summaryrefslogtreecommitdiff
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/fscrypt.rst83
-rw-r--r--Documentation/filesystems/index.rst1
-rw-r--r--Documentation/filesystems/locks.rst17
-rw-r--r--Documentation/filesystems/netfs_library.rst2
-rw-r--r--Documentation/filesystems/ntfs3.rst141
5 files changed, 143 insertions, 101 deletions
diff --git a/Documentation/filesystems/fscrypt.rst b/Documentation/filesystems/fscrypt.rst
index 0eb799d9d05a..4d5d50dca65c 100644
--- a/Documentation/filesystems/fscrypt.rst
+++ b/Documentation/filesystems/fscrypt.rst
@@ -77,11 +77,11 @@ Side-channel attacks
fscrypt is only resistant to side-channel attacks, such as timing or
electromagnetic attacks, to the extent that the underlying Linux
-Cryptographic API algorithms are. If a vulnerable algorithm is used,
-such as a table-based implementation of AES, it may be possible for an
-attacker to mount a side channel attack against the online system.
-Side channel attacks may also be mounted against applications
-consuming decrypted data.
+Cryptographic API algorithms or inline encryption hardware are. If a
+vulnerable algorithm is used, such as a table-based implementation of
+AES, it may be possible for an attacker to mount a side channel attack
+against the online system. Side channel attacks may also be mounted
+against applications consuming decrypted data.
Unauthorized file access
~~~~~~~~~~~~~~~~~~~~~~~~
@@ -176,11 +176,11 @@ Master Keys
Each encrypted directory tree is protected by a *master key*. Master
keys can be up to 64 bytes long, and must be at least as long as the
-greater of the key length needed by the contents and filenames
-encryption modes being used. For example, if AES-256-XTS is used for
-contents encryption, the master key must be 64 bytes (512 bits). Note
-that the XTS mode is defined to require a key twice as long as that
-required by the underlying block cipher.
+greater of the security strength of the contents and filenames
+encryption modes being used. For example, if any AES-256 mode is
+used, the master key must be at least 256 bits, i.e. 32 bytes. A
+stricter requirement applies if the key is used by a v1 encryption
+policy and AES-256-XTS is used; such keys must be 64 bytes.
To "unlock" an encrypted directory tree, userspace must provide the
appropriate master key. There can be any number of master keys, each
@@ -1135,6 +1135,50 @@ where applications may later write sensitive data. It is recommended
that systems implementing a form of "verified boot" take advantage of
this by validating all top-level encryption policies prior to access.
+Inline encryption support
+=========================
+
+By default, fscrypt uses the kernel crypto API for all cryptographic
+operations (other than HKDF, which fscrypt partially implements
+itself). The kernel crypto API supports hardware crypto accelerators,
+but only ones that work in the traditional way where all inputs and
+outputs (e.g. plaintexts and ciphertexts) are in memory. fscrypt can
+take advantage of such hardware, but the traditional acceleration
+model isn't particularly efficient and fscrypt hasn't been optimized
+for it.
+
+Instead, many newer systems (especially mobile SoCs) have *inline
+encryption hardware* that can encrypt/decrypt data while it is on its
+way to/from the storage device. Linux supports inline encryption
+through a set of extensions to the block layer called *blk-crypto*.
+blk-crypto allows filesystems to attach encryption contexts to bios
+(I/O requests) to specify how the data will be encrypted or decrypted
+in-line. For more information about blk-crypto, see
+:ref:`Documentation/block/inline-encryption.rst <inline_encryption>`.
+
+On supported filesystems (currently ext4 and f2fs), fscrypt can use
+blk-crypto instead of the kernel crypto API to encrypt/decrypt file
+contents. To enable this, set CONFIG_FS_ENCRYPTION_INLINE_CRYPT=y in
+the kernel configuration, and specify the "inlinecrypt" mount option
+when mounting the filesystem.
+
+Note that the "inlinecrypt" mount option just specifies to use inline
+encryption when possible; it doesn't force its use. fscrypt will
+still fall back to using the kernel crypto API on files where the
+inline encryption hardware doesn't have the needed crypto capabilities
+(e.g. support for the needed encryption algorithm and data unit size)
+and where blk-crypto-fallback is unusable. (For blk-crypto-fallback
+to be usable, it must be enabled in the kernel configuration with
+CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK=y.)
+
+Currently fscrypt always uses the filesystem block size (which is
+usually 4096 bytes) as the data unit size. Therefore, it can only use
+inline encryption hardware that supports that data unit size.
+
+Inline encryption doesn't affect the ciphertext or other aspects of
+the on-disk format, so users may freely switch back and forth between
+using "inlinecrypt" and not using "inlinecrypt".
+
Implementation details
======================
@@ -1184,6 +1228,13 @@ keys`_ and `DIRECT_KEY policies`_.
Data path changes
-----------------
+When inline encryption is used, filesystems just need to associate
+encryption contexts with bios to specify how the block layer or the
+inline encryption hardware will encrypt/decrypt the file contents.
+
+When inline encryption isn't used, filesystems must encrypt/decrypt
+the file contents themselves, as described below:
+
For the read path (->readpage()) of regular files, filesystems can
read the ciphertext into the page cache and decrypt it in-place. The
page lock must be held until decryption has finished, to prevent the
@@ -1197,18 +1248,6 @@ buffer. Some filesystems, such as UBIFS, already use temporary
buffers regardless of encryption. Other filesystems, such as ext4 and
F2FS, have to allocate bounce pages specially for encryption.
-Fscrypt is also able to use inline encryption hardware instead of the
-kernel crypto API for en/decryption of file contents. When possible,
-and if directed to do so (by specifying the 'inlinecrypt' mount option
-for an ext4/F2FS filesystem), it adds encryption contexts to bios and
-uses blk-crypto to perform the en/decryption instead of making use of
-the above read/write path changes. Of course, even if directed to
-make use of inline encryption, fscrypt will only be able to do so if
-either hardware inline encryption support is available for the
-selected encryption algorithm or CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK
-is selected. If neither is the case, fscrypt will fall back to using
-the above mentioned read/write path changes for en/decryption.
-
Filename hashing and encoding
-----------------------------
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index c0ad233963ae..bee63d42e5ec 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -29,7 +29,6 @@ algorithms work.
fiemap
files
locks
- mandatory-locking
mount_api
quota
seq_file
diff --git a/Documentation/filesystems/locks.rst b/Documentation/filesystems/locks.rst
index c5ae858b1aac..26429317dbbc 100644
--- a/Documentation/filesystems/locks.rst
+++ b/Documentation/filesystems/locks.rst
@@ -57,16 +57,9 @@ fcntl(), with all the problems that implies.
1.3 Mandatory Locking As A Mount Option
---------------------------------------
-Mandatory locking, as described in
-'Documentation/filesystems/mandatory-locking.rst' was prior to this release a
-general configuration option that was valid for all mounted filesystems. This
-had a number of inherent dangers, not the least of which was the ability to
-freeze an NFS server by asking it to read a file for which a mandatory lock
-existed.
-
-From this release of the kernel, mandatory locking can be turned on and off
-on a per-filesystem basis, using the mount options 'mand' and 'nomand'.
-The default is to disallow mandatory locking. The intention is that
-mandatory locking only be enabled on a local filesystem as the specific need
-arises.
+Mandatory locking was prior to this release a general configuration option
+that was valid for all mounted filesystems. This had a number of inherent
+dangers, not the least of which was the ability to freeze an NFS server by
+asking it to read a file for which a mandatory lock existed.
+Such option was dropped in Kernel v5.14.
diff --git a/Documentation/filesystems/netfs_library.rst b/Documentation/filesystems/netfs_library.rst
index 57a641847818..bb68d39f03b7 100644
--- a/Documentation/filesystems/netfs_library.rst
+++ b/Documentation/filesystems/netfs_library.rst
@@ -524,3 +524,5 @@ Note that these methods are passed a pointer to the cache resource structure,
not the read request structure as they could be used in other situations where
there isn't a read request structure as well, such as writing dirty data to the
cache.
+
+.. kernel-doc:: include/linux/netfs.h
diff --git a/Documentation/filesystems/ntfs3.rst b/Documentation/filesystems/ntfs3.rst
index ffe9ea0c1499..d67ccd22c63b 100644
--- a/Documentation/filesystems/ntfs3.rst
+++ b/Documentation/filesystems/ntfs3.rst
@@ -4,103 +4,112 @@
NTFS3
=====
-
Summary and Features
====================
-NTFS3 is fully functional NTFS Read-Write driver. The driver works with
-NTFS versions up to 3.1, normal/compressed/sparse files
-and journal replaying. File system type to use on mount is 'ntfs3'.
+NTFS3 is fully functional NTFS Read-Write driver. The driver works with NTFS
+versions up to 3.1. File system type to use on mount is *ntfs3*.
- This driver implements NTFS read/write support for normal, sparse and
compressed files.
-- Supports native journal replaying;
-- Supports extended attributes
- Predefined extended attributes:
- - 'system.ntfs_security' gets/sets security
- descriptor (SECURITY_DESCRIPTOR_RELATIVE)
- - 'system.ntfs_attrib' gets/sets ntfs file/dir attributes.
- Note: applied to empty files, this allows to switch type between
- sparse(0x200), compressed(0x800) and normal;
+- Supports native journal replaying.
- Supports NFS export of mounted NTFS volumes.
+- Supports extended attributes. Predefined extended attributes:
+
+ - *system.ntfs_security* gets/sets security
+
+ Descriptor: SECURITY_DESCRIPTOR_RELATIVE
+
+ - *system.ntfs_attrib* gets/sets ntfs file/dir attributes.
+
+ Note: Applied to empty files, this allows to switch type between
+ sparse(0x200), compressed(0x800) and normal.
Mount Options
=============
The list below describes mount options supported by NTFS3 driver in addition to
-generic ones.
+generic ones. You can use every mount option with **no** option. If it is in
+this table marked with no it means default is without **no**.
-===============================================================================
+.. flat-table::
+ :widths: 1 5
+ :fill-cells:
-nls=name This option informs the driver how to interpret path
- strings and translate them to Unicode and back. If
- this option is not set, the default codepage will be
- used (CONFIG_NLS_DEFAULT).
- Examples:
- 'nls=utf8'
+ * - iocharset=name
+ - This option informs the driver how to interpret path strings and
+ translate them to Unicode and back. If this option is not set, the
+ default codepage will be used (CONFIG_NLS_DEFAULT).
-uid=
-gid=
-umask= Controls the default permissions for files/directories created
- after the NTFS volume is mounted.
+ Example: iocharset=utf8
-fmask=
-dmask= Instead of specifying umask which applies both to
- files and directories, fmask applies only to files and
- dmask only to directories.
+ * - uid=
+ - :rspan:`1`
+ * - gid=
-nohidden Files with the Windows-specific HIDDEN (FILE_ATTRIBUTE_HIDDEN)
- attribute will not be shown under Linux.
+ * - umask=
+ - Controls the default permissions for files/directories created after
+ the NTFS volume is mounted.
-sys_immutable Files with the Windows-specific SYSTEM
- (FILE_ATTRIBUTE_SYSTEM) attribute will be marked as system
- immutable files.
+ * - dmask=
+ - :rspan:`1` Instead of specifying umask which applies both to files and
+ directories, fmask applies only to files and dmask only to directories.
+ * - fmask=
-discard Enable support of the TRIM command for improved performance
- on delete operations, which is recommended for use with the
- solid-state drives (SSD).
+ * - noacsrules
+ - "No access rules" mount option sets access rights for files/folders to
+ 777 and owner/group to root. This mount option absorbs all other
+ permissions.
-force Forces the driver to mount partitions even if 'dirty' flag
- (volume dirty) is set. Not recommended for use.
+ - Permissions change for files/folders will be reported as successful,
+ but they will remain 777.
-sparse Create new files as "sparse".
+ - Owner/group change will be reported as successful, butthey will stay
+ as root.
-showmeta Use this parameter to show all meta-files (System Files) on
- a mounted NTFS partition.
- By default, all meta-files are hidden.
+ * - nohidden
+ - Files with the Windows-specific HIDDEN (FILE_ATTRIBUTE_HIDDEN) attribute
+ will not be shown under Linux.
-prealloc Preallocate space for files excessively when file size is
- increasing on writes. Decreases fragmentation in case of
- parallel write operations to different files.
+ * - sys_immutable
+ - Files with the Windows-specific SYSTEM (FILE_ATTRIBUTE_SYSTEM) attribute
+ will be marked as system immutable files.
-no_acs_rules "No access rules" mount option sets access rights for
- files/folders to 777 and owner/group to root. This mount
- option absorbs all other permissions:
- - permissions change for files/folders will be reported
- as successful, but they will remain 777;
- - owner/group change will be reported as successful, but
- they will stay as root
+ * - discard
+ - Enable support of the TRIM command for improved performance on delete
+ operations, which is recommended for use with the solid-state drives
+ (SSD).
-acl Support POSIX ACLs (Access Control Lists). Effective if
- supported by Kernel. Not to be confused with NTFS ACLs.
- The option specified as acl enables support for POSIX ACLs.
+ * - force
+ - Forces the driver to mount partitions even if volume is marked dirty.
+ Not recommended for use.
-noatime All files and directories will not update their last access
- time attribute if a partition is mounted with this parameter.
- This option can speed up file system operation.
+ * - sparse
+ - Create new files as sparse.
-===============================================================================
+ * - showmeta
+ - Use this parameter to show all meta-files (System Files) on a mounted
+ NTFS partition. By default, all meta-files are hidden.
-ToDo list
-=========
+ * - prealloc
+ - Preallocate space for files excessively when file size is increasing on
+ writes. Decreases fragmentation in case of parallel write operations to
+ different files.
-- Full journaling support (currently journal replaying is supported) over JBD.
+ * - acl
+ - Support POSIX ACLs (Access Control Lists). Effective if supported by
+ Kernel. Not to be confused with NTFS ACLs. The option specified as acl
+ enables support for POSIX ACLs.
+Todo list
+=========
+- Full journaling support over JBD. Currently journal replaying is supported
+ which is not necessarily as effectice as JBD would be.
References
==========
-https://www.paragon-software.com/home/ntfs-linux-professional/
- - Commercial version of the NTFS driver for Linux.
+- Commercial version of the NTFS driver for Linux.
+ https://www.paragon-software.com/home/ntfs-linux-professional/
-almaz.alexandrovich@paragon-software.com
- - Direct e-mail address for feedback and requests on the NTFS3 implementation.
+- Direct e-mail address for feedback and requests on the NTFS3 implementation.
+ almaz.alexandrovich@paragon-software.com