summaryrefslogtreecommitdiff
path: root/Documentation/driver-api/gpio/driver.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/driver-api/gpio/driver.rst')
-rw-r--r--Documentation/driver-api/gpio/driver.rst63
1 files changed, 42 insertions, 21 deletions
diff --git a/Documentation/driver-api/gpio/driver.rst b/Documentation/driver-api/gpio/driver.rst
index 072a7455044e..65d708093b71 100644
--- a/Documentation/driver-api/gpio/driver.rst
+++ b/Documentation/driver-api/gpio/driver.rst
@@ -416,7 +416,8 @@ The preferred way to set up the helpers is to fill in the
struct gpio_irq_chip inside struct gpio_chip before adding the gpio_chip.
If you do this, the additional irq_chip will be set up by gpiolib at the
same time as setting up the rest of the GPIO functionality. The following
-is a typical example of a cascaded interrupt handler using gpio_irq_chip:
+is a typical example of a chained cascaded interrupt handler using
+the gpio_irq_chip:
.. code-block:: c
@@ -452,7 +453,46 @@ is a typical example of a cascaded interrupt handler using gpio_irq_chip:
return devm_gpiochip_add_data(dev, &g->gc, g);
-The helper support using hierarchical interrupt controllers as well.
+The helper supports using threaded interrupts as well. Then you just request
+the interrupt separately and go with it:
+
+.. code-block:: c
+
+ /* Typical state container with dynamic irqchip */
+ struct my_gpio {
+ struct gpio_chip gc;
+ struct irq_chip irq;
+ };
+
+ int irq; /* from platform etc */
+ struct my_gpio *g;
+ struct gpio_irq_chip *girq;
+
+ /* Set up the irqchip dynamically */
+ g->irq.name = "my_gpio_irq";
+ g->irq.irq_ack = my_gpio_ack_irq;
+ g->irq.irq_mask = my_gpio_mask_irq;
+ g->irq.irq_unmask = my_gpio_unmask_irq;
+ g->irq.irq_set_type = my_gpio_set_irq_type;
+
+ ret = devm_request_threaded_irq(dev, irq, NULL,
+ irq_thread_fn, IRQF_ONESHOT, "my-chip", g);
+ if (ret < 0)
+ return ret;
+
+ /* Get a pointer to the gpio_irq_chip */
+ girq = &g->gc.irq;
+ girq->chip = &g->irq;
+ /* This will let us handle the parent IRQ in the driver */
+ girq->parent_handler = NULL;
+ girq->num_parents = 0;
+ girq->parents = NULL;
+ girq->default_type = IRQ_TYPE_NONE;
+ girq->handler = handle_bad_irq;
+
+ return devm_gpiochip_add_data(dev, &g->gc, g);
+
+The helper supports using hierarchical interrupt controllers as well.
In this case the typical set-up will look like this:
.. code-block:: c
@@ -493,25 +533,6 @@ the parent hardware irq from a child (i.e. this gpio chip) hardware irq.
As always it is good to look at examples in the kernel tree for advice
on how to find the required pieces.
-The old way of adding irqchips to gpiochips after registration is also still
-available but we try to move away from this:
-
-- DEPRECATED: gpiochip_irqchip_add(): adds a chained cascaded irqchip to a
- gpiochip. It will pass the struct gpio_chip* for the chip to all IRQ
- callbacks, so the callbacks need to embed the gpio_chip in its state
- container and obtain a pointer to the container using container_of().
- (See Documentation/driver-api/driver-model/design-patterns.rst)
-
-- gpiochip_irqchip_add_nested(): adds a nested cascaded irqchip to a gpiochip,
- as discussed above regarding different types of cascaded irqchips. The
- cascaded irq has to be handled by a threaded interrupt handler.
- Apart from that it works exactly like the chained irqchip.
-
-- gpiochip_set_nested_irqchip(): sets up a nested cascaded irq handler for a
- gpio_chip from a parent IRQ. As the parent IRQ has usually been
- explicitly requested by the driver, this does very little more than
- mark all the child IRQs as having the other IRQ as parent.
-
If there is a need to exclude certain GPIO lines from the IRQ domain handled by
these helpers, we can set .irq.need_valid_mask of the gpiochip before
devm_gpiochip_add_data() or gpiochip_add_data() is called. This allocates an