summaryrefslogtreecommitdiff
path: root/Documentation/dmaengine
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/dmaengine')
-rw-r--r--Documentation/dmaengine/00-INDEX8
-rw-r--r--Documentation/dmaengine/client.txt222
-rw-r--r--Documentation/dmaengine/dmatest.txt92
-rw-r--r--Documentation/dmaengine/provider.txt424
-rw-r--r--Documentation/dmaengine/pxa_dma.txt153
5 files changed, 0 insertions, 899 deletions
diff --git a/Documentation/dmaengine/00-INDEX b/Documentation/dmaengine/00-INDEX
deleted file mode 100644
index 07de6573d22b..000000000000
--- a/Documentation/dmaengine/00-INDEX
+++ /dev/null
@@ -1,8 +0,0 @@
-00-INDEX
- - this file.
-client.txt
- -the DMA Engine API Guide.
-dmatest.txt
- - how to compile, configure and use the dmatest system.
-provider.txt
- - the DMA controller API. \ No newline at end of file
diff --git a/Documentation/dmaengine/client.txt b/Documentation/dmaengine/client.txt
deleted file mode 100644
index c72b4563de10..000000000000
--- a/Documentation/dmaengine/client.txt
+++ /dev/null
@@ -1,222 +0,0 @@
- DMA Engine API Guide
- ====================
-
- Vinod Koul <vinod dot koul at intel.com>
-
-NOTE: For DMA Engine usage in async_tx please see:
- Documentation/crypto/async-tx-api.txt
-
-
-Below is a guide to device driver writers on how to use the Slave-DMA API of the
-DMA Engine. This is applicable only for slave DMA usage only.
-
-The slave DMA usage consists of following steps:
-1. Allocate a DMA slave channel
-2. Set slave and controller specific parameters
-3. Get a descriptor for transaction
-4. Submit the transaction
-5. Issue pending requests and wait for callback notification
-
-1. Allocate a DMA slave channel
-
- Channel allocation is slightly different in the slave DMA context,
- client drivers typically need a channel from a particular DMA
- controller only and even in some cases a specific channel is desired.
- To request a channel dma_request_chan() API is used.
-
- Interface:
- struct dma_chan *dma_request_chan(struct device *dev, const char *name);
-
- Which will find and return the 'name' DMA channel associated with the 'dev'
- device. The association is done via DT, ACPI or board file based
- dma_slave_map matching table.
-
- A channel allocated via this interface is exclusive to the caller,
- until dma_release_channel() is called.
-
-2. Set slave and controller specific parameters
-
- Next step is always to pass some specific information to the DMA
- driver. Most of the generic information which a slave DMA can use
- is in struct dma_slave_config. This allows the clients to specify
- DMA direction, DMA addresses, bus widths, DMA burst lengths etc
- for the peripheral.
-
- If some DMA controllers have more parameters to be sent then they
- should try to embed struct dma_slave_config in their controller
- specific structure. That gives flexibility to client to pass more
- parameters, if required.
-
- Interface:
- int dmaengine_slave_config(struct dma_chan *chan,
- struct dma_slave_config *config)
-
- Please see the dma_slave_config structure definition in dmaengine.h
- for a detailed explanation of the struct members. Please note
- that the 'direction' member will be going away as it duplicates the
- direction given in the prepare call.
-
-3. Get a descriptor for transaction
-
- For slave usage the various modes of slave transfers supported by the
- DMA-engine are:
-
- slave_sg - DMA a list of scatter gather buffers from/to a peripheral
- dma_cyclic - Perform a cyclic DMA operation from/to a peripheral till the
- operation is explicitly stopped.
- interleaved_dma - This is common to Slave as well as M2M clients. For slave
- address of devices' fifo could be already known to the driver.
- Various types of operations could be expressed by setting
- appropriate values to the 'dma_interleaved_template' members.
-
- A non-NULL return of this transfer API represents a "descriptor" for
- the given transaction.
-
- Interface:
- struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
- struct dma_chan *chan, struct scatterlist *sgl,
- unsigned int sg_len, enum dma_data_direction direction,
- unsigned long flags);
-
- struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
- struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
- size_t period_len, enum dma_data_direction direction);
-
- struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
- struct dma_chan *chan, struct dma_interleaved_template *xt,
- unsigned long flags);
-
- The peripheral driver is expected to have mapped the scatterlist for
- the DMA operation prior to calling dmaengine_prep_slave_sg(), and must
- keep the scatterlist mapped until the DMA operation has completed.
- The scatterlist must be mapped using the DMA struct device.
- If a mapping needs to be synchronized later, dma_sync_*_for_*() must be
- called using the DMA struct device, too.
- So, normal setup should look like this:
-
- nr_sg = dma_map_sg(chan->device->dev, sgl, sg_len);
- if (nr_sg == 0)
- /* error */
-
- desc = dmaengine_prep_slave_sg(chan, sgl, nr_sg, direction, flags);
-
- Once a descriptor has been obtained, the callback information can be
- added and the descriptor must then be submitted. Some DMA engine
- drivers may hold a spinlock between a successful preparation and
- submission so it is important that these two operations are closely
- paired.
-
- Note:
- Although the async_tx API specifies that completion callback
- routines cannot submit any new operations, this is not the
- case for slave/cyclic DMA.
-
- For slave DMA, the subsequent transaction may not be available
- for submission prior to callback function being invoked, so
- slave DMA callbacks are permitted to prepare and submit a new
- transaction.
-
- For cyclic DMA, a callback function may wish to terminate the
- DMA via dmaengine_terminate_async().
-
- Therefore, it is important that DMA engine drivers drop any
- locks before calling the callback function which may cause a
- deadlock.
-
- Note that callbacks will always be invoked from the DMA
- engines tasklet, never from interrupt context.
-
-4. Submit the transaction
-
- Once the descriptor has been prepared and the callback information
- added, it must be placed on the DMA engine drivers pending queue.
-
- Interface:
- dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
-
- This returns a cookie can be used to check the progress of DMA engine
- activity via other DMA engine calls not covered in this document.
-
- dmaengine_submit() will not start the DMA operation, it merely adds
- it to the pending queue. For this, see step 5, dma_async_issue_pending.
-
-5. Issue pending DMA requests and wait for callback notification
-
- The transactions in the pending queue can be activated by calling the
- issue_pending API. If channel is idle then the first transaction in
- queue is started and subsequent ones queued up.
-
- On completion of each DMA operation, the next in queue is started and
- a tasklet triggered. The tasklet will then call the client driver
- completion callback routine for notification, if set.
-
- Interface:
- void dma_async_issue_pending(struct dma_chan *chan);
-
-Further APIs:
-
-1. int dmaengine_terminate_sync(struct dma_chan *chan)
- int dmaengine_terminate_async(struct dma_chan *chan)
- int dmaengine_terminate_all(struct dma_chan *chan) /* DEPRECATED */
-
- This causes all activity for the DMA channel to be stopped, and may
- discard data in the DMA FIFO which hasn't been fully transferred.
- No callback functions will be called for any incomplete transfers.
-
- Two variants of this function are available.
-
- dmaengine_terminate_async() might not wait until the DMA has been fully
- stopped or until any running complete callbacks have finished. But it is
- possible to call dmaengine_terminate_async() from atomic context or from
- within a complete callback. dmaengine_synchronize() must be called before it
- is safe to free the memory accessed by the DMA transfer or free resources
- accessed from within the complete callback.
-
- dmaengine_terminate_sync() will wait for the transfer and any running
- complete callbacks to finish before it returns. But the function must not be
- called from atomic context or from within a complete callback.
-
- dmaengine_terminate_all() is deprecated and should not be used in new code.
-
-2. int dmaengine_pause(struct dma_chan *chan)
-
- This pauses activity on the DMA channel without data loss.
-
-3. int dmaengine_resume(struct dma_chan *chan)
-
- Resume a previously paused DMA channel. It is invalid to resume a
- channel which is not currently paused.
-
-4. enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
- dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
-
- This can be used to check the status of the channel. Please see
- the documentation in include/linux/dmaengine.h for a more complete
- description of this API.
-
- This can be used in conjunction with dma_async_is_complete() and
- the cookie returned from dmaengine_submit() to check for
- completion of a specific DMA transaction.
-
- Note:
- Not all DMA engine drivers can return reliable information for
- a running DMA channel. It is recommended that DMA engine users
- pause or stop (via dmaengine_terminate_all()) the channel before
- using this API.
-
-5. void dmaengine_synchronize(struct dma_chan *chan)
-
- Synchronize the termination of the DMA channel to the current context.
-
- This function should be used after dmaengine_terminate_async() to synchronize
- the termination of the DMA channel to the current context. The function will
- wait for the transfer and any running complete callbacks to finish before it
- returns.
-
- If dmaengine_terminate_async() is used to stop the DMA channel this function
- must be called before it is safe to free memory accessed by previously
- submitted descriptors or to free any resources accessed within the complete
- callback of previously submitted descriptors.
-
- The behavior of this function is undefined if dma_async_issue_pending() has
- been called between dmaengine_terminate_async() and this function.
diff --git a/Documentation/dmaengine/dmatest.txt b/Documentation/dmaengine/dmatest.txt
deleted file mode 100644
index fb683c72dea8..000000000000
--- a/Documentation/dmaengine/dmatest.txt
+++ /dev/null
@@ -1,92 +0,0 @@
- DMA Test Guide
- ==============
-
- Andy Shevchenko <andriy.shevchenko@linux.intel.com>
-
-This small document introduces how to test DMA drivers using dmatest module.
-
- Part 1 - How to build the test module
-
-The menuconfig contains an option that could be found by following path:
- Device Drivers -> DMA Engine support -> DMA Test client
-
-In the configuration file the option called CONFIG_DMATEST. The dmatest could
-be built as module or inside kernel. Let's consider those cases.
-
- Part 2 - When dmatest is built as a module...
-
-Example of usage:
- % modprobe dmatest channel=dma0chan0 timeout=2000 iterations=1 run=1
-
-...or:
- % modprobe dmatest
- % echo dma0chan0 > /sys/module/dmatest/parameters/channel
- % echo 2000 > /sys/module/dmatest/parameters/timeout
- % echo 1 > /sys/module/dmatest/parameters/iterations
- % echo 1 > /sys/module/dmatest/parameters/run
-
-...or on the kernel command line:
-
- dmatest.channel=dma0chan0 dmatest.timeout=2000 dmatest.iterations=1 dmatest.run=1
-
-Hint: available channel list could be extracted by running the following
-command:
- % ls -1 /sys/class/dma/
-
-Once started a message like "dmatest: Started 1 threads using dma0chan0" is
-emitted. After that only test failure messages are reported until the test
-stops.
-
-Note that running a new test will not stop any in progress test.
-
-The following command returns the state of the test.
- % cat /sys/module/dmatest/parameters/run
-
-To wait for test completion userpace can poll 'run' until it is false, or use
-the wait parameter. Specifying 'wait=1' when loading the module causes module
-initialization to pause until a test run has completed, while reading
-/sys/module/dmatest/parameters/wait waits for any running test to complete
-before returning. For example, the following scripts wait for 42 tests
-to complete before exiting. Note that if 'iterations' is set to 'infinite' then
-waiting is disabled.
-
-Example:
- % modprobe dmatest run=1 iterations=42 wait=1
- % modprobe -r dmatest
-...or:
- % modprobe dmatest run=1 iterations=42
- % cat /sys/module/dmatest/parameters/wait
- % modprobe -r dmatest
-
- Part 3 - When built-in in the kernel...
-
-The module parameters that is supplied to the kernel command line will be used
-for the first performed test. After user gets a control, the test could be
-re-run with the same or different parameters. For the details see the above
-section "Part 2 - When dmatest is built as a module..."
-
-In both cases the module parameters are used as the actual values for the test
-case. You always could check them at run-time by running
- % grep -H . /sys/module/dmatest/parameters/*
-
- Part 4 - Gathering the test results
-
-Test results are printed to the kernel log buffer with the format:
-
-"dmatest: result <channel>: <test id>: '<error msg>' with src_off=<val> dst_off=<val> len=<val> (<err code>)"
-
-Example of output:
- % dmesg | tail -n 1
- dmatest: result dma0chan0-copy0: #1: No errors with src_off=0x7bf dst_off=0x8ad len=0x3fea (0)
-
-The message format is unified across the different types of errors. A number in
-the parens represents additional information, e.g. error code, error counter,
-or status. A test thread also emits a summary line at completion listing the
-number of tests executed, number that failed, and a result code.
-
-Example:
- % dmesg | tail -n 1
- dmatest: dma0chan0-copy0: summary 1 test, 0 failures 1000 iops 100000 KB/s (0)
-
-The details of a data miscompare error are also emitted, but do not follow the
-above format.
diff --git a/Documentation/dmaengine/provider.txt b/Documentation/dmaengine/provider.txt
deleted file mode 100644
index 5dbe054a40ad..000000000000
--- a/Documentation/dmaengine/provider.txt
+++ /dev/null
@@ -1,424 +0,0 @@
-DMAengine controller documentation
-==================================
-
-Hardware Introduction
-+++++++++++++++++++++
-
-Most of the Slave DMA controllers have the same general principles of
-operations.
-
-They have a given number of channels to use for the DMA transfers, and
-a given number of requests lines.
-
-Requests and channels are pretty much orthogonal. Channels can be used
-to serve several to any requests. To simplify, channels are the
-entities that will be doing the copy, and requests what endpoints are
-involved.
-
-The request lines actually correspond to physical lines going from the
-DMA-eligible devices to the controller itself. Whenever the device
-will want to start a transfer, it will assert a DMA request (DRQ) by
-asserting that request line.
-
-A very simple DMA controller would only take into account a single
-parameter: the transfer size. At each clock cycle, it would transfer a
-byte of data from one buffer to another, until the transfer size has
-been reached.
-
-That wouldn't work well in the real world, since slave devices might
-require a specific number of bits to be transferred in a single
-cycle. For example, we may want to transfer as much data as the
-physical bus allows to maximize performances when doing a simple
-memory copy operation, but our audio device could have a narrower FIFO
-that requires data to be written exactly 16 or 24 bits at a time. This
-is why most if not all of the DMA controllers can adjust this, using a
-parameter called the transfer width.
-
-Moreover, some DMA controllers, whenever the RAM is used as a source
-or destination, can group the reads or writes in memory into a buffer,
-so instead of having a lot of small memory accesses, which is not
-really efficient, you'll get several bigger transfers. This is done
-using a parameter called the burst size, that defines how many single
-reads/writes it's allowed to do without the controller splitting the
-transfer into smaller sub-transfers.
-
-Our theoretical DMA controller would then only be able to do transfers
-that involve a single contiguous block of data. However, some of the
-transfers we usually have are not, and want to copy data from
-non-contiguous buffers to a contiguous buffer, which is called
-scatter-gather.
-
-DMAEngine, at least for mem2dev transfers, require support for
-scatter-gather. So we're left with two cases here: either we have a
-quite simple DMA controller that doesn't support it, and we'll have to
-implement it in software, or we have a more advanced DMA controller,
-that implements in hardware scatter-gather.
-
-The latter are usually programmed using a collection of chunks to
-transfer, and whenever the transfer is started, the controller will go
-over that collection, doing whatever we programmed there.
-
-This collection is usually either a table or a linked list. You will
-then push either the address of the table and its number of elements,
-or the first item of the list to one channel of the DMA controller,
-and whenever a DRQ will be asserted, it will go through the collection
-to know where to fetch the data from.
-
-Either way, the format of this collection is completely dependent on
-your hardware. Each DMA controller will require a different structure,
-but all of them will require, for every chunk, at least the source and
-destination addresses, whether it should increment these addresses or
-not and the three parameters we saw earlier: the burst size, the
-transfer width and the transfer size.
-
-The one last thing is that usually, slave devices won't issue DRQ by
-default, and you have to enable this in your slave device driver first
-whenever you're willing to use DMA.
-
-These were just the general memory-to-memory (also called mem2mem) or
-memory-to-device (mem2dev) kind of transfers. Most devices often
-support other kind of transfers or memory operations that dmaengine
-support and will be detailed later in this document.
-
-DMA Support in Linux
-++++++++++++++++++++
-
-Historically, DMA controller drivers have been implemented using the
-async TX API, to offload operations such as memory copy, XOR,
-cryptography, etc., basically any memory to memory operation.
-
-Over time, the need for memory to device transfers arose, and
-dmaengine was extended. Nowadays, the async TX API is written as a
-layer on top of dmaengine, and acts as a client. Still, dmaengine
-accommodates that API in some cases, and made some design choices to
-ensure that it stayed compatible.
-
-For more information on the Async TX API, please look the relevant
-documentation file in Documentation/crypto/async-tx-api.txt.
-
-DMAEngine Registration
-++++++++++++++++++++++
-
-struct dma_device Initialization
---------------------------------
-
-Just like any other kernel framework, the whole DMAEngine registration
-relies on the driver filling a structure and registering against the
-framework. In our case, that structure is dma_device.
-
-The first thing you need to do in your driver is to allocate this
-structure. Any of the usual memory allocators will do, but you'll also
-need to initialize a few fields in there:
-
- * channels: should be initialized as a list using the
- INIT_LIST_HEAD macro for example
-
- * src_addr_widths:
- - should contain a bitmask of the supported source transfer width
-
- * dst_addr_widths:
- - should contain a bitmask of the supported destination transfer
- width
-
- * directions:
- - should contain a bitmask of the supported slave directions
- (i.e. excluding mem2mem transfers)
-
- * residue_granularity:
- - Granularity of the transfer residue reported to dma_set_residue.
- - This can be either:
- + Descriptor
- -> Your device doesn't support any kind of residue
- reporting. The framework will only know that a particular
- transaction descriptor is done.
- + Segment
- -> Your device is able to report which chunks have been
- transferred
- + Burst
- -> Your device is able to report which burst have been
- transferred
-
- * dev: should hold the pointer to the struct device associated
- to your current driver instance.
-
-Supported transaction types
----------------------------
-
-The next thing you need is to set which transaction types your device
-(and driver) supports.
-
-Our dma_device structure has a field called cap_mask that holds the
-various types of transaction supported, and you need to modify this
-mask using the dma_cap_set function, with various flags depending on
-transaction types you support as an argument.
-
-All those capabilities are defined in the dma_transaction_type enum,
-in include/linux/dmaengine.h
-
-Currently, the types available are:
- * DMA_MEMCPY
- - The device is able to do memory to memory copies
-
- * DMA_XOR
- - The device is able to perform XOR operations on memory areas
- - Used to accelerate XOR intensive tasks, such as RAID5
-
- * DMA_XOR_VAL
- - The device is able to perform parity check using the XOR
- algorithm against a memory buffer.
-
- * DMA_PQ
- - The device is able to perform RAID6 P+Q computations, P being a
- simple XOR, and Q being a Reed-Solomon algorithm.
-
- * DMA_PQ_VAL
- - The device is able to perform parity check using RAID6 P+Q
- algorithm against a memory buffer.
-
- * DMA_INTERRUPT
- - The device is able to trigger a dummy transfer that will
- generate periodic interrupts
- - Used by the client drivers to register a callback that will be
- called on a regular basis through the DMA controller interrupt
-
- * DMA_PRIVATE
- - The devices only supports slave transfers, and as such isn't
- available for async transfers.
-
- * DMA_ASYNC_TX
- - Must not be set by the device, and will be set by the framework
- if needed
- - /* TODO: What is it about? */
-
- * DMA_SLAVE
- - The device can handle device to memory transfers, including
- scatter-gather transfers.
- - While in the mem2mem case we were having two distinct types to
- deal with a single chunk to copy or a collection of them, here,
- we just have a single transaction type that is supposed to
- handle both.
- - If you want to transfer a single contiguous memory buffer,
- simply build a scatter list with only one item.
-
- * DMA_CYCLIC
- - The device can handle cyclic transfers.
- - A cyclic transfer is a transfer where the chunk collection will
- loop over itself, with the last item pointing to the first.
- - It's usually used for audio transfers, where you want to operate
- on a single ring buffer that you will fill with your audio data.
-
- * DMA_INTERLEAVE
- - The device supports interleaved transfer.
- - These transfers can transfer data from a non-contiguous buffer
- to a non-contiguous buffer, opposed to DMA_SLAVE that can
- transfer data from a non-contiguous data set to a continuous
- destination buffer.
- - It's usually used for 2d content transfers, in which case you
- want to transfer a portion of uncompressed data directly to the
- display to print it
-
-These various types will also affect how the source and destination
-addresses change over time.
-
-Addresses pointing to RAM are typically incremented (or decremented)
-after each transfer. In case of a ring buffer, they may loop
-(DMA_CYCLIC). Addresses pointing to a device's register (e.g. a FIFO)
-are typically fixed.
-
-Device operations
------------------
-
-Our dma_device structure also requires a few function pointers in
-order to implement the actual logic, now that we described what
-operations we were able to perform.
-
-The functions that we have to fill in there, and hence have to
-implement, obviously depend on the transaction types you reported as
-supported.
-
- * device_alloc_chan_resources
- * device_free_chan_resources
- - These functions will be called whenever a driver will call
- dma_request_channel or dma_release_channel for the first/last
- time on the channel associated to that driver.
- - They are in charge of allocating/freeing all the needed
- resources in order for that channel to be useful for your
- driver.
- - These functions can sleep.
-
- * device_prep_dma_*
- - These functions are matching the capabilities you registered
- previously.
- - These functions all take the buffer or the scatterlist relevant
- for the transfer being prepared, and should create a hardware
- descriptor or a list of hardware descriptors from it
- - These functions can be called from an interrupt context
- - Any allocation you might do should be using the GFP_NOWAIT
- flag, in order not to potentially sleep, but without depleting
- the emergency pool either.
- - Drivers should try to pre-allocate any memory they might need
- during the transfer setup at probe time to avoid putting to
- much pressure on the nowait allocator.
-
- - It should return a unique instance of the
- dma_async_tx_descriptor structure, that further represents this
- particular transfer.
-
- - This structure can be initialized using the function
- dma_async_tx_descriptor_init.
- - You'll also need to set two fields in this structure:
- + flags:
- TODO: Can it be modified by the driver itself, or
- should it be always the flags passed in the arguments
-
- + tx_submit: A pointer to a function you have to implement,
- that is supposed to push the current
- transaction descriptor to a pending queue, waiting
- for issue_pending to be called.
- - In this structure the function pointer callback_result can be
- initialized in order for the submitter to be notified that a
- transaction has completed. In the earlier code the function pointer
- callback has been used. However it does not provide any status to the
- transaction and will be deprecated. The result structure defined as
- dmaengine_result that is passed in to callback_result has two fields:
- + result: This provides the transfer result defined by
- dmaengine_tx_result. Either success or some error
- condition.
- + residue: Provides the residue bytes of the transfer for those that
- support residue.
-
- * device_issue_pending
- - Takes the first transaction descriptor in the pending queue,
- and starts the transfer. Whenever that transfer is done, it
- should move to the next transaction in the list.
- - This function can be called in an interrupt context
-
- * device_tx_status
- - Should report the bytes left to go over on the given channel
- - Should only care about the transaction descriptor passed as
- argument, not the currently active one on a given channel
- - The tx_state argument might be NULL
- - Should use dma_set_residue to report it
- - In the case of a cyclic transfer, it should only take into
- account the current period.
- - This function can be called in an interrupt context.
-
- * device_config
- - Reconfigures the channel with the configuration given as
- argument
- - This command should NOT perform synchronously, or on any
- currently queued transfers, but only on subsequent ones
- - In this case, the function will receive a dma_slave_config
- structure pointer as an argument, that will detail which
- configuration to use.
- - Even though that structure contains a direction field, this
- field is deprecated in favor of the direction argument given to
- the prep_* functions
- - This call is mandatory for slave operations only. This should NOT be
- set or expected to be set for memcpy operations.
- If a driver support both, it should use this call for slave
- operations only and not for memcpy ones.
-
- * device_pause
- - Pauses a transfer on the channel
- - This command should operate synchronously on the channel,
- pausing right away the work of the given channel
-
- * device_resume
- - Resumes a transfer on the channel
- - This command should operate synchronously on the channel,
- resuming right away the work of the given channel
-
- * device_terminate_all
- - Aborts all the pending and ongoing transfers on the channel
- - For aborted transfers the complete callback should not be called
- - Can be called from atomic context or from within a complete
- callback of a descriptor. Must not sleep. Drivers must be able
- to handle this correctly.
- - Termination may be asynchronous. The driver does not have to
- wait until the currently active transfer has completely stopped.
- See device_synchronize.
-
- * device_synchronize
- - Must synchronize the termination of a channel to the current
- context.
- - Must make sure that memory for previously submitted
- descriptors is no longer accessed by the DMA controller.
- - Must make sure that all complete callbacks for previously
- submitted descriptors have finished running and none are
- scheduled to run.
- - May sleep.
-
-
-Misc notes (stuff that should be documented, but don't really know
-where to put them)
-------------------------------------------------------------------
- * dma_run_dependencies
- - Should be called at the end of an async TX transfer, and can be
- ignored in the slave transfers case.
- - Makes sure that dependent operations are run before marking it
- as complete.
-
- * dma_cookie_t
- - it's a DMA transaction ID that will increment over time.
- - Not really relevant any more since the introduction of virt-dma
- that abstracts it away.
-
- * DMA_CTRL_ACK
- - If clear, the descriptor cannot be reused by provider until the
- client acknowledges receipt, i.e. has has a chance to establish any
- dependency chains
- - This can be acked by invoking async_tx_ack()
- - If set, does not mean descriptor can be reused
-
- * DMA_CTRL_REUSE
- - If set, the descriptor can be reused after being completed. It should
- not be freed by provider if this flag is set.
- - The descriptor should be prepared for reuse by invoking
- dmaengine_desc_set_reuse() which will set DMA_CTRL_REUSE.
- - dmaengine_desc_set_reuse() will succeed only when channel support
- reusable descriptor as exhibited by capabilities
- - As a consequence, if a device driver wants to skip the dma_map_sg() and
- dma_unmap_sg() in between 2 transfers, because the DMA'd data wasn't used,
- it can resubmit the transfer right after its completion.
- - Descriptor can be freed in few ways
- - Clearing DMA_CTRL_REUSE by invoking dmaengine_desc_clear_reuse()
- and submitting for last txn
- - Explicitly invoking dmaengine_desc_free(), this can succeed only
- when DMA_CTRL_REUSE is already set
- - Terminating the channel
-
- * DMA_PREP_CMD
- - If set, the client driver tells DMA controller that passed data in DMA
- API is command data.
- - Interpretation of command data is DMA controller specific. It can be
- used for issuing commands to other peripherals/register reads/register
- writes for which the descriptor should be in different format from
- normal data descriptors.
-
-General Design Notes
---------------------
-
-Most of the DMAEngine drivers you'll see are based on a similar design
-that handles the end of transfer interrupts in the handler, but defer
-most work to a tasklet, including the start of a new transfer whenever
-the previous transfer ended.
-
-This is a rather inefficient design though, because the inter-transfer
-latency will be not only the interrupt latency, but also the
-scheduling latency of the tasklet, which will leave the channel idle
-in between, which will slow down the global transfer rate.
-
-You should avoid this kind of practice, and instead of electing a new
-transfer in your tasklet, move that part to the interrupt handler in
-order to have a shorter idle window (that we can't really avoid
-anyway).
-
-Glossary
---------
-
-Burst: A number of consecutive read or write operations
- that can be queued to buffers before being flushed to
- memory.
-Chunk: A contiguous collection of bursts
-Transfer: A collection of chunks (be it contiguous or not)
diff --git a/Documentation/dmaengine/pxa_dma.txt b/Documentation/dmaengine/pxa_dma.txt
deleted file mode 100644
index 0736d44b5438..000000000000
--- a/Documentation/dmaengine/pxa_dma.txt
+++ /dev/null
@@ -1,153 +0,0 @@
-PXA/MMP - DMA Slave controller
-==============================
-
-Constraints
------------
- a) Transfers hot queuing
- A driver submitting a transfer and issuing it should be granted the transfer
- is queued even on a running DMA channel.
- This implies that the queuing doesn't wait for the previous transfer end,
- and that the descriptor chaining is not only done in the irq/tasklet code
- triggered by the end of the transfer.
- A transfer which is submitted and issued on a phy doesn't wait for a phy to
- stop and restart, but is submitted on a "running channel". The other
- drivers, especially mmp_pdma waited for the phy to stop before relaunching
- a new transfer.
-
- b) All transfers having asked for confirmation should be signaled
- Any issued transfer with DMA_PREP_INTERRUPT should trigger a callback call.
- This implies that even if an irq/tasklet is triggered by end of tx1, but
- at the time of irq/dma tx2 is already finished, tx1->complete() and
- tx2->complete() should be called.
-
- c) Channel running state
- A driver should be able to query if a channel is running or not. For the
- multimedia case, such as video capture, if a transfer is submitted and then
- a check of the DMA channel reports a "stopped channel", the transfer should
- not be issued until the next "start of frame interrupt", hence the need to
- know if a channel is in running or stopped state.
-
- d) Bandwidth guarantee
- The PXA architecture has 4 levels of DMAs priorities : high, normal, low.
- The high priorities get twice as much bandwidth as the normal, which get twice
- as much as the low priorities.
- A driver should be able to request a priority, especially the real-time
- ones such as pxa_camera with (big) throughputs.
-
-Design
-------
- a) Virtual channels
- Same concept as in sa11x0 driver, ie. a driver was assigned a "virtual
- channel" linked to the requestor line, and the physical DMA channel is
- assigned on the fly when the transfer is issued.
-
- b) Transfer anatomy for a scatter-gather transfer
- +------------+-----+---------------+----------------+-----------------+
- | desc-sg[0] | ... | desc-sg[last] | status updater | finisher/linker |
- +------------+-----+---------------+----------------+-----------------+
-
- This structure is pointed by dma->sg_cpu.
- The descriptors are used as follows :
- - desc-sg[i]: i-th descriptor, transferring the i-th sg
- element to the video buffer scatter gather
- - status updater
- Transfers a single u32 to a well known dma coherent memory to leave
- a trace that this transfer is done. The "well known" is unique per
- physical channel, meaning that a read of this value will tell which
- is the last finished transfer at that point in time.
- - finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN
- - linker: has ddadr= desc-sg[0] of next transfer, dcmd=0
-
- c) Transfers hot-chaining
- Suppose the running chain is :
- Buffer 1 Buffer 2
- +---------+----+---+ +----+----+----+---+
- | d0 | .. | dN | l | | d0 | .. | dN | f |
- +---------+----+-|-+ ^----+----+----+---+
- | |
- +----+
-
- After a call to dmaengine_submit(b3), the chain will look like :
- Buffer 1 Buffer 2 Buffer 3
- +---------+----+---+ +----+----+----+---+ +----+----+----+---+
- | d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
- +---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+
- | | | |
- +----+ +----+
- new_link
-
- If while new_link was created the DMA channel stopped, it is _not_
- restarted. Hot-chaining doesn't break the assumption that
- dma_async_issue_pending() is to be used to ensure the transfer is actually started.
-
- One exception to this rule :
- - if Buffer1 and Buffer2 had all their addresses 8 bytes aligned
- - and if Buffer3 has at least one address not 4 bytes aligned
- - then hot-chaining cannot happen, as the channel must be stopped, the
- "align bit" must be set, and the channel restarted As a consequence,
- such a transfer tx_submit() will be queued on the submitted queue, and
- this specific case if the DMA is already running in aligned mode.
-
- d) Transfers completion updater
- Each time a transfer is completed on a channel, an interrupt might be
- generated or not, up to the client's request. But in each case, the last
- descriptor of a transfer, the "status updater", will write the latest
- transfer being completed into the physical channel's completion mark.
-
- This will speed up residue calculation, for large transfers such as video
- buffers which hold around 6k descriptors or more. This also allows without
- any lock to find out what is the latest completed transfer in a running
- DMA chain.
-
- e) Transfers completion, irq and tasklet
- When a transfer flagged as "DMA_PREP_INTERRUPT" is finished, the dma irq
- is raised. Upon this interrupt, a tasklet is scheduled for the physical
- channel.
- The tasklet is responsible for :
- - reading the physical channel last updater mark
- - calling all the transfer callbacks of finished transfers, based on
- that mark, and each transfer flags.
- If a transfer is completed while this handling is done, a dma irq will
- be raised, and the tasklet will be scheduled once again, having a new
- updater mark.
-
- f) Residue
- Residue granularity will be descriptor based. The issued but not completed
- transfers will be scanned for all of their descriptors against the
- currently running descriptor.
-
- g) Most complicated case of driver's tx queues
- The most tricky situation is when :
- - there are not "acked" transfers (tx0)
- - a driver submitted an aligned tx1, not chained
- - a driver submitted an aligned tx2 => tx2 is cold chained to tx1
- - a driver issued tx1+tx2 => channel is running in aligned mode
- - a driver submitted an aligned tx3 => tx3 is hot-chained
- - a driver submitted an unaligned tx4 => tx4 is put in submitted queue,
- not chained
- - a driver issued tx4 => tx4 is put in issued queue, not chained
- - a driver submitted an aligned tx5 => tx5 is put in submitted queue, not
- chained
- - a driver submitted an aligned tx6 => tx6 is put in submitted queue,
- cold chained to tx5
-
- This translates into (after tx4 is issued) :
- - issued queue
- +-----+ +-----+ +-----+ +-----+
- | tx1 | | tx2 | | tx3 | | tx4 |
- +---|-+ ^---|-+ ^-----+ +-----+
- | | | |
- +---+ +---+
- - submitted queue
- +-----+ +-----+
- | tx5 | | tx6 |
- +---|-+ ^-----+
- | |
- +---+
- - completed queue : empty
- - allocated queue : tx0
-
- It should be noted that after tx3 is completed, the channel is stopped, and
- restarted in "unaligned mode" to handle tx4.
-
-Author: Robert Jarzmik <robert.jarzmik@free.fr>