summaryrefslogtreecommitdiff
path: root/Documentation/arch
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/arch')
-rw-r--r--Documentation/arch/arm64/arm-acpi.rst2
-rw-r--r--Documentation/arch/arm64/perf.rst72
-rw-r--r--Documentation/arch/loongarch/introduction.rst4
-rw-r--r--Documentation/arch/x86/boot.rst2
-rw-r--r--Documentation/arch/x86/cpuinfo.rst89
-rw-r--r--Documentation/arch/x86/pti.rst10
6 files changed, 148 insertions, 31 deletions
diff --git a/Documentation/arch/arm64/arm-acpi.rst b/Documentation/arch/arm64/arm-acpi.rst
index a46c34fa9604..e59e4505d0d9 100644
--- a/Documentation/arch/arm64/arm-acpi.rst
+++ b/Documentation/arch/arm64/arm-acpi.rst
@@ -130,7 +130,7 @@ When an Arm system boots, it can either have DT information, ACPI tables,
or in some very unusual cases, both. If no command line parameters are used,
the kernel will try to use DT for device enumeration; if there is no DT
present, the kernel will try to use ACPI tables, but only if they are present.
-In neither is available, the kernel will not boot. If acpi=force is used
+If neither is available, the kernel will not boot. If acpi=force is used
on the command line, the kernel will attempt to use ACPI tables first, but
fall back to DT if there are no ACPI tables present. The basic idea is that
the kernel will not fail to boot unless it absolutely has no other choice.
diff --git a/Documentation/arch/arm64/perf.rst b/Documentation/arch/arm64/perf.rst
index 1f87b57c2332..997fd716b82f 100644
--- a/Documentation/arch/arm64/perf.rst
+++ b/Documentation/arch/arm64/perf.rst
@@ -164,3 +164,75 @@ and should be used to mask the upper bits as needed.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/arch/arm64/tests/user-events.c
.. _tools/lib/perf/tests/test-evsel.c:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/lib/perf/tests/test-evsel.c
+
+Event Counting Threshold
+==========================================
+
+Overview
+--------
+
+FEAT_PMUv3_TH (Armv8.8) permits a PMU counter to increment only on
+events whose count meets a specified threshold condition. For example if
+threshold_compare is set to 2 ('Greater than or equal'), and the
+threshold is set to 2, then the PMU counter will now only increment by
+when an event would have previously incremented the PMU counter by 2 or
+more on a single processor cycle.
+
+To increment by 1 after passing the threshold condition instead of the
+number of events on that cycle, add the 'threshold_count' option to the
+commandline.
+
+How-to
+------
+
+These are the parameters for controlling the feature:
+
+.. list-table::
+ :header-rows: 1
+
+ * - Parameter
+ - Description
+ * - threshold
+ - Value to threshold the event by. A value of 0 means that
+ thresholding is disabled and the other parameters have no effect.
+ * - threshold_compare
+ - | Comparison function to use, with the following values supported:
+ |
+ | 0: Not-equal
+ | 1: Equals
+ | 2: Greater-than-or-equal
+ | 3: Less-than
+ * - threshold_count
+ - If this is set, count by 1 after passing the threshold condition
+ instead of the value of the event on this cycle.
+
+The threshold, threshold_compare and threshold_count values can be
+provided per event, for example:
+
+.. code-block:: sh
+
+ perf stat -e stall_slot/threshold=2,threshold_compare=2/ \
+ -e dtlb_walk/threshold=10,threshold_compare=3,threshold_count/
+
+In this example the stall_slot event will count by 2 or more on every
+cycle where 2 or more stalls happen. And dtlb_walk will count by 1 on
+every cycle where the number of dtlb walks were less than 10.
+
+The maximum supported threshold value can be read from the caps of each
+PMU, for example:
+
+.. code-block:: sh
+
+ cat /sys/bus/event_source/devices/armv8_pmuv3/caps/threshold_max
+
+ 0x000000ff
+
+If a value higher than this is given, then opening the event will result
+in an error. The highest possible maximum is 4095, as the config field
+for threshold is limited to 12 bits, and the Perf tool will refuse to
+parse higher values.
+
+If the PMU doesn't support FEAT_PMUv3_TH, then threshold_max will read
+0, and attempting to set a threshold value will also result in an error.
+threshold_max will also read as 0 on aarch32 guests, even if the host
+is running on hardware with the feature.
diff --git a/Documentation/arch/loongarch/introduction.rst b/Documentation/arch/loongarch/introduction.rst
index 8c568cfc2107..5e6db78abeaf 100644
--- a/Documentation/arch/loongarch/introduction.rst
+++ b/Documentation/arch/loongarch/introduction.rst
@@ -375,9 +375,9 @@ Developer web site of Loongson and LoongArch (Software and Documentation):
Documentation of LoongArch ISA:
- https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-Vol1-v1.02-CN.pdf (in Chinese)
+ https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-Vol1-v1.10-CN.pdf (in Chinese)
- https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-Vol1-v1.02-EN.pdf (in English)
+ https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-Vol1-v1.10-EN.pdf (in English)
Documentation of LoongArch ELF psABI:
diff --git a/Documentation/arch/x86/boot.rst b/Documentation/arch/x86/boot.rst
index f5d2f2414de8..22cc7a040dae 100644
--- a/Documentation/arch/x86/boot.rst
+++ b/Documentation/arch/x86/boot.rst
@@ -77,7 +77,7 @@ Protocol 2.14 BURNT BY INCORRECT COMMIT
Protocol 2.15 (Kernel 5.5) Added the kernel_info and kernel_info.setup_type_max.
============= ============================================================
-.. note::
+ .. note::
The protocol version number should be changed only if the setup header
is changed. There is no need to update the version number if boot_params
or kernel_info are changed. Additionally, it is recommended to use
diff --git a/Documentation/arch/x86/cpuinfo.rst b/Documentation/arch/x86/cpuinfo.rst
index 08246e8ac835..8895784d4784 100644
--- a/Documentation/arch/x86/cpuinfo.rst
+++ b/Documentation/arch/x86/cpuinfo.rst
@@ -7,27 +7,74 @@ x86 Feature Flags
Introduction
============
-On x86, flags appearing in /proc/cpuinfo have an X86_FEATURE definition
-in arch/x86/include/asm/cpufeatures.h. If the kernel cares about a feature
-or KVM want to expose the feature to a KVM guest, it can and should have
-an X86_FEATURE_* defined. These flags represent hardware features as
-well as software features.
-
-If users want to know if a feature is available on a given system, they
-try to find the flag in /proc/cpuinfo. If a given flag is present, it
-means that the kernel supports it and is currently making it available.
-If such flag represents a hardware feature, it also means that the
-hardware supports it.
-
-If the expected flag does not appear in /proc/cpuinfo, things are murkier.
-Users need to find out the reason why the flag is missing and find the way
-how to enable it, which is not always easy. There are several factors that
-can explain missing flags: the expected feature failed to enable, the feature
-is missing in hardware, platform firmware did not enable it, the feature is
-disabled at build or run time, an old kernel is in use, or the kernel does
-not support the feature and thus has not enabled it. In general, /proc/cpuinfo
-shows features which the kernel supports. For a full list of CPUID flags
-which the CPU supports, use tools/arch/x86/kcpuid.
+The list of feature flags in /proc/cpuinfo is not complete and
+represents an ill-fated attempt from long time ago to put feature flags
+in an easy to find place for userspace.
+
+However, the amount of feature flags is growing by the CPU generation,
+leading to unparseable and unwieldy /proc/cpuinfo.
+
+What is more, those feature flags do not even need to be in that file
+because userspace doesn't care about them - glibc et al already use
+CPUID to find out what the target machine supports and what not.
+
+And even if it doesn't show a particular feature flag - although the CPU
+still does have support for the respective hardware functionality and
+said CPU supports CPUID faulting - userspace can simply probe for the
+feature and figure out if it is supported or not, regardless of whether
+it is being advertised somewhere.
+
+Furthermore, those flag strings become an ABI the moment they appear
+there and maintaining them forever when nothing even uses them is a lot
+of wasted effort.
+
+So, the current use of /proc/cpuinfo is to show features which the
+kernel has *enabled* and *supports*. As in: the CPUID feature flag is
+there, there's an additional setup which the kernel has done while
+booting and the functionality is ready to use. A perfect example for
+that is "user_shstk" where additional code enablement is present in the
+kernel to support shadow stack for user programs.
+
+So, if users want to know if a feature is available on a given system,
+they try to find the flag in /proc/cpuinfo. If a given flag is present,
+it means that
+
+* the kernel knows about the feature enough to have an X86_FEATURE bit
+
+* the kernel supports it and is currently making it available either to
+ userspace or some other part of the kernel
+
+* if the flag represents a hardware feature the hardware supports it.
+
+The absence of a flag in /proc/cpuinfo by itself means almost nothing to
+an end user.
+
+On the one hand, a feature like "vaes" might be fully available to user
+applications on a kernel that has not defined X86_FEATURE_VAES and thus
+there is no "vaes" in /proc/cpuinfo.
+
+On the other hand, a new kernel running on non-VAES hardware would also
+have no "vaes" in /proc/cpuinfo. There's no way for an application or
+user to tell the difference.
+
+The end result is that the flags field in /proc/cpuinfo is marginally
+useful for kernel debugging, but not really for anything else.
+Applications should instead use things like the glibc facilities for
+querying CPU support. Users should rely on tools like
+tools/arch/x86/kcpuid and cpuid(1).
+
+Regarding implementation, flags appearing in /proc/cpuinfo have an
+X86_FEATURE definition in arch/x86/include/asm/cpufeatures.h. These flags
+represent hardware features as well as software features.
+
+If the kernel cares about a feature or KVM want to expose the feature to
+a KVM guest, it should only then expose it to the guest when the guest
+needs to parse /proc/cpuinfo. Which, as mentioned above, is highly
+unlikely. KVM can synthesize the CPUID bit and the KVM guest can simply
+query CPUID and figure out what the hypervisor supports and what not. As
+already stated, /proc/cpuinfo is not a dumping ground for useless
+feature flags.
+
How are feature flags created?
==============================
diff --git a/Documentation/arch/x86/pti.rst b/Documentation/arch/x86/pti.rst
index 4b858a9bad8d..e08d35177bc0 100644
--- a/Documentation/arch/x86/pti.rst
+++ b/Documentation/arch/x86/pti.rst
@@ -81,11 +81,9 @@ this protection comes at a cost:
and exit (it can be skipped when the kernel is interrupted,
though.) Moves to CR3 are on the order of a hundred
cycles, and are required at every entry and exit.
- b. A "trampoline" must be used for SYSCALL entry. This
- trampoline depends on a smaller set of resources than the
- non-PTI SYSCALL entry code, so requires mapping fewer
- things into the userspace page tables. The downside is
- that stacks must be switched at entry time.
+ b. Percpu TSS is mapped into the user page tables to allow SYSCALL64 path
+ to work under PTI. This doesn't have a direct runtime cost but it can
+ be argued it opens certain timing attack scenarios.
c. Global pages are disabled for all kernel structures not
mapped into both kernel and userspace page tables. This
feature of the MMU allows different processes to share TLB
@@ -167,7 +165,7 @@ that are worth noting here.
* Failures of the selftests/x86 code. Usually a bug in one of the
more obscure corners of entry_64.S
* Crashes in early boot, especially around CPU bringup. Bugs
- in the trampoline code or mappings cause these.
+ in the mappings cause these.
* Crashes at the first interrupt. Caused by bugs in entry_64.S,
like screwing up a page table switch. Also caused by
incorrectly mapping the IRQ handler entry code.