h
index 70d01edcbf8b..74be34f3a20a 100644
--- a/include/linux/iommu-helper.h
+++ b/include/linux/iommu-helper.h
@@ -3,7 +3,9 @@
#define _LINUX_IOMMU_HELPER_H
#include <linux/bug.h>
-#include <linux/kernel.h>
+#include <linux/log2.h>
+#include <linux/math.h>
+#include <linux/types.h>
static inline unsigned long iommu_device_max_index(unsigned long size,
unsigned long offset,
diff --git a/include/linux/kernel.h b/include/linux/kernel.h
index dbf6018fc312..f7902d8c1048 100644
--- a/include/linux/kernel.h
+++ b/include/linux/kernel.h
@@ -2,7 +2,6 @@
#ifndef _LINUX_KERNEL_H
#define _LINUX_KERNEL_H
-
#include <stdarg.h>
#include <linux/limits.h>
#include <linux/linkage.h>
@@ -11,12 +10,14 @@
#include <linux/compiler.h>
#include <linux/bitops.h>
#include <linux/log2.h>
+#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/typecheck.h>
#include <linux/printk.h>
#include <linux/build_bug.h>
+
#include <asm/byteorder.h>
-#include <asm/div64.h>
+
#include <uapi/linux/kernel.h>
#define STACK_MAGIC 0xdeadbeef
@@ -54,125 +55,11 @@
} \
)
-/*
- * This looks more complex than it should be. But we need to
- * get the type for the ~ right in round_down (it needs to be
- * as wide as the result!), and we want to evaluate the macro
- * arguments just once each.
- */
-#define __round_mask(x, y) ((__typeof__(x))((y)-1))
-/**
- * round_up - round up to next specified power of 2
- * @x: the value to round
- * @y: multiple to round up to (must be a power of 2)
- *
- * Rounds @x up to next multiple of @y (which must be a power of 2).
- * To perform arbitrary rounding up, use roundup() below.
- */
-#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
-/**
- * round_down - round down to next specified power of 2
- * @x: the value to round
- * @y: multiple to round down to (must be a power of 2)
- *
- * Rounds @x down to next multiple of @y (which must be a power of 2).
- * To perform arbitrary rounding down, use rounddown() below.
- */
-#define round_down(x, y) ((x) & ~__round_mask(x, y))
-
#define typeof_member(T, m) typeof(((T*)0)->m)
-#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
-
-#define DIV_ROUND_DOWN_ULL(ll, d) \
- ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
-
-#define DIV_ROUND_UP_ULL(ll, d) \
- DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
-
-#if BITS_PER_LONG == 32
-# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
-#else
-# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
-#endif
-
-/**
- * roundup - round up to the next specified multiple
- * @x: the value to up
- * @y: multiple to round up to
- *
- * Rounds @x up to next multiple of @y. If @y will always be a power
- * of 2, consider using the faster round_up().
- */
-#define roundup(x, y) ( \
-{ \
- typeof(y) __y = y; \
- (((x) + (__y - 1)) / __y) * __y; \
-} \
-)
-/**
- * rounddown - round down to next specified multiple
- * @x: the value to round
- * @y: multiple to round down to
- *
- * Rounds @x down to next multiple of @y. If @y will always be a power
- * of 2, consider using the faster round_down().
- */
-#define rounddown(x, y) ( \
-{ \
- typeof(x) __x = (x); \
- __x - (__x % (y)); \
-} \
-)
-
-/*
- * Divide positive or negative dividend by positive or negative divisor
- * and round to closest integer. Result is undefined for negative
- * divisors if the dividend variable type is unsigned and for negative
- * dividends if the divisor variable type is unsigned.
- */
-#define DIV_ROUND_CLOSEST(x, divisor)( \
-{ \
- typeof(x) __x = x; \
- typeof(divisor) __d = divisor; \
- (((typeof(x))-1) > 0 || \
- ((typeof(divisor))-1) > 0 || \
- (((__x) > 0) == ((__d) > 0))) ? \
- (((__x) + ((__d) / 2)) / (__d)) : \
- (((__x) - ((__d) / 2)) / (__d)); \
-} \
-)
-/*
- * Same as above but for u64 dividends. divisor must be a 32-bit
- * number.
- */
-#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
-{ \
- typeof(divisor) __d = divisor; \
- unsigned long long _tmp = (x) + (__d) / 2; \
- do_div(_tmp, __d); \
- _tmp; \
-} \
-)
-
-/*
- * Multiplies an integer by a fraction, while avoiding unnecessary
- * overflow or loss of precision.
- */
-#define mult_frac(x, numer, denom)( \
-{ \
- typeof(x) quot = (x) / (denom); \
- typeof(x) rem = (x) % (denom); \
- (quot * (numer)) + ((rem * (numer)) / (denom)); \
-} \
-)
-
-
#define _RET_IP_ (unsigned long)__builtin_return_address(0)
#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
-#define sector_div(a, b) do_div(a, b)
-
/**
* upper_32_bits - return bits 32-63 of a number
* @n: the number we're accessing
@@ -272,48 +159,6 @@ extern void __cant_migrate(const char *file, int line);
#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
-/**
- * abs - return absolute value of an argument
- * @x: the value. If it is unsigned type, it is converted to signed type first.
- * char is treated as if it was signed (regardless of whether it really is)
- * but the macro's return type is preserved as char.
- *
- * Return: an absolute value of x.
- */
-#define abs(x) __abs_choose_expr(x, long long, \
- __abs_choose_expr(x, long, \
- __abs_choose_expr(x, int, \
- __abs_choose_expr(x, short, \
- __abs_choose_expr(x, char, \
- __builtin_choose_expr( \
- __builtin_types_compatible_p(typeof(x), char), \
- (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
- ((void)0)))))))
-
-#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
- __builtin_types_compatible_p(typeof(x), signed type) || \
- __builtin_types_compatible_p(typeof(x), unsigned type), \
- ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
-
-/**
- * reciprocal_scale - "scale" a value into range [0, ep_ro)
- * @val: value
- * @ep_ro: right open interval endpoint
- *
- * Perform a "reciprocal multiplication" in order to "scale" a value into
- * range [0, @ep_ro), where the upper interval endpoint is right-open.
- * This is useful, e.g. for accessing a index of an array containing
- * @ep_ro elements, for example. Think of it as sort of modulus, only that
- * the result isn't that of modulo. ;) Note that if initial input is a
- * small value, then result will return 0.
- *
- * Return: a result based on @val in interval [0, @ep_ro).
- */
-static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
-{
- return (u32)(((u64) val * ep_ro) >> 32);
-}
-
#if defined(CONFIG_MMU) && \
(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
#define might_fault() __might_fault(__FILE__, __LINE__)
@@ -515,18 +360,6 @@ extern int __kernel_text_address(unsigned long addr);
extern int kernel_text_address(unsigned long addr);
extern int func_ptr_is_kernel_text(void *ptr);
-u64 int_pow(u64 base, unsigned int exp);
-unsigned long int_sqrt(unsigned long);
-
-#if BITS_PER_LONG < 64
-u32 int_sqrt64(u64 x);
-#else
-static inline u32 int_sqrt64(u64 x)
-{
- return (u32)int_sqrt(x);
-}
-#endif
-
#ifdef CONFIG_SMP
extern unsigned int sysctl_oops_all_cpu_backtrace;
#else
diff --git a/include/linux/math.h b/include/linux/math.h
new file mode 100644
index 000000000000..53674a327e39
--- /dev/null
+++ b/include/linux/math.h
@@ -0,0 +1,177 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LINUX_MATH_H
+#define _LINUX_MATH_H
+
+#include <asm/div64.h>
+#include <uapi/linux/kernel.h>
+
+/*
+ * This looks more complex than it should be. But we need to
+ * get the type for the ~ right in round_down (it needs to be
+ * as wide as the result!), and we want to evaluate the macro
+ * arguments just once each.
+ */
+#define __round_mask(x, y) ((__typeof__(x))((y)-1))
+
+/**
+ * round_up - round up to next specified power of 2
+ * @x: the value to round
+ * @y: multiple to round up to (must be a power of 2)
+ *
+ * Rounds @x up to next multiple of @y (which must be a power of 2).
+ * To perform arbitrary rounding up, use roundup() below.
+ */
+#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
+
+/**
+ * round_down - round down to next specified power of 2
+ * @x: the value to round
+ * @y: multiple to round down to (must be a power of 2)
+ *
+ * Rounds @x down to next multiple of @y (which must be a power of 2).
+ * To perform arbitrary rounding down, use rounddown() below.
+ */
+#define round_down(x, y) ((x) & ~__round_mask(x, y))
+
+#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
+
+#define DIV_ROUND_DOWN_ULL(ll, d) \
+ ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
+
+#define DIV_ROUND_UP_ULL(ll, d) \
+ DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
+
+#if BITS_PER_LONG == 32
+# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
+#else
+# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
+#endif
+
+/**
+ * roundup - round up to the next specified multiple
+ * @x: the value to up
+ * @y: multiple to round up to
+ *
+ * Rounds @x up to next multiple of @y. If @y will always be a power
+ * of 2, consider using the faster round_up().
+ */
+#define roundup(x, y) ( \
+{ \
+ typeof(y) __y = y; \
+ (((x) + (__y - 1)) / __y) * __y; \
+} \
+)
+/**
+ * rounddown - round down to next specified multiple
+ * @x: the value to round
+ * @y: multiple to round down to
+ *
+ * Rounds @x down to next multiple of @y. If @y will always be a power
+ * of 2, consider using the faster round_down().
+ */
+#define rounddown(x, y) ( \
+{ \
+ typeof(x) __x = (x); \
+ __x - (__x % (y)); \
+} \
+)
+
+/*
+ * Divide positive or negative dividend by positive or negative divisor
+ * and round to closest integer. Result is undefined for negative
+ * divisors if the dividend variable type is unsigned and for negative
+ * dividends if the divisor variable type is unsigned.
+ */
+#define DIV_ROUND_CLOSEST(x, divisor)( \
+{ \
+ typeof(x) __x = x; \
+ typeof(divisor) __d = divisor; \
+ (((typeof(x))-1) > 0 || \
+ ((typeof(divisor))-1) > 0 || \
+ (((__x) > 0) == ((__d) > 0))) ? \
+ (((__x) + ((__d) / 2)) / (__d)) : \
+ (((__x) - ((__d) / 2)) / (__d)); \
+} \
+)
+/*
+ * Same as above but for u64 dividends. divisor must be a 32-bit
+ * number.
+ */
+#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
+{ \
+ typeof(divisor) __d = divisor; \
+ unsigned long long _tmp = (x) + (__d) / 2; \
+ do_div(_tmp, __d); \
+ _tmp; \
+} \
+)
+
+/*
+ * Multiplies an integer by a fraction, while avoiding unnecessary
+ * overflow or loss of precision.
+ */
+#define mult_frac(x, numer, denom)( \
+{ \
+ typeof(x) quot = (x) / (denom); \
+ typeof(x) rem = (x) % (denom); \
+ (quot * (numer)) + ((rem * (numer)) / (denom)); \
+} \
+)
+
+#define sector_div(a, b) do_div(a, b)
+
+/**
+ * abs - return absolute value of an argument
+ * @x: the value. If it is unsigned type, it is converted to signed type first.
+ * char is treated as if it was signed (regardless of whether it really is)
+ * but the macro's return type is preserved as char.
+ *
+ * Return: an absolute value of x.
+ */
+#define abs(x) __abs_choose_expr(x, long long, \
+ __abs_choose_expr(x, long, \
+ __abs_choose_expr(x, int, \
+ __abs_choose_expr(x, short, \
+ __abs_choose_expr(x, char, \
+ __builtin_choose_expr( \
+ __builtin_types_compatible_p(typeof(x), char), \
+ (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
+ ((void)0)))))))
+
+#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
+ __builtin_types_compatible_p(typeof(x), signed type) || \
+ __builtin_types_compatible_p(typeof(x), unsigned type), \
+ ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
+
+/**
+ * reciprocal_scale - "scale" a value into range [0, ep_ro)
+ * @val: value
+ * @ep_ro: right open interval endpoint
+ *
+ * Perform a "reciprocal multiplication" in order to "scale" a value into
+ * range [0, @ep_ro), where the upper interval endpoint is right-open.
+ * This is useful, e.g. for accessing a index of an array containing
+ * @ep_ro elements, for example. Think of it as sort of modulus, only that
+ * the result isn't that of modulo. ;) Note that if initial input is a
+ * small value, then result will return 0.
+ *
+ * Return: a result based on @val in interval [0, @ep_ro).
+ */
+static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
+{
+ return (u32)(((u64) val * ep_ro) >> 32);
+}
+
+u64 int_pow(u64 base, unsigned int exp);
+unsigned long int_sqrt(unsigned long);
+
+#if BITS_PER_LONG < 64
+u32 int_sqrt64(u64 x);
+#else
+static inline u32 int_sqrt64(u64 x)
+{
+ return (u32)int_sqrt(x);
+}
+#endif
+
+#endif /* _LINUX_MATH_H */
diff --git a/include/linux/rcu_node_tree.h b/include/linux/rcu_node_tree.h
index b8e094b125ee..78feb8ba7358 100644
--- a/include/linux/rcu_node_tree.h
+++ b/include/linux/rcu_node_tree.h
@@ -20,6 +20,8 @@
#ifndef __LINUX_RCU_NODE_TREE_H
#define __LINUX_RCU_NODE_TREE_H
+#include <linux/math.h>
+
/*
* Define shape of hierarchy based on NR_CPUS, CONFIG_RCU_FANOUT, and
* CONFIG_RCU_FANOUT_LEAF.
diff --git a/include/linux/units.h b/include/linux/units.h
index aaf716364ec3..5c115c809507 100644
--- a/include/linux/units.h
+++ b/include/linux/units.h
@@ -2,7 +2,7 @@
#ifndef _LINUX_UNITS_H
#define _LINUX_UNITS_H
-#include <linux/kernel.h>
+#include <linux/math.h>
#define ABSOLUTE_ZERO_MILLICELSIUS -273150
diff --git a/lib/errname.c b/lib/errname.c
index 0c4d3e66170e..05cbf731545f 100644
--- a/lib/errname.c
+++ b/lib/errname.c
@@ -3,6 +3,7 @@
#include <linux/errno.h>
#include <linux/errname.h>
#include <linux/kernel.h>
+#include <linux/math.h>
/*
* Ensure these tables do not accidentally become gigantic if some
diff --git a/lib/errseq.c b/lib/errseq.c
index 81f9e33aa7e7..93e9b94358dc 100644
--- a/lib/errseq.c
+++ b/lib/errseq.c
@@ -3,6 +3,7 @@
#include <linux/bug.h>
#include <linux/atomic.h>
#include <linux/errseq.h>
+#include <linux/log2.h>
/*
* An errseq_t is a way of recording errors in one place, and allowing any
diff --git a/lib/find_bit.c b/lib/find_bit.c
index 4a8751010d59..f67f86fd2f62 100644
--- a/lib/find_bit.c
+++ b/lib/find_bit.c
@@ -15,8 +15,9 @@
#include <linux/bitops.h>
#include <linux/bitmap.h>
#include <linux/export.h>
-#include <linux/kernel.h>
+#include <linux/math.h>
#include <linux/minmax.h>
+#include <linux/swab.h>
#if !defined(find_next_bit) || !defined(find_next_zero_bit) || \
!defined(find_next_bit_le) || !defined(find_next_zero_bit_le) || \
diff --git a/lib/math/div64.c b/lib/math/div64.c
index 3952a07130d8..064d68a5391a 100644
--- a/lib/math/div64.c
+++ b/lib/math/div64.c
@@ -18,9 +18,11 @@
* or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
+#include <linux/bitops.h>
#include <linux/export.h>
-#include <linux/kernel.h>
+#include <linux/math.h>
#include <linux/math64.h>
+#include <linux/log2.h>
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
diff --git a/lib/math/int_pow.c b/lib/math/int_pow.c
index 622fc1ab3c74..0cf426e69bda 100644
--- a/lib/math/int_pow.c
+++ b/lib/math/int_pow.c
@@ -6,7 +6,7 @@
*/
#include <linux/export.h>
-#include <linux/kernel.h>
+#include <linux/math.h>
#include <linux/types.h>
/**
diff --git a/lib/math/int_sqrt.c b/lib/math/int_sqrt.c
index 30e0f9770f88..a8170bb9142f 100644
--- a/lib/math/int_sqrt.c
+++ b/lib/math/int_sqrt.c
@@ -6,9 +6,10 @@
* square root from Guy L. Steele.
*/
-#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/bitops.h>
+#include <linux/limits.h>
+#include <linux/math.h>
/**
* int_sqrt - computes the integer square root
diff --git a/lib/math/reciprocal_div.c b/lib/math/reciprocal_div.c
index 32436dd4171e..6cb4adbb81d2 100644
--- a/lib/math/reciprocal_div.c
+++ b/lib/math/reciprocal_div.c
@@ -1,10 +1,13 @@
// SPDX-License-Identifier: GPL-2.0
+#include <linux/bitops.h>
#include <linux/bug.h>
-#include <linux/kernel.h>
-#include <asm/div64.h>
-#include <linux/reciprocal_div.h>
#include <linux/export.h>
+#include <linux/limits.h>
+#include <linux/math.h>
#include <linux/minmax.h>
+#include <linux/types.h>
+
+#include <linux/reciprocal_div.h>
/*
* For a description of the algorithm please have a look at