summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/driver-api/usb/power-management.rst14
-rw-r--r--Documentation/networking/ip-sysctl.txt2
-rw-r--r--Documentation/networking/netdev-FAQ.rst2
-rw-r--r--Documentation/virtual/kvm/api.txt11
4 files changed, 18 insertions, 11 deletions
diff --git a/Documentation/driver-api/usb/power-management.rst b/Documentation/driver-api/usb/power-management.rst
index 79beb807996b..4a74cf6f2797 100644
--- a/Documentation/driver-api/usb/power-management.rst
+++ b/Documentation/driver-api/usb/power-management.rst
@@ -370,11 +370,15 @@ autosuspend the interface's device. When the usage counter is = 0
then the interface is considered to be idle, and the kernel may
autosuspend the device.
-Drivers need not be concerned about balancing changes to the usage
-counter; the USB core will undo any remaining "get"s when a driver
-is unbound from its interface. As a corollary, drivers must not call
-any of the ``usb_autopm_*`` functions after their ``disconnect``
-routine has returned.
+Drivers must be careful to balance their overall changes to the usage
+counter. Unbalanced "get"s will remain in effect when a driver is
+unbound from its interface, preventing the device from going into
+runtime suspend should the interface be bound to a driver again. On
+the other hand, drivers are allowed to achieve this balance by calling
+the ``usb_autopm_*`` functions even after their ``disconnect`` routine
+has returned -- say from within a work-queue routine -- provided they
+retain an active reference to the interface (via ``usb_get_intf`` and
+``usb_put_intf``).
Drivers using the async routines are responsible for their own
synchronization and mutual exclusion.
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index e2142fe40cda..c4ac35234f05 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -1337,6 +1337,7 @@ tag - INTEGER
Default value is 0.
xfrm4_gc_thresh - INTEGER
+ (Obsolete since linux-4.14)
The threshold at which we will start garbage collecting for IPv4
destination cache entries. At twice this value the system will
refuse new allocations.
@@ -1920,6 +1921,7 @@ echo_ignore_all - BOOLEAN
Default: 0
xfrm6_gc_thresh - INTEGER
+ (Obsolete since linux-4.14)
The threshold at which we will start garbage collecting for IPv6
destination cache entries. At twice this value the system will
refuse new allocations.
diff --git a/Documentation/networking/netdev-FAQ.rst b/Documentation/networking/netdev-FAQ.rst
index 8c7a713cf657..642fa963be3c 100644
--- a/Documentation/networking/netdev-FAQ.rst
+++ b/Documentation/networking/netdev-FAQ.rst
@@ -132,7 +132,7 @@ version that should be applied. If there is any doubt, the maintainer
will reply and ask what should be done.
Q: I made changes to only a few patches in a patch series should I resend only those changed?
---------------------------------------------------------------------------------------------
+---------------------------------------------------------------------------------------------
A: No, please resend the entire patch series and make sure you do number your
patches such that it is clear this is the latest and greatest set of patches
that can be applied.
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 67068c47c591..64b38dfcc243 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -321,7 +321,7 @@ cpu's hardware control block.
4.8 KVM_GET_DIRTY_LOG (vm ioctl)
Capability: basic
-Architectures: x86
+Architectures: all
Type: vm ioctl
Parameters: struct kvm_dirty_log (in/out)
Returns: 0 on success, -1 on error
@@ -3810,7 +3810,7 @@ to I/O ports.
4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl)
Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT
-Architectures: x86
+Architectures: x86, arm, arm64, mips
Type: vm ioctl
Parameters: struct kvm_dirty_log (in)
Returns: 0 on success, -1 on error
@@ -3830,8 +3830,9 @@ The ioctl clears the dirty status of pages in a memory slot, according to
the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap
field. Bit 0 of the bitmap corresponds to page "first_page" in the
memory slot, and num_pages is the size in bits of the input bitmap.
-Both first_page and num_pages must be a multiple of 64. For each bit
-that is set in the input bitmap, the corresponding page is marked "clean"
+first_page must be a multiple of 64; num_pages must also be a multiple of
+64 unless first_page + num_pages is the size of the memory slot. For each
+bit that is set in the input bitmap, the corresponding page is marked "clean"
in KVM's dirty bitmap, and dirty tracking is re-enabled for that page
(for example via write-protection, or by clearing the dirty bit in
a page table entry).
@@ -4799,7 +4800,7 @@ and injected exceptions.
7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT
-Architectures: all
+Architectures: x86, arm, arm64, mips
Parameters: args[0] whether feature should be enabled or not
With this capability enabled, KVM_GET_DIRTY_LOG will not automatically