diff options
Diffstat (limited to 'Documentation/iio/ad4695.rst')
-rw-r--r-- | Documentation/iio/ad4695.rst | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/Documentation/iio/ad4695.rst b/Documentation/iio/ad4695.rst new file mode 100644 index 000000000000..f40593bcc37d --- /dev/null +++ b/Documentation/iio/ad4695.rst @@ -0,0 +1,269 @@ +.. SPDX-License-Identifier: GPL-2.0-only + +============= +AD4695 driver +============= + +ADC driver for Analog Devices Inc. AD4695 and similar devices. The module name +is ``ad4695``. + + +Supported devices +================= + +The following chips are supported by this driver: + +* `AD4695 <https://www.analog.com/AD4695>`_ +* `AD4696 <https://www.analog.com/AD4696>`_ +* `AD4697 <https://www.analog.com/AD4697>`_ +* `AD4698 <https://www.analog.com/AD4698>`_ + + +Supported features +================== + +SPI wiring modes +---------------- + +The driver currently supports the following SPI wiring configuration: + +4-wire mode +^^^^^^^^^^^ + +In this mode, CNV and CS are tied together and there is a single SDO line. + +.. code-block:: + + +-------------+ +-------------+ + | CS |<-+------| CS | + | CNV |<-+ | | + | ADC | | HOST | + | | | | + | SDI |<--------| SDO | + | SDO |-------->| SDI | + | SCLK |<--------| SCLK | + +-------------+ +-------------+ + +To use this mode, in the device tree, omit the ``cnv-gpios`` and +``spi-rx-bus-width`` properties. + +SPI offload wiring +^^^^^^^^^^^^^^^^^^ + +When used with a SPI offload, the supported wiring configuration is: + +.. code-block:: + + +-------------+ +-------------+ + | GP0/BUSY |-------->| TRIGGER | + | CS |<--------| CS | + | | | | + | ADC | | SPI | + | | | | + | SDI |<--------| SDO | + | SDO |-------->| SDI | + | SCLK |<--------| SCLK | + | | | | + | | +-------------+ + | CNV |<-----+--| PWM | + | | +--| GPIO | + +-------------+ +-------------+ + +In this case, both the ``cnv-gpios`` and ``pwms`` properties are required. +The ``#trigger-source-cells = <2>`` property is also required to connect back +to the SPI offload. The SPI offload will have ``trigger-sources`` property +with cells to indicate the busy signal and which GPx pin is used, e.g +``<&ad4695 AD4695_TRIGGER_EVENT_BUSY AD4695_TRIGGER_PIN_GP0>``. + +.. seealso:: `SPI offload support`_ + +Channel configuration +--------------------- + +Since the chip supports multiple ways to configure each channel, this must be +described in the device tree based on what is actually wired up to the inputs. + +There are three typical configurations: + +An ``INx`` pin is used as the positive input with the ``REFGND``, ``COM`` or +the next ``INx`` pin as the negative input. + +Pairing with REFGND +^^^^^^^^^^^^^^^^^^^ + +Each ``INx`` pin can be used as a pseudo-differential input in conjunction with +the ``REFGND`` pin. The device tree will look like this: + +.. code-block:: + + channel@0 { + reg = <0>; /* IN0 */ + }; + +If no other channel properties are needed (e.g. ``adi,no-high-z``), the channel +node can be omitted entirely. + +This will appear on the IIO bus as the ``voltage0`` channel. The processed value +(*raw × scale*) will be the voltage present on the ``IN0`` pin relative to +``REFGND``. (Offset is always 0 when pairing with ``REFGND``.) + +Pairing with COM +^^^^^^^^^^^^^^^^ + +Each ``INx`` pin can be used as a pseudo-differential input in conjunction with +the ``COM`` pin. The device tree will look like this: + +.. code-block:: + + com-supply = <&vref_div_2>; + + channel@1 { + reg = <1>; /* IN1 */ + common-mode-channel = <AD4695_COMMON_MODE_COM>; + bipolar; + }; + +This will appear on the IIO bus as the ``voltage1`` channel. The processed value +(*(raw + offset) × scale*) will be the voltage measured on the ``IN1`` pin +relative to ``REFGND``. (The offset is determined by the ``com-supply`` voltage.) + +The macro comes from: + +.. code-block:: + + #include <dt-bindings/iio/adc/adi,ad4695.h> + +Pairing two INx pins +^^^^^^^^^^^^^^^^^^^^ + +An even-numbered ``INx`` pin and the following odd-numbered ``INx`` pin can be +used as a pseudo-differential input. The device tree for using ``IN2`` as the +positive input and ``IN3`` as the negative input will look like this: + +.. code-block:: + + in3-supply = <&vref_div_2>; + + channel@2 { + reg = <2>; /* IN2 */ + common-mode-channel = <3>; /* IN3 */ + bipolar; + }; + +This will appear on the IIO bus as the ``voltage2`` channel. The processed value +(*(raw + offset) × scale*) will be the voltage measured on the ``IN1`` pin +relative to ``REFGND``. (Offset is determined by the ``in3-supply`` voltage.) + +VCC supply +---------- + +The chip supports being powered by an external LDO via the ``VCC`` input or an +internal LDO via the ``LDO_IN`` input. The driver looks at the device tree to +determine which is being used. If ``ldo-supply`` is present, then the internal +LDO is used. If ``vcc-supply`` is present, then the external LDO is used and +the internal LDO is disabled. + +Reference voltage +----------------- + +The chip supports an external reference voltage via the ``REF`` input or an +internal buffered reference voltage via the ``REFIN`` input. The driver looks +at the device tree to determine which is being used. If ``ref-supply`` is +present, then the external reference voltage is used and the internal buffer is +disabled. If ``refin-supply`` is present, then the internal buffered reference +voltage is used. + +Gain/offset calibration +----------------------- + +System calibration is supported using the channel gain and offset registers via +the ``calibscale`` and ``calibbias`` attributes respectively. + +Oversampling +------------ + +The chip supports per-channel oversampling when SPI offload is being used, with +available oversampling ratios (OSR) of 1 (default), 4, 16, and 64. Enabling +oversampling on a channel raises the effective number of bits of sampled data to +17 (OSR == 4), 18 (16), or 19 (64), respectively. This can be set via the +``oversampling_ratio`` attribute. + +Setting the oversampling ratio for a channel also changes the sample rate for +that channel, since it requires multiple conversions per 1 sample. Specifically, +the new sampling frequency is the PWM sampling frequency divided by the +particular OSR. This is set automatically by the driver when setting the +``oversampling_ratio`` attribute. For example, if the device's current +``sampling_frequency`` is 10000 and an OSR of 4 is set on channel ``voltage0``, +the new reported sampling rate for that channel will be 2500 (ignoring PWM API +rounding), while all others will remain at 10000. Subsequently setting the +sampling frequency to a higher value on that channel will adjust the CNV trigger +period for all channels, e.g. if ``voltage0``'s sampling frequency is adjusted +from 2500 (with an OSR of 4) to 10000, the value reported by +``in_voltage0_sampling_frequency`` will be 10000, but all other channels will +now report 40000. + +For simplicity, the sampling frequency of the device should be set (considering +the highest desired OSR value to be used) first, before configuring oversampling +for specific channels. + +Unimplemented features +---------------------- + +- Additional wiring modes +- Threshold events +- GPIO support +- CRC support + +SPI offload support +=================== + +To be able to achieve the maximum sample rate, the driver can be used with the +`AXI SPI Engine`_ to provide SPI offload support. + +.. _AXI SPI Engine: http://analogdevicesinc.github.io/hdl/projects/ad469x_fmc/index.html + +.. seealso:: `SPI offload wiring`_ + +When SPI offload is being used, some attributes will be different. + +* ``trigger`` directory is removed. +* ``in_voltage0_sampling_frequency`` attributes are added for setting the sample + rate. +* ``in_voltage0_sampling_frequency_available`` attributes are added for querying + the max sample rate. +* ``timestamp`` channel is removed. +* Buffer data format may be different compared to when offload is not used, + e.g. the ``buffer0/in_voltage0_type`` attribute. + +Device buffers +============== + +This driver supports hardware triggered buffers. This uses the "advanced +sequencer" feature of the chip to trigger a burst of conversions. + +Also see :doc:`iio_devbuf` for more general information. + +Effective sample rate for buffered reads +---------------------------------------- + +When SPI offload is not used, the sample rate is determined by the trigger that +is manually configured in userspace. All enabled channels will be read in a +burst when the trigger is received. + +When SPI offload is used, the sample rate is configured per channel. All +channels will have the same rate, so only one ``in_voltageY_sampling_frequency`` +attribute needs to be set. Since this rate determines the delay between each +individual conversion, the effective sample rate for each sample is actually +the sum of the periods of each enabled channel in a buffered read. In other +words, it is the value of the ``in_voltageY_sampling_frequency`` attribute +divided by the number of enabled channels. So if 4 channels are enabled, with +the ``in_voltageY_sampling_frequency`` attributes set to 1 MHz, the effective +sample rate is 250 kHz. + +With oversampling enabled, the effective sample rate also depends on the OSR +assigned to each channel. For example, if one of the 4 channels mentioned in the +previous case is configured with an OSR of 4, the effective sample rate for that +channel becomes (1 MHz / 4 ) = 250 kHz. The effective sample rate for all +four channels is then 1 / ( (3 / 1 MHz) + ( 1 / 250 kHz) ) ~= 142.9 kHz. Note +that in this case "sample" refers to one read of all enabled channels (i.e. one +full cycle through the auto-sequencer). |