summaryrefslogtreecommitdiff
path: root/Documentation/networking
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking')
-rw-r--r--Documentation/networking/3c505.txt45
-rw-r--r--Documentation/networking/can.txt6
-rw-r--r--Documentation/networking/netlink_mmap.txt4
-rw-r--r--Documentation/networking/packet_mmap.txt2
-rw-r--r--Documentation/networking/timestamping.txt52
5 files changed, 35 insertions, 74 deletions
diff --git a/Documentation/networking/3c505.txt b/Documentation/networking/3c505.txt
deleted file mode 100644
index 72f38b13101d..000000000000
--- a/Documentation/networking/3c505.txt
+++ /dev/null
@@ -1,45 +0,0 @@
-The 3Com Etherlink Plus (3c505) driver.
-
-This driver now uses DMA. There is currently no support for PIO operation.
-The default DMA channel is 6; this is _not_ autoprobed, so you must
-make sure you configure it correctly. If loading the driver as a
-module, you can do this with "modprobe 3c505 dma=n". If the driver is
-linked statically into the kernel, you must either use an "ether="
-statement on the command line, or change the definition of ELP_DMA in 3c505.h.
-
-The driver will warn you if it has to fall back on the compiled in
-default DMA channel.
-
-If no base address is given at boot time, the driver will autoprobe
-ports 0x300, 0x280 and 0x310 (in that order). If no IRQ is given, the driver
-will try to probe for it.
-
-The driver can be used as a loadable module.
-
-Theoretically, one instance of the driver can now run multiple cards,
-in the standard way (when loading a module, say "modprobe 3c505
-io=0x300,0x340 irq=10,11 dma=6,7" or whatever). I have not tested
-this, though.
-
-The driver may now support revision 2 hardware; the dependency on
-being able to read the host control register has been removed. This
-is also untested, since I don't have a suitable card.
-
-Known problems:
- I still see "DMA upload timed out" messages from time to time. These
-seem to be fairly non-fatal though.
- The card is old and slow.
-
-To do:
- Improve probe/setup code
- Test multicast and promiscuous operation
-
-Authors:
- The driver is mainly written by Craig Southeren, email
- <craigs@ineluki.apana.org.au>.
- Parts of the driver (adapting the driver to 1.1.4+ kernels,
- IRQ/address detection, some changes) and this README by
- Juha Laiho <jlaiho@ichaos.nullnet.fi>.
- DMA mode, more fixes, etc, by Philip Blundell <pjb27@cam.ac.uk>
- Multicard support, Software configurable DMA, etc., by
- Christopher Collins <ccollins@pcug.org.au>
diff --git a/Documentation/networking/can.txt b/Documentation/networking/can.txt
index f3089d423515..0cbe6ec22d6f 100644
--- a/Documentation/networking/can.txt
+++ b/Documentation/networking/can.txt
@@ -554,12 +554,6 @@ solution for a couple of reasons:
not specified in the struct can_frame and therefore it is only valid in
CANFD_MTU sized CAN FD frames.
- As long as the payload length is <=8 the received CAN frames from CAN FD
- capable CAN devices can be received and read by legacy sockets too. When
- user-generated CAN FD frames have a payload length <=8 these can be send
- by legacy CAN network interfaces too. Sending CAN FD frames with payload
- length > 8 to a legacy CAN network interface returns an -EMSGSIZE error.
-
Implementation hint for new CAN applications:
To build a CAN FD aware application use struct canfd_frame as basic CAN
diff --git a/Documentation/networking/netlink_mmap.txt b/Documentation/networking/netlink_mmap.txt
index b26122973525..c6af4bac5aa8 100644
--- a/Documentation/networking/netlink_mmap.txt
+++ b/Documentation/networking/netlink_mmap.txt
@@ -226,9 +226,9 @@ Ring setup:
void *rx_ring, *tx_ring;
/* Configure ring parameters */
- if (setsockopt(fd, NETLINK_RX_RING, &req, sizeof(req)) < 0)
+ if (setsockopt(fd, SOL_NETLINK, NETLINK_RX_RING, &req, sizeof(req)) < 0)
exit(1);
- if (setsockopt(fd, NETLINK_TX_RING, &req, sizeof(req)) < 0)
+ if (setsockopt(fd, SOL_NETLINK, NETLINK_TX_RING, &req, sizeof(req)) < 0)
exit(1)
/* Calculate size of each individual ring */
diff --git a/Documentation/networking/packet_mmap.txt b/Documentation/networking/packet_mmap.txt
index 1404674c0a02..6fea79efb4cb 100644
--- a/Documentation/networking/packet_mmap.txt
+++ b/Documentation/networking/packet_mmap.txt
@@ -453,7 +453,7 @@ TP_STATUS_COPY : This flag indicates that the frame (and associated
enabled previously with setsockopt() and
the PACKET_COPY_THRESH option.
- The number of frames than can be buffered to
+ The number of frames that can be buffered to
be read with recvfrom is limited like a normal socket.
See the SO_RCVBUF option in the socket (7) man page.
diff --git a/Documentation/networking/timestamping.txt b/Documentation/networking/timestamping.txt
index 661d3c316a17..048c92b487f6 100644
--- a/Documentation/networking/timestamping.txt
+++ b/Documentation/networking/timestamping.txt
@@ -21,26 +21,38 @@ has such a feature).
SO_TIMESTAMPING:
-Instructs the socket layer which kind of information is wanted. The
-parameter is an integer with some of the following bits set. Setting
-other bits is an error and doesn't change the current state.
-
-SOF_TIMESTAMPING_TX_HARDWARE: try to obtain send time stamp in hardware
-SOF_TIMESTAMPING_TX_SOFTWARE: if SOF_TIMESTAMPING_TX_HARDWARE is off or
- fails, then do it in software
-SOF_TIMESTAMPING_RX_HARDWARE: return the original, unmodified time stamp
- as generated by the hardware
-SOF_TIMESTAMPING_RX_SOFTWARE: if SOF_TIMESTAMPING_RX_HARDWARE is off or
- fails, then do it in software
-SOF_TIMESTAMPING_RAW_HARDWARE: return original raw hardware time stamp
-SOF_TIMESTAMPING_SYS_HARDWARE: return hardware time stamp transformed to
- the system time base
-SOF_TIMESTAMPING_SOFTWARE: return system time stamp generated in
- software
-
-SOF_TIMESTAMPING_TX/RX determine how time stamps are generated.
-SOF_TIMESTAMPING_RAW/SYS determine how they are reported in the
-following control message:
+Instructs the socket layer which kind of information should be collected
+and/or reported. The parameter is an integer with some of the following
+bits set. Setting other bits is an error and doesn't change the current
+state.
+
+Four of the bits are requests to the stack to try to generate
+timestamps. Any combination of them is valid.
+
+SOF_TIMESTAMPING_TX_HARDWARE: try to obtain send time stamps in hardware
+SOF_TIMESTAMPING_TX_SOFTWARE: try to obtain send time stamps in software
+SOF_TIMESTAMPING_RX_HARDWARE: try to obtain receive time stamps in hardware
+SOF_TIMESTAMPING_RX_SOFTWARE: try to obtain receive time stamps in software
+
+The other three bits control which timestamps will be reported in a
+generated control message. If none of these bits are set or if none of
+the set bits correspond to data that is available, then the control
+message will not be generated:
+
+SOF_TIMESTAMPING_SOFTWARE: report systime if available
+SOF_TIMESTAMPING_SYS_HARDWARE: report hwtimetrans if available
+SOF_TIMESTAMPING_RAW_HARDWARE: report hwtimeraw if available
+
+It is worth noting that timestamps may be collected for reasons other
+than being requested by a particular socket with
+SOF_TIMESTAMPING_[TR]X_(HARD|SOFT)WARE. For example, most drivers that
+can generate hardware receive timestamps ignore
+SOF_TIMESTAMPING_RX_HARDWARE. It is still a good idea to set that flag
+in case future drivers pay attention.
+
+If timestamps are reported, they will appear in a control message with
+cmsg_level==SOL_SOCKET, cmsg_type==SO_TIMESTAMPING, and a payload like
+this:
struct scm_timestamping {
struct timespec systime;