summaryrefslogtreecommitdiff
path: root/Documentation/devicetree/bindings/arm
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings/arm')
-rw-r--r--Documentation/devicetree/bindings/arm/calxeda/l2ecc.yaml2
-rw-r--r--Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt84
-rw-r--r--Documentation/devicetree/bindings/arm/qcom,coresight-remote-etm.yaml51
3 files changed, 52 insertions, 85 deletions
diff --git a/Documentation/devicetree/bindings/arm/calxeda/l2ecc.yaml b/Documentation/devicetree/bindings/arm/calxeda/l2ecc.yaml
index a9fe01238a88..76b65ea149b6 100644
--- a/Documentation/devicetree/bindings/arm/calxeda/l2ecc.yaml
+++ b/Documentation/devicetree/bindings/arm/calxeda/l2ecc.yaml
@@ -16,7 +16,7 @@ maintainers:
properties:
compatible:
- const: "calxeda,hb-sregs-l2-ecc"
+ const: calxeda,hb-sregs-l2-ecc
reg:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt b/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt
deleted file mode 100644
index 606b4b1b709d..000000000000
--- a/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt
+++ /dev/null
@@ -1,84 +0,0 @@
-QCOM Idle States for cpuidle driver
-
-ARM provides idle-state node to define the cpuidle states, as defined in [1].
-cpuidle-qcom is the cpuidle driver for Qualcomm SoCs and uses these idle
-states. Idle states have different enter/exit latency and residency values.
-The idle states supported by the QCOM SoC are defined as -
-
- * Standby
- * Retention
- * Standalone Power Collapse (Standalone PC or SPC)
- * Power Collapse (PC)
-
-Standby: Standby does a little more in addition to architectural clock gating.
-When the WFI instruction is executed the ARM core would gate its internal
-clocks. In addition to gating the clocks, QCOM cpus use this instruction as a
-trigger to execute the SPM state machine. The SPM state machine waits for the
-interrupt to trigger the core back in to active. This triggers the cache
-hierarchy to enter standby states, when all cpus are idle. An interrupt brings
-the SPM state machine out of its wait, the next step is to ensure that the
-cache hierarchy is also out of standby, and then the cpu is allowed to resume
-execution. This state is defined as a generic ARM WFI state by the ARM cpuidle
-driver and is not defined in the DT. The SPM state machine should be
-configured to execute this state by default and after executing every other
-state below.
-
-Retention: Retention is a low power state where the core is clock gated and
-the memory and the registers associated with the core are retained. The
-voltage may be reduced to the minimum value needed to keep the processor
-registers active. The SPM should be configured to execute the retention
-sequence and would wait for interrupt, before restoring the cpu to execution
-state. Retention may have a slightly higher latency than Standby.
-
-Standalone PC: A cpu can power down and warmboot if there is a sufficient time
-between the time it enters idle and the next known wake up. SPC mode is used
-to indicate a core entering a power down state without consulting any other
-cpu or the system resources. This helps save power only on that core. The SPM
-sequence for this idle state is programmed to power down the supply to the
-core, wait for the interrupt, restore power to the core, and ensure the
-system state including cache hierarchy is ready before allowing core to
-resume. Applying power and resetting the core causes the core to warmboot
-back into Elevation Level (EL) which trampolines the control back to the
-kernel. Entering a power down state for the cpu, needs to be done by trapping
-into a EL. Failing to do so, would result in a crash enforced by the warm boot
-code in the EL for the SoC. On SoCs with write-back L1 cache, the cache has to
-be flushed in s/w, before powering down the core.
-
-Power Collapse: This state is similar to the SPC mode, but distinguishes
-itself in that the cpu acknowledges and permits the SoC to enter deeper sleep
-modes. In a hierarchical power domain SoC, this means L2 and other caches can
-be flushed, system bus, clocks - lowered, and SoC main XO clock gated and
-voltages reduced, provided all cpus enter this state. Since the span of low
-power modes possible at this state is vast, the exit latency and the residency
-of this low power mode would be considered high even though at a cpu level,
-this essentially is cpu power down. The SPM in this state also may handshake
-with the Resource power manager (RPM) processor in the SoC to indicate a
-complete application processor subsystem shut down.
-
-The idle-state for QCOM SoCs are distinguished by the compatible property of
-the idle-states device node.
-
-The devicetree representation of the idle state should be -
-
-Required properties:
-
-- compatible: Must be one of -
- "qcom,idle-state-ret",
- "qcom,idle-state-spc",
- "qcom,idle-state-pc",
- and "arm,idle-state".
-
-Other required and optional properties are specified in [1].
-
-Example:
-
- idle-states {
- CPU_SPC: spc {
- compatible = "qcom,idle-state-spc", "arm,idle-state";
- entry-latency-us = <150>;
- exit-latency-us = <200>;
- min-residency-us = <2000>;
- };
- };
-
-[1]. Documentation/devicetree/bindings/cpu/idle-states.yaml
diff --git a/Documentation/devicetree/bindings/arm/qcom,coresight-remote-etm.yaml b/Documentation/devicetree/bindings/arm/qcom,coresight-remote-etm.yaml
new file mode 100644
index 000000000000..4fd5752978cd
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/qcom,coresight-remote-etm.yaml
@@ -0,0 +1,51 @@
+# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/qcom,coresight-remote-etm.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Qualcomm Coresight Remote ETM(Embedded Trace Macrocell)
+
+maintainers:
+ - Jinlong Mao <quic_jinlmao@quicinc.com>
+ - Tao Zhang <quic_taozha@quicinc.com>
+
+description:
+ Support for ETM trace collection on remote processor using coresight
+ framework. Enabling this will allow turning on ETM tracing on remote
+ processor like modem processor via sysfs and collecting the trace
+ via coresight TMC sinks.
+
+properties:
+ compatible:
+ const: qcom,coresight-remote-etm
+
+ out-ports:
+ $ref: /schemas/graph.yaml#/properties/ports
+ additionalProperties: false
+
+ properties:
+ port:
+ description: Output connection to the CoreSight Trace bus.
+ $ref: /schemas/graph.yaml#/properties/port
+
+required:
+ - compatible
+ - out-ports
+
+additionalProperties: false
+
+examples:
+ - |
+ etm {
+ compatible = "qcom,coresight-remote-etm";
+
+ out-ports {
+ port {
+ modem_etm0_out_funnel_modem: endpoint {
+ remote-endpoint = <&funnel_modem_in_modem_etm0>;
+ };
+ };
+ };
+ };
+...