summaryrefslogtreecommitdiff
path: root/Documentation/powerpc/pmu-ebb.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/powerpc/pmu-ebb.rst')
-rw-r--r--Documentation/powerpc/pmu-ebb.rst138
1 files changed, 0 insertions, 138 deletions
diff --git a/Documentation/powerpc/pmu-ebb.rst b/Documentation/powerpc/pmu-ebb.rst
deleted file mode 100644
index 4f474758eb55..000000000000
--- a/Documentation/powerpc/pmu-ebb.rst
+++ /dev/null
@@ -1,138 +0,0 @@
-========================
-PMU Event Based Branches
-========================
-
-Event Based Branches (EBBs) are a feature which allows the hardware to
-branch directly to a specified user space address when certain events occur.
-
-The full specification is available in Power ISA v2.07:
-
- https://www.power.org/documentation/power-isa-version-2-07/
-
-One type of event for which EBBs can be configured is PMU exceptions. This
-document describes the API for configuring the Power PMU to generate EBBs,
-using the Linux perf_events API.
-
-
-Terminology
------------
-
-Throughout this document we will refer to an "EBB event" or "EBB events". This
-just refers to a struct perf_event which has set the "EBB" flag in its
-attr.config. All events which can be configured on the hardware PMU are
-possible "EBB events".
-
-
-Background
-----------
-
-When a PMU EBB occurs it is delivered to the currently running process. As such
-EBBs can only sensibly be used by programs for self-monitoring.
-
-It is a feature of the perf_events API that events can be created on other
-processes, subject to standard permission checks. This is also true of EBB
-events, however unless the target process enables EBBs (via mtspr(BESCR)) no
-EBBs will ever be delivered.
-
-This makes it possible for a process to enable EBBs for itself, but not
-actually configure any events. At a later time another process can come along
-and attach an EBB event to the process, which will then cause EBBs to be
-delivered to the first process. It's not clear if this is actually useful.
-
-
-When the PMU is configured for EBBs, all PMU interrupts are delivered to the
-user process. This means once an EBB event is scheduled on the PMU, no non-EBB
-events can be configured. This means that EBB events can not be run
-concurrently with regular 'perf' commands, or any other perf events.
-
-It is however safe to run 'perf' commands on a process which is using EBBs. The
-kernel will in general schedule the EBB event, and perf will be notified that
-its events could not run.
-
-The exclusion between EBB events and regular events is implemented using the
-existing "pinned" and "exclusive" attributes of perf_events. This means EBB
-events will be given priority over other events, unless they are also pinned.
-If an EBB event and a regular event are both pinned, then whichever is enabled
-first will be scheduled and the other will be put in error state. See the
-section below titled "Enabling an EBB event" for more information.
-
-
-Creating an EBB event
----------------------
-
-To request that an event is counted using EBB, the event code should have bit
-63 set.
-
-EBB events must be created with a particular, and restrictive, set of
-attributes - this is so that they interoperate correctly with the rest of the
-perf_events subsystem.
-
-An EBB event must be created with the "pinned" and "exclusive" attributes set.
-Note that if you are creating a group of EBB events, only the leader can have
-these attributes set.
-
-An EBB event must NOT set any of the "inherit", "sample_period", "freq" or
-"enable_on_exec" attributes.
-
-An EBB event must be attached to a task. This is specified to perf_event_open()
-by passing a pid value, typically 0 indicating the current task.
-
-All events in a group must agree on whether they want EBB. That is all events
-must request EBB, or none may request EBB.
-
-EBB events must specify the PMC they are to be counted on. This ensures
-userspace is able to reliably determine which PMC the event is scheduled on.
-
-
-Enabling an EBB event
----------------------
-
-Once an EBB event has been successfully opened, it must be enabled with the
-perf_events API. This can be achieved either via the ioctl() interface, or the
-prctl() interface.
-
-However, due to the design of the perf_events API, enabling an event does not
-guarantee that it has been scheduled on the PMU. To ensure that the EBB event
-has been scheduled on the PMU, you must perform a read() on the event. If the
-read() returns EOF, then the event has not been scheduled and EBBs are not
-enabled.
-
-This behaviour occurs because the EBB event is pinned and exclusive. When the
-EBB event is enabled it will force all other non-pinned events off the PMU. In
-this case the enable will be successful. However if there is already an event
-pinned on the PMU then the enable will not be successful.
-
-
-Reading an EBB event
---------------------
-
-It is possible to read() from an EBB event. However the results are
-meaningless. Because interrupts are being delivered to the user process the
-kernel is not able to count the event, and so will return a junk value.
-
-
-Closing an EBB event
---------------------
-
-When an EBB event is finished with, you can close it using close() as for any
-regular event. If this is the last EBB event the PMU will be deconfigured and
-no further PMU EBBs will be delivered.
-
-
-EBB Handler
------------
-
-The EBB handler is just regular userspace code, however it must be written in
-the style of an interrupt handler. When the handler is entered all registers
-are live (possibly) and so must be saved somehow before the handler can invoke
-other code.
-
-It's up to the program how to handle this. For C programs a relatively simple
-option is to create an interrupt frame on the stack and save registers there.
-
-Fork
-----
-
-EBB events are not inherited across fork. If the child process wishes to use
-EBBs it should open a new event for itself. Similarly the EBB state in
-BESCR/EBBHR/EBBRR is cleared across fork().