summaryrefslogtreecommitdiff
path: root/Documentation/block
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/block')
-rw-r--r--Documentation/block/blk-mq.rst12
-rw-r--r--Documentation/block/inline-encryption.rst8
2 files changed, 10 insertions, 10 deletions
diff --git a/Documentation/block/blk-mq.rst b/Documentation/block/blk-mq.rst
index 88c56afcb070..a980d23af48c 100644
--- a/Documentation/block/blk-mq.rst
+++ b/Documentation/block/blk-mq.rst
@@ -63,10 +63,10 @@ Software staging queues
~~~~~~~~~~~~~~~~~~~~~~~
The block IO subsystem adds requests in the software staging queues
-(represented by struct :c:type:`blk_mq_ctx`) in case that they weren't sent
+(represented by struct blk_mq_ctx) in case that they weren't sent
directly to the driver. A request is one or more BIOs. They arrived at the
-block layer through the data structure struct :c:type:`bio`. The block layer
-will then build a new structure from it, the struct :c:type:`request` that will
+block layer through the data structure struct bio. The block layer
+will then build a new structure from it, the struct request that will
be used to communicate with the device driver. Each queue has its own lock and
the number of queues is defined by a per-CPU or per-node basis.
@@ -102,7 +102,7 @@ hardware queue will be drained in sequence according to their mapping.
Hardware dispatch queues
~~~~~~~~~~~~~~~~~~~~~~~~
-The hardware queue (represented by struct :c:type:`blk_mq_hw_ctx`) is a struct
+The hardware queue (represented by struct blk_mq_hw_ctx) is a struct
used by device drivers to map the device submission queues (or device DMA ring
buffer), and are the last step of the block layer submission code before the
low level device driver taking ownership of the request. To run this queue, the
@@ -110,9 +110,9 @@ block layer removes requests from the associated software queues and tries to
dispatch to the hardware.
If it's not possible to send the requests directly to hardware, they will be
-added to a linked list (:c:type:`hctx->dispatch`) of requests. Then,
+added to a linked list (``hctx->dispatch``) of requests. Then,
next time the block layer runs a queue, it will send the requests laying at the
-:c:type:`dispatch` list first, to ensure a fairness dispatch with those
+``dispatch`` list first, to ensure a fairness dispatch with those
requests that were ready to be sent first. The number of hardware queues
depends on the number of hardware contexts supported by the hardware and its
device driver, but it will not be more than the number of cores of the system.
diff --git a/Documentation/block/inline-encryption.rst b/Documentation/block/inline-encryption.rst
index 354817b80887..e75151e467d3 100644
--- a/Documentation/block/inline-encryption.rst
+++ b/Documentation/block/inline-encryption.rst
@@ -52,7 +52,7 @@ Constraints and notes
Design
======
-We add a :c:type:`struct bio_crypt_ctx` to :c:type:`struct bio` that can
+We add a struct bio_crypt_ctx to struct bio that can
represent an encryption context, because we need to be able to pass this
encryption context from the upper layers (like the fs layer) to the
device driver to act upon.
@@ -85,7 +85,7 @@ blk-mq changes, other block layer changes and blk-crypto-fallback
=================================================================
We add a pointer to a ``bi_crypt_context`` and ``keyslot`` to
-:c:type:`struct request`. These will be referred to as the ``crypto fields``
+struct request. These will be referred to as the ``crypto fields``
for the request. This ``keyslot`` is the keyslot into which the
``bi_crypt_context`` has been programmed in the KSM of the ``request_queue``
that this request is being sent to.
@@ -118,7 +118,7 @@ of the algorithm being used adheres to spec and functions correctly).
If a ``request queue``'s inline encryption hardware claimed to support the
encryption context specified with a bio, then it will not be handled by the
``blk-crypto-fallback``. We will eventually reach a point in blk-mq when a
-:c:type:`struct request` needs to be allocated for that bio. At that point,
+struct request needs to be allocated for that bio. At that point,
blk-mq tries to program the encryption context into the ``request_queue``'s
keyslot_manager, and obtain a keyslot, which it stores in its newly added
``keyslot`` field. This keyslot is released when the request is completed.
@@ -188,7 +188,7 @@ keyslots supported by the hardware.
The device driver also needs to tell the KSM how to actually manipulate the
IE hardware in the device to do things like programming the crypto key into
the IE hardware into a particular keyslot. All this is achieved through the
-:c:type:`struct blk_ksm_ll_ops` field in the KSM that the device driver
+struct blk_ksm_ll_ops field in the KSM that the device driver
must fill up after initing the ``blk_keyslot_manager``.
The KSM also handles runtime power management for the device when applicable