summaryrefslogtreecommitdiff
path: root/Documentation/trace/coresight/coresight.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/trace/coresight/coresight.rst')
-rw-r--r--Documentation/trace/coresight/coresight.rst209
1 files changed, 203 insertions, 6 deletions
diff --git a/Documentation/trace/coresight/coresight.rst b/Documentation/trace/coresight/coresight.rst
index a566719f8e7e..d4f93d6a2d63 100644
--- a/Documentation/trace/coresight/coresight.rst
+++ b/Documentation/trace/coresight/coresight.rst
@@ -130,7 +130,7 @@ Misc:
Device Tree Bindings
--------------------
-See Documentation/devicetree/bindings/arm/coresight.txt for details.
+See ``Documentation/devicetree/bindings/arm/arm,coresight-*.yaml`` for details.
As of this writing drivers for ITM, STMs and CTIs are not provided but are
expected to be added as the solution matures.
@@ -241,6 +241,92 @@ to the newer scheme, to give a confirmation that what you see on your
system is not unexpected. One must use the "names" as they appear on
the system under specified locations.
+Topology Representation
+-----------------------
+
+Each CoreSight component has a ``connections`` directory which will contain
+links to other CoreSight components. This allows the user to explore the trace
+topology and for larger systems, determine the most appropriate sink for a
+given source. The connection information can also be used to establish
+which CTI devices are connected to a given component. This directory contains a
+``nr_links`` attribute detailing the number of links in the directory.
+
+For an ETM source, in this case ``etm0`` on a Juno platform, a typical
+arrangement will be::
+
+ linaro-developer:~# ls - l /sys/bus/coresight/devices/etm0/connections
+ <file details> cti_cpu0 -> ../../../23020000.cti/cti_cpu0
+ <file details> nr_links
+ <file details> out:0 -> ../../../230c0000.funnel/funnel2
+
+Following the out port to ``funnel2``::
+
+ linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel2/connections
+ <file details> in:0 -> ../../../23040000.etm/etm0
+ <file details> in:1 -> ../../../23140000.etm/etm3
+ <file details> in:2 -> ../../../23240000.etm/etm4
+ <file details> in:3 -> ../../../23340000.etm/etm5
+ <file details> nr_links
+ <file details> out:0 -> ../../../20040000.funnel/funnel0
+
+And again to ``funnel0``::
+
+ linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel0/connections
+ <file details> in:0 -> ../../../220c0000.funnel/funnel1
+ <file details> in:1 -> ../../../230c0000.funnel/funnel2
+ <file details> nr_links
+ <file details> out:0 -> ../../../20010000.etf/tmc_etf0
+
+Finding the first sink ``tmc_etf0``. This can be used to collect data
+as a sink, or as a link to propagate further along the chain::
+
+ linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etf0/connections
+ <file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
+ <file details> in:0 -> ../../../20040000.funnel/funnel0
+ <file details> nr_links
+ <file details> out:0 -> ../../../20150000.funnel/funnel4
+
+via ``funnel4``::
+
+ linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel4/connections
+ <file details> in:0 -> ../../../20010000.etf/tmc_etf0
+ <file details> in:1 -> ../../../20140000.etf/tmc_etf1
+ <file details> nr_links
+ <file details> out:0 -> ../../../20120000.replicator/replicator0
+
+and a ``replicator0``::
+
+ linaro-developer:~# ls -l /sys/bus/coresight/devices/replicator0/connections
+ <file details> in:0 -> ../../../20150000.funnel/funnel4
+ <file details> nr_links
+ <file details> out:0 -> ../../../20030000.tpiu/tpiu0
+ <file details> out:1 -> ../../../20070000.etr/tmc_etr0
+
+Arriving at the final sink in the chain, ``tmc_etr0``::
+
+ linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etr0/connections
+ <file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
+ <file details> in:0 -> ../../../20120000.replicator/replicator0
+ <file details> nr_links
+
+As described below, when using sysfs it is sufficient to enable a sink and
+a source for successful trace. The framework will correctly enable all
+intermediate links as required.
+
+Note: ``cti_sys0`` appears in two of the connections lists above.
+CTIs can connect to multiple devices and are arranged in a star topology
+via the CTM. See (Documentation/trace/coresight/coresight-ect.rst)
+[#fourth]_ for further details.
+Looking at this device we see 4 connections::
+
+ linaro-developer:~# ls -l /sys/bus/coresight/devices/cti_sys0/connections
+ <file details> nr_links
+ <file details> stm0 -> ../../../20100000.stm/stm0
+ <file details> tmc_etf0 -> ../../../20010000.etf/tmc_etf0
+ <file details> tmc_etr0 -> ../../../20070000.etr/tmc_etr0
+ <file details> tpiu0 -> ../../../20030000.tpiu/tpiu0
+
+
How to use the tracer modules
-----------------------------
@@ -253,7 +339,8 @@ Preference is given to the former as using the sysFS interface
requires a deep understanding of the Coresight HW. The following sections
provide details on using both methods.
-1) Using the sysFS interface:
+Using the sysFS interface
+~~~~~~~~~~~~~~~~~~~~~~~~~
Before trace collection can start, a coresight sink needs to be identified.
There is no limit on the amount of sinks (nor sources) that can be enabled at
@@ -360,7 +447,8 @@ wealth of possibilities that coresight provides.
Instruction 0 0x8026B588 E8BD8000 true LDM sp!,{pc}
Timestamp Timestamp: 17107041535
-2) Using perf framework:
+Using perf framework
+~~~~~~~~~~~~~~~~~~~~
Coresight tracers are represented using the Perf framework's Performance
Monitoring Unit (PMU) abstraction. As such the perf framework takes charge of
@@ -409,7 +497,11 @@ More information on the above and other example on how to use Coresight with
the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
repository [#third]_.
-2.1) AutoFDO analysis using the perf tools:
+Advanced perf framework usage
+-----------------------------
+
+AutoFDO analysis using the perf tools
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
perf can be used to record and analyze trace of programs.
@@ -427,9 +519,42 @@ The --itrace option controls the type and frequency of synthesized events
Note that only 64-bit programs are currently supported - further work is
required to support instruction decode of 32-bit Arm programs.
+Tracing PID
+~~~~~~~~~~~
+
+The kernel can be built to write the PID value into the PE ContextID registers.
+For a kernel running at EL1, the PID is stored in CONTEXTIDR_EL1. A PE may
+implement Arm Virtualization Host Extensions (VHE), which the kernel can
+run at EL2 as a virtualisation host; in this case, the PID value is stored in
+CONTEXTIDR_EL2.
+
+perf provides PMU formats that program the ETM to insert these values into the
+trace data; the PMU formats are defined as below:
+
+ "contextid1": Available on both EL1 kernel and EL2 kernel. When the
+ kernel is running at EL1, "contextid1" enables the PID
+ tracing; when the kernel is running at EL2, this enables
+ tracing the PID of guest applications.
+
+ "contextid2": Only usable when the kernel is running at EL2. When
+ selected, enables PID tracing on EL2 kernel.
+
+ "contextid": Will be an alias for the option that enables PID
+ tracing. I.e,
+ contextid == contextid1, on EL1 kernel.
+ contextid == contextid2, on EL2 kernel.
+
+perf will always enable PID tracing at the relevant EL, this is accomplished by
+automatically enable the "contextid" config - but for EL2 it is possible to make
+specific adjustments using configs "contextid1" and "contextid2", E.g. if a user
+wants to trace PIDs for both host and guest, the two configs "contextid1" and
+"contextid2" can be set at the same time:
+
+ perf record -e cs_etm/contextid1,contextid2/u -- vm
+
Generating coverage files for Feedback Directed Optimization: AutoFDO
----------------------------------------------------------------------
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'perf inject' accepts the --itrace option in which case tracing data is
removed and replaced with the synthesized events. e.g.
@@ -460,6 +585,49 @@ sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tuto
Bubble sorting array of 30000 elements
5806 ms
+Config option formats
+~~~~~~~~~~~~~~~~~~~~~
+
+The following strings can be provided between // on the perf command line to enable various options.
+They are also listed in the folder /sys/bus/event_source/devices/cs_etm/format/
+
+.. list-table::
+ :header-rows: 1
+
+ * - Option
+ - Description
+ * - branch_broadcast
+ - Session local version of the system wide setting:
+ :ref:`ETM_MODE_BB <coresight-branch-broadcast>`
+ * - contextid
+ - See `Tracing PID`_
+ * - contextid1
+ - See `Tracing PID`_
+ * - contextid2
+ - See `Tracing PID`_
+ * - configid
+ - Selection for a custom configuration. This is an implementation detail and not used directly,
+ see :ref:`trace/coresight/coresight-config:Using Configurations in perf`
+ * - preset
+ - Override for parameters in a custom configuration, see
+ :ref:`trace/coresight/coresight-config:Using Configurations in perf`
+ * - sinkid
+ - Hashed version of the string to select a sink, automatically set when using the @ notation.
+ This is an internal implementation detail and is not used directly, see `Using perf
+ framework`_.
+ * - cycacc
+ - Session local version of the system wide setting: :ref:`ETMv4_MODE_CYCACC
+ <coresight-cycle-accurate>`
+ * - retstack
+ - Session local version of the system wide setting: :ref:`ETM_MODE_RETURNSTACK
+ <coresight-return-stack>`
+ * - timestamp
+ - Session local version of the system wide setting: :ref:`ETMv4_MODE_TIMESTAMP
+ <coresight-timestamp>`
+ * - cc_threshold
+ - Cycle count threshold value. If nothing is provided here or the provided value is 0, then the
+ default value i.e 0x100 will be used. If provided value is less than minimum cycles threshold
+ value, as indicated via TRCIDR3.CCITMIN, then the minimum value will be used instead.
How to use the STM module
-------------------------
@@ -489,10 +657,39 @@ interface provided for that purpose by the generic STM API::
crw------- 1 root root 10, 61 Jan 3 18:11 /dev/stm0
root@genericarmv8:~#
-Details on how to use the generic STM API can be found here:- :doc:`../stm` [#second]_.
+Details on how to use the generic STM API can be found here:
+- Documentation/trace/stm.rst [#second]_.
+
+The CTI & CTM Modules
+---------------------
+
+The CTI (Cross Trigger Interface) provides a set of trigger signals between
+individual CTIs and components, and can propagate these between all CTIs via
+channels on the CTM (Cross Trigger Matrix).
+
+A separate documentation file is provided to explain the use of these devices.
+(Documentation/trace/coresight/coresight-ect.rst) [#fourth]_.
+
+CoreSight System Configuration
+------------------------------
+
+CoreSight components can be complex devices with many programming options.
+Furthermore, components can be programmed to interact with each other across the
+complete system.
+
+A CoreSight System Configuration manager is provided to allow these complex programming
+configurations to be selected and used easily from perf and sysfs.
+
+See the separate document for further information.
+(Documentation/trace/coresight/coresight-config.rst) [#fifth]_.
+
.. [#first] Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
.. [#second] Documentation/trace/stm.rst
.. [#third] https://github.com/Linaro/perf-opencsd
+
+.. [#fourth] Documentation/trace/coresight/coresight-ect.rst
+
+.. [#fifth] Documentation/trace/coresight/coresight-config.rst