summaryrefslogtreecommitdiff
path: root/Documentation/virt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/virt')
-rw-r--r--Documentation/virt/index.rst6
-rw-r--r--Documentation/virt/kvm/api.rst202
-rw-r--r--Documentation/virt/kvm/devices/vm.rst4
-rw-r--r--Documentation/virt/kvm/locking.rst47
-rw-r--r--Documentation/virt/kvm/x86/amd-memory-encryption.rst2
-rw-r--r--Documentation/virt/kvm/x86/errata.rst11
-rw-r--r--Documentation/virt/kvm/x86/running-nested-guests.rst2
7 files changed, 215 insertions, 59 deletions
diff --git a/Documentation/virt/index.rst b/Documentation/virt/index.rst
index 56e003ff28ff..7fb55ae08598 100644
--- a/Documentation/virt/index.rst
+++ b/Documentation/virt/index.rst
@@ -1,8 +1,8 @@
.. SPDX-License-Identifier: GPL-2.0
-============================
-Linux Virtualization Support
-============================
+======================
+Virtualization Support
+======================
.. toctree::
:maxdepth: 2
diff --git a/Documentation/virt/kvm/api.rst b/Documentation/virt/kvm/api.rst
index 0dd5d8733dd5..62de0768d6aa 100644
--- a/Documentation/virt/kvm/api.rst
+++ b/Documentation/virt/kvm/api.rst
@@ -1354,6 +1354,14 @@ the memory region are automatically reflected into the guest. For example, an
mmap() that affects the region will be made visible immediately. Another
example is madvise(MADV_DROP).
+Note: On arm64, a write generated by the page-table walker (to update
+the Access and Dirty flags, for example) never results in a
+KVM_EXIT_MMIO exit when the slot has the KVM_MEM_READONLY flag. This
+is because KVM cannot provide the data that would be written by the
+page-table walker, making it impossible to emulate the access.
+Instead, an abort (data abort if the cause of the page-table update
+was a load or a store, instruction abort if it was an instruction
+fetch) is injected in the guest.
4.36 KVM_SET_TSS_ADDR
---------------------
@@ -3728,7 +3736,7 @@ The fields in each entry are defined as follows:
:Parameters: struct kvm_s390_mem_op (in)
:Returns: = 0 on success,
< 0 on generic error (e.g. -EFAULT or -ENOMEM),
- > 0 if an exception occurred while walking the page tables
+ 16 bit program exception code if the access causes such an exception
Read or write data from/to the VM's memory.
The KVM_CAP_S390_MEM_OP_EXTENSION capability specifies what functionality is
@@ -3746,6 +3754,8 @@ Parameters are specified via the following structure::
struct {
__u8 ar; /* the access register number */
__u8 key; /* access key, ignored if flag unset */
+ __u8 pad1[6]; /* ignored */
+ __u64 old_addr; /* ignored if flag unset */
};
__u32 sida_offset; /* offset into the sida */
__u8 reserved[32]; /* ignored */
@@ -3773,6 +3783,7 @@ Possible operations are:
* ``KVM_S390_MEMOP_ABSOLUTE_WRITE``
* ``KVM_S390_MEMOP_SIDA_READ``
* ``KVM_S390_MEMOP_SIDA_WRITE``
+ * ``KVM_S390_MEMOP_ABSOLUTE_CMPXCHG``
Logical read/write:
^^^^^^^^^^^^^^^^^^^
@@ -3821,7 +3832,7 @@ the checks required for storage key protection as one operation (as opposed to
user space getting the storage keys, performing the checks, and accessing
memory thereafter, which could lead to a delay between check and access).
Absolute accesses are permitted for the VM ioctl if KVM_CAP_S390_MEM_OP_EXTENSION
-is > 0.
+has the KVM_S390_MEMOP_EXTENSION_CAP_BASE bit set.
Currently absolute accesses are not permitted for VCPU ioctls.
Absolute accesses are permitted for non-protected guests only.
@@ -3829,7 +3840,26 @@ Supported flags:
* ``KVM_S390_MEMOP_F_CHECK_ONLY``
* ``KVM_S390_MEMOP_F_SKEY_PROTECTION``
-The semantics of the flags are as for logical accesses.
+The semantics of the flags common with logical accesses are as for logical
+accesses.
+
+Absolute cmpxchg:
+^^^^^^^^^^^^^^^^^
+
+Perform cmpxchg on absolute guest memory. Intended for use with the
+KVM_S390_MEMOP_F_SKEY_PROTECTION flag.
+Instead of doing an unconditional write, the access occurs only if the target
+location contains the value pointed to by "old_addr".
+This is performed as an atomic cmpxchg with the length specified by the "size"
+parameter. "size" must be a power of two up to and including 16.
+If the exchange did not take place because the target value doesn't match the
+old value, the value "old_addr" points to is replaced by the target value.
+User space can tell if an exchange took place by checking if this replacement
+occurred. The cmpxchg op is permitted for the VM ioctl if
+KVM_CAP_S390_MEM_OP_EXTENSION has flag KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG set.
+
+Supported flags:
+ * ``KVM_S390_MEMOP_F_SKEY_PROTECTION``
SIDA read/write:
^^^^^^^^^^^^^^^^
@@ -4449,6 +4479,18 @@ not holding a previously reported uncorrected error).
:Parameters: struct kvm_s390_cmma_log (in, out)
:Returns: 0 on success, a negative value on error
+Errors:
+
+ ====== =============================================================
+ ENOMEM not enough memory can be allocated to complete the task
+ ENXIO if CMMA is not enabled
+ EINVAL if KVM_S390_CMMA_PEEK is not set but migration mode was not enabled
+ EINVAL if KVM_S390_CMMA_PEEK is not set but dirty tracking has been
+ disabled (and thus migration mode was automatically disabled)
+ EFAULT if the userspace address is invalid or if no page table is
+ present for the addresses (e.g. when using hugepages).
+ ====== =============================================================
+
This ioctl is used to get the values of the CMMA bits on the s390
architecture. It is meant to be used in two scenarios:
@@ -4529,12 +4571,6 @@ mask is unused.
values points to the userspace buffer where the result will be stored.
-This ioctl can fail with -ENOMEM if not enough memory can be allocated to
-complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
-KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with
--EFAULT if the userspace address is invalid or if no page table is
-present for the addresses (e.g. when using hugepages).
-
4.108 KVM_S390_SET_CMMA_BITS
----------------------------
@@ -4997,6 +5033,15 @@ using this ioctl.
:Parameters: struct kvm_pmu_event_filter (in)
:Returns: 0 on success, -1 on error
+Errors:
+
+ ====== ============================================================
+ EFAULT args[0] cannot be accessed
+ EINVAL args[0] contains invalid data in the filter or filter events
+ E2BIG nevents is too large
+ EBUSY not enough memory to allocate the filter
+ ====== ============================================================
+
::
struct kvm_pmu_event_filter {
@@ -5008,14 +5053,69 @@ using this ioctl.
__u64 events[0];
};
-This ioctl restricts the set of PMU events that the guest can program.
-The argument holds a list of events which will be allowed or denied.
-The eventsel+umask of each event the guest attempts to program is compared
-against the events field to determine whether the guest should have access.
-The events field only controls general purpose counters; fixed purpose
-counters are controlled by the fixed_counter_bitmap.
+This ioctl restricts the set of PMU events the guest can program by limiting
+which event select and unit mask combinations are permitted.
+
+The argument holds a list of filter events which will be allowed or denied.
+
+Filter events only control general purpose counters; fixed purpose counters
+are controlled by the fixed_counter_bitmap.
+
+Valid values for 'flags'::
-No flags are defined yet, the field must be zero.
+``0``
+
+To use this mode, clear the 'flags' field.
+
+In this mode each event will contain an event select + unit mask.
+
+When the guest attempts to program the PMU the guest's event select +
+unit mask is compared against the filter events to determine whether the
+guest should have access.
+
+``KVM_PMU_EVENT_FLAG_MASKED_EVENTS``
+:Capability: KVM_CAP_PMU_EVENT_MASKED_EVENTS
+
+In this mode each filter event will contain an event select, mask, match, and
+exclude value. To encode a masked event use::
+
+ KVM_PMU_ENCODE_MASKED_ENTRY()
+
+An encoded event will follow this layout::
+
+ Bits Description
+ ---- -----------
+ 7:0 event select (low bits)
+ 15:8 umask match
+ 31:16 unused
+ 35:32 event select (high bits)
+ 36:54 unused
+ 55 exclude bit
+ 63:56 umask mask
+
+When the guest attempts to program the PMU, these steps are followed in
+determining if the guest should have access:
+
+ 1. Match the event select from the guest against the filter events.
+ 2. If a match is found, match the guest's unit mask to the mask and match
+ values of the included filter events.
+ I.e. (unit mask & mask) == match && !exclude.
+ 3. If a match is found, match the guest's unit mask to the mask and match
+ values of the excluded filter events.
+ I.e. (unit mask & mask) == match && exclude.
+ 4.
+ a. If an included match is found and an excluded match is not found, filter
+ the event.
+ b. For everything else, do not filter the event.
+ 5.
+ a. If the event is filtered and it's an allow list, allow the guest to
+ program the event.
+ b. If the event is filtered and it's a deny list, do not allow the guest to
+ program the event.
+
+When setting a new pmu event filter, -EINVAL will be returned if any of the
+unused fields are set or if any of the high bits (35:32) in the event
+select are set when called on Intel.
Valid values for 'action'::
@@ -5343,9 +5443,9 @@ KVM_XEN_ATTR_TYPE_SHARED_INFO
32 vCPUs in the shared_info page, KVM does not automatically do so
and instead requires that KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO be used
explicitly even when the vcpu_info for a given vCPU resides at the
- "default" location in the shared_info page. This is because KVM is
- not aware of the Xen CPU id which is used as the index into the
- vcpu_info[] array, so cannot know the correct default location.
+ "default" location in the shared_info page. This is because KVM may
+ not be aware of the Xen CPU id which is used as the index into the
+ vcpu_info[] array, so may know the correct default location.
Note that the shared info page may be constantly written to by KVM;
it contains the event channel bitmap used to deliver interrupts to
@@ -5356,23 +5456,29 @@ KVM_XEN_ATTR_TYPE_SHARED_INFO
any vCPU has been running or any event channel interrupts can be
routed to the guest.
+ Setting the gfn to KVM_XEN_INVALID_GFN will disable the shared info
+ page.
+
KVM_XEN_ATTR_TYPE_UPCALL_VECTOR
Sets the exception vector used to deliver Xen event channel upcalls.
This is the HVM-wide vector injected directly by the hypervisor
(not through the local APIC), typically configured by a guest via
- HVM_PARAM_CALLBACK_IRQ.
+ HVM_PARAM_CALLBACK_IRQ. This can be disabled again (e.g. for guest
+ SHUTDOWN_soft_reset) by setting it to zero.
KVM_XEN_ATTR_TYPE_EVTCHN
This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates
support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It configures
an outbound port number for interception of EVTCHNOP_send requests
- from the guest. A given sending port number may be directed back
- to a specified vCPU (by APIC ID) / port / priority on the guest,
- or to trigger events on an eventfd. The vCPU and priority can be
- changed by setting KVM_XEN_EVTCHN_UPDATE in a subsequent call,
- but other fields cannot change for a given sending port. A port
- mapping is removed by using KVM_XEN_EVTCHN_DEASSIGN in the flags
- field.
+ from the guest. A given sending port number may be directed back to
+ a specified vCPU (by APIC ID) / port / priority on the guest, or to
+ trigger events on an eventfd. The vCPU and priority can be changed
+ by setting KVM_XEN_EVTCHN_UPDATE in a subsequent call, but but other
+ fields cannot change for a given sending port. A port mapping is
+ removed by using KVM_XEN_EVTCHN_DEASSIGN in the flags field. Passing
+ KVM_XEN_EVTCHN_RESET in the flags field removes all interception of
+ outbound event channels. The values of the flags field are mutually
+ exclusive and cannot be combined as a bitmask.
KVM_XEN_ATTR_TYPE_XEN_VERSION
This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates
@@ -5388,7 +5494,7 @@ KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG
support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG. It enables the
XEN_RUNSTATE_UPDATE flag which allows guest vCPUs to safely read
other vCPUs' vcpu_runstate_info. Xen guests enable this feature via
- the VM_ASST_TYPE_runstate_update_flag of the HYPERVISOR_vm_assist
+ the VMASST_TYPE_runstate_update_flag of the HYPERVISOR_vm_assist
hypercall.
4.127 KVM_XEN_HVM_GET_ATTR
@@ -5446,15 +5552,18 @@ KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO
As with the shared_info page for the VM, the corresponding page may be
dirtied at any time if event channel interrupt delivery is enabled, so
userspace should always assume that the page is dirty without relying
- on dirty logging.
+ on dirty logging. Setting the gpa to KVM_XEN_INVALID_GPA will disable
+ the vcpu_info.
KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO
Sets the guest physical address of an additional pvclock structure
for a given vCPU. This is typically used for guest vsyscall support.
+ Setting the gpa to KVM_XEN_INVALID_GPA will disable the structure.
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR
Sets the guest physical address of the vcpu_runstate_info for a given
vCPU. This is how a Xen guest tracks CPU state such as steal time.
+ Setting the gpa to KVM_XEN_INVALID_GPA will disable the runstate area.
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT
Sets the runstate (RUNSTATE_running/_runnable/_blocked/_offline) of
@@ -5487,7 +5596,8 @@ KVM_XEN_VCPU_ATTR_TYPE_TIMER
This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates
support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the
event channel port/priority for the VIRQ_TIMER of the vCPU, as well
- as allowing a pending timer to be saved/restored.
+ as allowing a pending timer to be saved/restored. Setting the timer
+ port to zero disables kernel handling of the singleshot timer.
KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR
This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates
@@ -5495,7 +5605,8 @@ KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR
per-vCPU local APIC upcall vector, configured by a Xen guest with
the HVMOP_set_evtchn_upcall_vector hypercall. This is typically
used by Windows guests, and is distinct from the HVM-wide upcall
- vector configured with HVM_PARAM_CALLBACK_IRQ.
+ vector configured with HVM_PARAM_CALLBACK_IRQ. It is disabled by
+ setting the vector to zero.
4.129 KVM_XEN_VCPU_GET_ATTR
@@ -6577,11 +6688,6 @@ Please note that the kernel is allowed to use the kvm_run structure as the
primary storage for certain register types. Therefore, the kernel may use the
values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
-::
-
- };
-
-
6. Capabilities that can be enabled on vCPUs
============================================
@@ -8056,9 +8162,13 @@ considering the state as complete. VMM needs to ensure that the dirty
state is final and avoid missing dirty pages from another ioctl ordered
after the bitmap collection.
-NOTE: One example of using the backup bitmap is saving arm64 vgic/its
-tables through KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_SAVE_TABLES} command on
-KVM device "kvm-arm-vgic-its" when dirty ring is enabled.
+NOTE: Multiple examples of using the backup bitmap: (1) save vgic/its
+tables through command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_SAVE_TABLES} on
+KVM device "kvm-arm-vgic-its". (2) restore vgic/its tables through
+command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTORE_TABLES} on KVM device
+"kvm-arm-vgic-its". VGICv3 LPI pending status is restored. (3) save
+vgic3 pending table through KVM_DEV_ARM_VGIC_{GRP_CTRL, SAVE_PENDING_TABLES}
+command on KVM device "kvm-arm-vgic-v3".
8.30 KVM_CAP_XEN_HVM
--------------------
@@ -8304,6 +8414,20 @@ CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not reported by ``KVM_GET_SUPPORTED_CPUID``
It can be enabled if ``KVM_CAP_TSC_DEADLINE_TIMER`` is present and the kernel
has enabled in-kernel emulation of the local APIC.
+CPU topology
+~~~~~~~~~~~~
+
+Several CPUID values include topology information for the host CPU:
+0x0b and 0x1f for Intel systems, 0x8000001e for AMD systems. Different
+versions of KVM return different values for this information and userspace
+should not rely on it. Currently they return all zeroes.
+
+If userspace wishes to set up a guest topology, it should be careful that
+the values of these three leaves differ for each CPU. In particular,
+the APIC ID is found in EDX for all subleaves of 0x0b and 0x1f, and in EAX
+for 0x8000001e; the latter also encodes the core id and node id in bits
+7:0 of EBX and ECX respectively.
+
Obsolete ioctls and capabilities
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
diff --git a/Documentation/virt/kvm/devices/vm.rst b/Documentation/virt/kvm/devices/vm.rst
index 60acc39e0e93..147efec626e5 100644
--- a/Documentation/virt/kvm/devices/vm.rst
+++ b/Documentation/virt/kvm/devices/vm.rst
@@ -302,6 +302,10 @@ Allows userspace to start migration mode, needed for PGSTE migration.
Setting this attribute when migration mode is already active will have
no effects.
+Dirty tracking must be enabled on all memslots, else -EINVAL is returned. When
+dirty tracking is disabled on any memslot, migration mode is automatically
+stopped.
+
:Parameters: none
:Returns: -ENOMEM if there is not enough free memory to start migration mode;
-EINVAL if the state of the VM is invalid (e.g. no memory defined);
diff --git a/Documentation/virt/kvm/locking.rst b/Documentation/virt/kvm/locking.rst
index 845a561629f1..14c4e9fa501d 100644
--- a/Documentation/virt/kvm/locking.rst
+++ b/Documentation/virt/kvm/locking.rst
@@ -9,6 +9,8 @@ KVM Lock Overview
The acquisition orders for mutexes are as follows:
+- cpus_read_lock() is taken outside kvm_lock
+
- kvm->lock is taken outside vcpu->mutex
- kvm->lock is taken outside kvm->slots_lock and kvm->irq_lock
@@ -16,20 +18,30 @@ The acquisition orders for mutexes are as follows:
- kvm->slots_lock is taken outside kvm->irq_lock, though acquiring
them together is quite rare.
-- Unlike kvm->slots_lock, kvm->slots_arch_lock is released before
- synchronize_srcu(&kvm->srcu). Therefore kvm->slots_arch_lock
- can be taken inside a kvm->srcu read-side critical section,
- while kvm->slots_lock cannot.
-
- kvm->mn_active_invalidate_count ensures that pairs of
invalidate_range_start() and invalidate_range_end() callbacks
use the same memslots array. kvm->slots_lock and kvm->slots_arch_lock
are taken on the waiting side in install_new_memslots, so MMU notifiers
must not take either kvm->slots_lock or kvm->slots_arch_lock.
+For SRCU:
+
+- ``synchronize_srcu(&kvm->srcu)`` is called inside critical sections
+ for kvm->lock, vcpu->mutex and kvm->slots_lock. These locks _cannot_
+ be taken inside a kvm->srcu read-side critical section; that is, the
+ following is broken::
+
+ srcu_read_lock(&kvm->srcu);
+ mutex_lock(&kvm->slots_lock);
+
+- kvm->slots_arch_lock instead is released before the call to
+ ``synchronize_srcu()``. It _can_ therefore be taken inside a
+ kvm->srcu read-side critical section, for example while processing
+ a vmexit.
+
On x86:
-- vcpu->mutex is taken outside kvm->arch.hyperv.hv_lock
+- vcpu->mutex is taken outside kvm->arch.hyperv.hv_lock and kvm->arch.xen.xen_lock
- kvm->arch.mmu_lock is an rwlock. kvm->arch.tdp_mmu_pages_lock and
kvm->arch.mmu_unsync_pages_lock are taken inside kvm->arch.mmu_lock, and
@@ -216,15 +228,10 @@ time it will be set using the Dirty tracking mechanism described above.
:Type: mutex
:Arch: any
:Protects: - vm_list
-
-``kvm_count_lock``
-^^^^^^^^^^^^^^^^^^
-
-:Type: raw_spinlock_t
-:Arch: any
-:Protects: - hardware virtualization enable/disable
-:Comment: 'raw' because hardware enabling/disabling must be atomic /wrt
- migration.
+ - kvm_usage_count
+ - hardware virtualization enable/disable
+:Comment: KVM also disables CPU hotplug via cpus_read_lock() during
+ enable/disable.
``kvm->mn_invalidate_lock``
^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -282,3 +289,13 @@ time it will be set using the Dirty tracking mechanism described above.
wakeup notification event since external interrupts from the
assigned devices happens, we will find the vCPU on the list to
wakeup.
+
+``vendor_module_lock``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+:Type: mutex
+:Arch: x86
+:Protects: loading a vendor module (kvm_amd or kvm_intel)
+:Comment: Exists because using kvm_lock leads to deadlock. cpu_hotplug_lock is
+ taken outside of kvm_lock, e.g. in KVM's CPU online/offline callbacks, and
+ many operations need to take cpu_hotplug_lock when loading a vendor module,
+ e.g. updating static calls.
diff --git a/Documentation/virt/kvm/x86/amd-memory-encryption.rst b/Documentation/virt/kvm/x86/amd-memory-encryption.rst
index 935aaeb97fe6..487b6328b3e7 100644
--- a/Documentation/virt/kvm/x86/amd-memory-encryption.rst
+++ b/Documentation/virt/kvm/x86/amd-memory-encryption.rst
@@ -440,7 +440,7 @@ References
See [white-paper]_, [api-spec]_, [amd-apm]_ and [kvm-forum]_ for more info.
-.. [white-paper] http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
+.. [white-paper] https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
.. [api-spec] https://support.amd.com/TechDocs/55766_SEV-KM_API_Specification.pdf
.. [amd-apm] https://support.amd.com/TechDocs/24593.pdf (section 15.34)
.. [kvm-forum] https://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf
diff --git a/Documentation/virt/kvm/x86/errata.rst b/Documentation/virt/kvm/x86/errata.rst
index 410e0aa63493..49a05f24747b 100644
--- a/Documentation/virt/kvm/x86/errata.rst
+++ b/Documentation/virt/kvm/x86/errata.rst
@@ -37,3 +37,14 @@ Nested virtualization features
------------------------------
TBD
+
+x2APIC
+------
+When KVM_X2APIC_API_USE_32BIT_IDS is enabled, KVM activates a hack/quirk that
+allows sending events to a single vCPU using its x2APIC ID even if the target
+vCPU has legacy xAPIC enabled, e.g. to bring up hotplugged vCPUs via INIT-SIPI
+on VMs with > 255 vCPUs. A side effect of the quirk is that, if multiple vCPUs
+have the same physical APIC ID, KVM will deliver events targeting that APIC ID
+only to the vCPU with the lowest vCPU ID. If KVM_X2APIC_API_USE_32BIT_IDS is
+not enabled, KVM follows x86 architecture when processing interrupts (all vCPUs
+matching the target APIC ID receive the interrupt).
diff --git a/Documentation/virt/kvm/x86/running-nested-guests.rst b/Documentation/virt/kvm/x86/running-nested-guests.rst
index a27e6768d900..71136fe1723b 100644
--- a/Documentation/virt/kvm/x86/running-nested-guests.rst
+++ b/Documentation/virt/kvm/x86/running-nested-guests.rst
@@ -150,7 +150,7 @@ able to start an L1 guest with::
$ qemu-kvm -cpu host [...]
The above will pass through the host CPU's capabilities as-is to the
-gues); or for better live migration compatibility, use a named CPU
+guest, or for better live migration compatibility, use a named CPU
model supported by QEMU. e.g.::
$ qemu-kvm -cpu Haswell-noTSX-IBRS,vmx=on