summaryrefslogtreecommitdiff
path: root/arch/arm/crypto/crct10dif-ce-core.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/crypto/crct10dif-ce-core.S')
-rw-r--r--arch/arm/crypto/crct10dif-ce-core.S381
1 files changed, 0 insertions, 381 deletions
diff --git a/arch/arm/crypto/crct10dif-ce-core.S b/arch/arm/crypto/crct10dif-ce-core.S
deleted file mode 100644
index 46c02c518a30..000000000000
--- a/arch/arm/crypto/crct10dif-ce-core.S
+++ /dev/null
@@ -1,381 +0,0 @@
-//
-// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
-//
-// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
-// Copyright (C) 2019 Google LLC <ebiggers@google.com>
-//
-// This program is free software; you can redistribute it and/or modify
-// it under the terms of the GNU General Public License version 2 as
-// published by the Free Software Foundation.
-//
-
-// Derived from the x86 version:
-//
-// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
-//
-// Copyright (c) 2013, Intel Corporation
-//
-// Authors:
-// Erdinc Ozturk <erdinc.ozturk@intel.com>
-// Vinodh Gopal <vinodh.gopal@intel.com>
-// James Guilford <james.guilford@intel.com>
-// Tim Chen <tim.c.chen@linux.intel.com>
-//
-// This software is available to you under a choice of one of two
-// licenses. You may choose to be licensed under the terms of the GNU
-// General Public License (GPL) Version 2, available from the file
-// COPYING in the main directory of this source tree, or the
-// OpenIB.org BSD license below:
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the
-// distribution.
-//
-// * Neither the name of the Intel Corporation nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-//
-// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
-// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Reference paper titled "Fast CRC Computation for Generic
-// Polynomials Using PCLMULQDQ Instruction"
-// URL: http://www.intel.com/content/dam/www/public/us/en/documents
-// /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
-//
-
-#include <linux/linkage.h>
-#include <asm/assembler.h>
-
-#ifdef CONFIG_CPU_ENDIAN_BE8
-#define CPU_LE(code...)
-#else
-#define CPU_LE(code...) code
-#endif
-
- .text
- .arch armv8-a
- .fpu crypto-neon-fp-armv8
-
- init_crc .req r0
- buf .req r1
- len .req r2
-
- fold_consts_ptr .req ip
-
- q0l .req d0
- q0h .req d1
- q1l .req d2
- q1h .req d3
- q2l .req d4
- q2h .req d5
- q3l .req d6
- q3h .req d7
- q4l .req d8
- q4h .req d9
- q5l .req d10
- q5h .req d11
- q6l .req d12
- q6h .req d13
- q7l .req d14
- q7h .req d15
- q8l .req d16
- q8h .req d17
- q9l .req d18
- q9h .req d19
- q10l .req d20
- q10h .req d21
- q11l .req d22
- q11h .req d23
- q12l .req d24
- q12h .req d25
-
- FOLD_CONSTS .req q10
- FOLD_CONST_L .req q10l
- FOLD_CONST_H .req q10h
-
- // Fold reg1, reg2 into the next 32 data bytes, storing the result back
- // into reg1, reg2.
- .macro fold_32_bytes, reg1, reg2
- vld1.64 {q11-q12}, [buf]!
-
- vmull.p64 q8, \reg1\()h, FOLD_CONST_H
- vmull.p64 \reg1, \reg1\()l, FOLD_CONST_L
- vmull.p64 q9, \reg2\()h, FOLD_CONST_H
- vmull.p64 \reg2, \reg2\()l, FOLD_CONST_L
-
-CPU_LE( vrev64.8 q11, q11 )
-CPU_LE( vrev64.8 q12, q12 )
- vswp q11l, q11h
- vswp q12l, q12h
-
- veor.8 \reg1, \reg1, q8
- veor.8 \reg2, \reg2, q9
- veor.8 \reg1, \reg1, q11
- veor.8 \reg2, \reg2, q12
- .endm
-
- // Fold src_reg into dst_reg, optionally loading the next fold constants
- .macro fold_16_bytes, src_reg, dst_reg, load_next_consts
- vmull.p64 q8, \src_reg\()l, FOLD_CONST_L
- vmull.p64 \src_reg, \src_reg\()h, FOLD_CONST_H
- .ifnb \load_next_consts
- vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
- .endif
- veor.8 \dst_reg, \dst_reg, q8
- veor.8 \dst_reg, \dst_reg, \src_reg
- .endm
-
- .macro __adrl, out, sym
- movw \out, #:lower16:\sym
- movt \out, #:upper16:\sym
- .endm
-
-//
-// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
-//
-// Assumes len >= 16.
-//
-ENTRY(crc_t10dif_pmull)
-
- // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
- cmp len, #256
- blt .Lless_than_256_bytes
-
- __adrl fold_consts_ptr, .Lfold_across_128_bytes_consts
-
- // Load the first 128 data bytes. Byte swapping is necessary to make
- // the bit order match the polynomial coefficient order.
- vld1.64 {q0-q1}, [buf]!
- vld1.64 {q2-q3}, [buf]!
- vld1.64 {q4-q5}, [buf]!
- vld1.64 {q6-q7}, [buf]!
-CPU_LE( vrev64.8 q0, q0 )
-CPU_LE( vrev64.8 q1, q1 )
-CPU_LE( vrev64.8 q2, q2 )
-CPU_LE( vrev64.8 q3, q3 )
-CPU_LE( vrev64.8 q4, q4 )
-CPU_LE( vrev64.8 q5, q5 )
-CPU_LE( vrev64.8 q6, q6 )
-CPU_LE( vrev64.8 q7, q7 )
- vswp q0l, q0h
- vswp q1l, q1h
- vswp q2l, q2h
- vswp q3l, q3h
- vswp q4l, q4h
- vswp q5l, q5h
- vswp q6l, q6h
- vswp q7l, q7h
-
- // XOR the first 16 data *bits* with the initial CRC value.
- vmov.i8 q8h, #0
- vmov.u16 q8h[3], init_crc
- veor q0h, q0h, q8h
-
- // Load the constants for folding across 128 bytes.
- vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
-
- // Subtract 128 for the 128 data bytes just consumed. Subtract another
- // 128 to simplify the termination condition of the following loop.
- sub len, len, #256
-
- // While >= 128 data bytes remain (not counting q0-q7), fold the 128
- // bytes q0-q7 into them, storing the result back into q0-q7.
-.Lfold_128_bytes_loop:
- fold_32_bytes q0, q1
- fold_32_bytes q2, q3
- fold_32_bytes q4, q5
- fold_32_bytes q6, q7
- subs len, len, #128
- bge .Lfold_128_bytes_loop
-
- // Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
-
- // Fold across 64 bytes.
- vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
- fold_16_bytes q0, q4
- fold_16_bytes q1, q5
- fold_16_bytes q2, q6
- fold_16_bytes q3, q7, 1
- // Fold across 32 bytes.
- fold_16_bytes q4, q6
- fold_16_bytes q5, q7, 1
- // Fold across 16 bytes.
- fold_16_bytes q6, q7
-
- // Add 128 to get the correct number of data bytes remaining in 0...127
- // (not counting q7), following the previous extra subtraction by 128.
- // Then subtract 16 to simplify the termination condition of the
- // following loop.
- adds len, len, #(128-16)
-
- // While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
- // into them, storing the result back into q7.
- blt .Lfold_16_bytes_loop_done
-.Lfold_16_bytes_loop:
- vmull.p64 q8, q7l, FOLD_CONST_L
- vmull.p64 q7, q7h, FOLD_CONST_H
- veor.8 q7, q7, q8
- vld1.64 {q0}, [buf]!
-CPU_LE( vrev64.8 q0, q0 )
- vswp q0l, q0h
- veor.8 q7, q7, q0
- subs len, len, #16
- bge .Lfold_16_bytes_loop
-
-.Lfold_16_bytes_loop_done:
- // Add 16 to get the correct number of data bytes remaining in 0...15
- // (not counting q7), following the previous extra subtraction by 16.
- adds len, len, #16
- beq .Lreduce_final_16_bytes
-
-.Lhandle_partial_segment:
- // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
- // 16 bytes are in q7 and the rest are the remaining data in 'buf'. To
- // do this without needing a fold constant for each possible 'len',
- // redivide the bytes into a first chunk of 'len' bytes and a second
- // chunk of 16 bytes, then fold the first chunk into the second.
-
- // q0 = last 16 original data bytes
- add buf, buf, len
- sub buf, buf, #16
- vld1.64 {q0}, [buf]
-CPU_LE( vrev64.8 q0, q0 )
- vswp q0l, q0h
-
- // q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
- __adrl r3, .Lbyteshift_table + 16
- sub r3, r3, len
- vld1.8 {q2}, [r3]
- vtbl.8 q1l, {q7l-q7h}, q2l
- vtbl.8 q1h, {q7l-q7h}, q2h
-
- // q3 = first chunk: q7 right-shifted by '16-len' bytes.
- vmov.i8 q3, #0x80
- veor.8 q2, q2, q3
- vtbl.8 q3l, {q7l-q7h}, q2l
- vtbl.8 q3h, {q7l-q7h}, q2h
-
- // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
- vshr.s8 q2, q2, #7
-
- // q2 = second chunk: 'len' bytes from q0 (low-order bytes),
- // then '16-len' bytes from q1 (high-order bytes).
- vbsl.8 q2, q1, q0
-
- // Fold the first chunk into the second chunk, storing the result in q7.
- vmull.p64 q0, q3l, FOLD_CONST_L
- vmull.p64 q7, q3h, FOLD_CONST_H
- veor.8 q7, q7, q0
- veor.8 q7, q7, q2
-
-.Lreduce_final_16_bytes:
- // Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
-
- // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
- vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
-
- // Fold the high 64 bits into the low 64 bits, while also multiplying by
- // x^64. This produces a 128-bit value congruent to x^64 * M(x) and
- // whose low 48 bits are 0.
- vmull.p64 q0, q7h, FOLD_CONST_H // high bits * x^48 * (x^80 mod G(x))
- veor.8 q0h, q0h, q7l // + low bits * x^64
-
- // Fold the high 32 bits into the low 96 bits. This produces a 96-bit
- // value congruent to x^64 * M(x) and whose low 48 bits are 0.
- vmov.i8 q1, #0
- vmov s4, s3 // extract high 32 bits
- vmov s3, s5 // zero high 32 bits
- vmull.p64 q1, q1l, FOLD_CONST_L // high 32 bits * x^48 * (x^48 mod G(x))
- veor.8 q0, q0, q1 // + low bits
-
- // Load G(x) and floor(x^48 / G(x)).
- vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]
-
- // Use Barrett reduction to compute the final CRC value.
- vmull.p64 q1, q0h, FOLD_CONST_H // high 32 bits * floor(x^48 / G(x))
- vshr.u64 q1l, q1l, #32 // /= x^32
- vmull.p64 q1, q1l, FOLD_CONST_L // *= G(x)
- vshr.u64 q0l, q0l, #48
- veor.8 q0l, q0l, q1l // + low 16 nonzero bits
- // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
-
- vmov.u16 r0, q0l[0]
- bx lr
-
-.Lless_than_256_bytes:
- // Checksumming a buffer of length 16...255 bytes
-
- __adrl fold_consts_ptr, .Lfold_across_16_bytes_consts
-
- // Load the first 16 data bytes.
- vld1.64 {q7}, [buf]!
-CPU_LE( vrev64.8 q7, q7 )
- vswp q7l, q7h
-
- // XOR the first 16 data *bits* with the initial CRC value.
- vmov.i8 q0h, #0
- vmov.u16 q0h[3], init_crc
- veor.8 q7h, q7h, q0h
-
- // Load the fold-across-16-bytes constants.
- vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
-
- cmp len, #16
- beq .Lreduce_final_16_bytes // len == 16
- subs len, len, #32
- addlt len, len, #16
- blt .Lhandle_partial_segment // 17 <= len <= 31
- b .Lfold_16_bytes_loop // 32 <= len <= 255
-ENDPROC(crc_t10dif_pmull)
-
- .section ".rodata", "a"
- .align 4
-
-// Fold constants precomputed from the polynomial 0x18bb7
-// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
-.Lfold_across_128_bytes_consts:
- .quad 0x0000000000006123 // x^(8*128) mod G(x)
- .quad 0x0000000000002295 // x^(8*128+64) mod G(x)
-// .Lfold_across_64_bytes_consts:
- .quad 0x0000000000001069 // x^(4*128) mod G(x)
- .quad 0x000000000000dd31 // x^(4*128+64) mod G(x)
-// .Lfold_across_32_bytes_consts:
- .quad 0x000000000000857d // x^(2*128) mod G(x)
- .quad 0x0000000000007acc // x^(2*128+64) mod G(x)
-.Lfold_across_16_bytes_consts:
- .quad 0x000000000000a010 // x^(1*128) mod G(x)
- .quad 0x0000000000001faa // x^(1*128+64) mod G(x)
-// .Lfinal_fold_consts:
- .quad 0x1368000000000000 // x^48 * (x^48 mod G(x))
- .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x))
-// .Lbarrett_reduction_consts:
- .quad 0x0000000000018bb7 // G(x)
- .quad 0x00000001f65a57f8 // floor(x^48 / G(x))
-
-// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
-// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
-// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
-.Lbyteshift_table:
- .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
- .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
- .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
- .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0