summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/handle_exit.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm64/kvm/handle_exit.c')
-rw-r--r--arch/arm64/kvm/handle_exit.c359
1 files changed, 258 insertions, 101 deletions
diff --git a/arch/arm64/kvm/handle_exit.c b/arch/arm64/kvm/handle_exit.c
index aacfc55de44c..b73dc26bc44b 100644
--- a/arch/arm64/kvm/handle_exit.c
+++ b/arch/arm64/kvm/handle_exit.c
@@ -14,63 +14,99 @@
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/kvm_asm.h>
-#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
+#include <asm/kvm_nested.h>
#include <asm/debug-monitors.h>
+#include <asm/stacktrace/nvhe.h>
#include <asm/traps.h>
#include <kvm/arm_hypercalls.h>
#define CREATE_TRACE_POINTS
-#include "trace.h"
+#include "trace_handle_exit.h"
-typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
+typedef int (*exit_handle_fn)(struct kvm_vcpu *);
-static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u32 esr)
+static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
{
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
kvm_inject_vabt(vcpu);
}
-static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
+static int handle_hvc(struct kvm_vcpu *vcpu)
{
- int ret;
-
trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
kvm_vcpu_hvc_get_imm(vcpu));
vcpu->stat.hvc_exit_stat++;
- ret = kvm_hvc_call_handler(vcpu);
- if (ret < 0) {
- vcpu_set_reg(vcpu, 0, ~0UL);
+ /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
+ if (vcpu_has_nv(vcpu)) {
+ if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
+ kvm_inject_undefined(vcpu);
+ else
+ kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+
return 1;
}
- return ret;
+ return kvm_smccc_call_handler(vcpu);
}
-static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
+static int handle_smc(struct kvm_vcpu *vcpu)
{
/*
+ * Forward this trapped smc instruction to the virtual EL2 if
+ * the guest has asked for it.
+ */
+ if (forward_smc_trap(vcpu))
+ return 1;
+
+ /*
* "If an SMC instruction executed at Non-secure EL1 is
* trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
* Trap exception, not a Secure Monitor Call exception [...]"
*
* We need to advance the PC after the trap, as it would
- * otherwise return to the same address...
+ * otherwise return to the same address. Furthermore, pre-incrementing
+ * the PC before potentially exiting to userspace maintains the same
+ * abstraction for both SMCs and HVCs.
*/
- vcpu_set_reg(vcpu, 0, ~0UL);
- kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
- return 1;
+ kvm_incr_pc(vcpu);
+
+ /*
+ * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
+ * "SMC and HVC immediate value".
+ */
+ if (kvm_vcpu_hvc_get_imm(vcpu)) {
+ vcpu_set_reg(vcpu, 0, ~0UL);
+ return 1;
+ }
+
+ /*
+ * If imm is zero then it is likely an SMCCC call.
+ *
+ * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
+ * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
+ * being treated as UNDEFINED.
+ */
+ return kvm_smccc_call_handler(vcpu);
}
/*
- * Guest access to FP/ASIMD registers are routed to this handler only
- * when the system doesn't support FP/ASIMD.
+ * This handles the cases where the system does not support FP/ASIMD or when
+ * we are running nested virtualization and the guest hypervisor is trapping
+ * FP/ASIMD accesses by its guest guest.
+ *
+ * All other handling of guest vs. host FP/ASIMD register state is handled in
+ * fixup_guest_exit().
*/
-static int handle_no_fpsimd(struct kvm_vcpu *vcpu, struct kvm_run *run)
+static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu)
{
+ if (guest_hyp_fpsimd_traps_enabled(vcpu))
+ return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+
+ /* This is the case when the system doesn't support FP/ASIMD. */
kvm_inject_undefined(vcpu);
return 1;
}
@@ -81,26 +117,56 @@ static int handle_no_fpsimd(struct kvm_vcpu *vcpu, struct kvm_run *run)
*
* @vcpu: the vcpu pointer
*
- * WFE: Yield the CPU and come back to this vcpu when the scheduler
+ * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
* decides to.
- * WFI: Simply call kvm_vcpu_block(), which will halt execution of
+ * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
* world-switches and schedule other host processes until there is an
* incoming IRQ or FIQ to the VM.
+ * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
+ *
+ * WF{I,E}T can immediately return if the deadline has already expired.
*/
-static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run)
+static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
{
- if (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WFx_ISS_WFE) {
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+ bool is_wfe = !!(esr & ESR_ELx_WFx_ISS_WFE);
+
+ if (guest_hyp_wfx_traps_enabled(vcpu))
+ return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+
+ if (is_wfe) {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
vcpu->stat.wfe_exit_stat++;
- kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
} else {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
vcpu->stat.wfi_exit_stat++;
- kvm_vcpu_block(vcpu);
- kvm_clear_request(KVM_REQ_UNHALT, vcpu);
}
- kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+ if (esr & ESR_ELx_WFx_ISS_WFxT) {
+ if (esr & ESR_ELx_WFx_ISS_RV) {
+ u64 val, now;
+
+ now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
+ val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
+
+ if (now >= val)
+ goto out;
+ } else {
+ /* Treat WFxT as WFx if RN is invalid */
+ esr &= ~ESR_ELx_WFx_ISS_WFxT;
+ }
+ }
+
+ if (esr & ESR_ELx_WFx_ISS_WFE) {
+ kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
+ } else {
+ if (esr & ESR_ELx_WFx_ISS_WFxT)
+ vcpu_set_flag(vcpu, IN_WFIT);
+
+ kvm_vcpu_wfi(vcpu);
+ }
+out:
+ kvm_incr_pc(vcpu);
return 1;
}
@@ -109,93 +175,126 @@ static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run)
* kvm_handle_guest_debug - handle a debug exception instruction
*
* @vcpu: the vcpu pointer
- * @run: access to the kvm_run structure for results
*
* We route all debug exceptions through the same handler. If both the
* guest and host are using the same debug facilities it will be up to
* userspace to re-inject the correct exception for guest delivery.
*
- * @return: 0 (while setting run->exit_reason), -1 for error
+ * @return: 0 (while setting vcpu->run->exit_reason)
*/
-static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu, struct kvm_run *run)
+static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
{
- u32 hsr = kvm_vcpu_get_hsr(vcpu);
- int ret = 0;
+ struct kvm_run *run = vcpu->run;
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+
+ if (!vcpu->guest_debug && forward_debug_exception(vcpu))
+ return 1;
run->exit_reason = KVM_EXIT_DEBUG;
- run->debug.arch.hsr = hsr;
+ run->debug.arch.hsr = lower_32_bits(esr);
+ run->debug.arch.hsr_high = upper_32_bits(esr);
+ run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
- switch (ESR_ELx_EC(hsr)) {
+ switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_WATCHPT_LOW:
run->debug.arch.far = vcpu->arch.fault.far_el2;
- /* fall through */
- case ESR_ELx_EC_SOFTSTP_LOW:
- case ESR_ELx_EC_BREAKPT_LOW:
- case ESR_ELx_EC_BKPT32:
- case ESR_ELx_EC_BRK64:
break;
- default:
- kvm_err("%s: un-handled case hsr: %#08x\n",
- __func__, (unsigned int) hsr);
- ret = -1;
+ case ESR_ELx_EC_SOFTSTP_LOW:
+ *vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
break;
}
- return ret;
+ return 0;
}
-static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu, struct kvm_run *run)
+static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
{
- u32 hsr = kvm_vcpu_get_hsr(vcpu);
+ u64 esr = kvm_vcpu_get_esr(vcpu);
- kvm_pr_unimpl("Unknown exception class: hsr: %#08x -- %s\n",
- hsr, esr_get_class_string(hsr));
+ kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
+ esr, esr_get_class_string(esr));
kvm_inject_undefined(vcpu);
return 1;
}
-static int handle_sve(struct kvm_vcpu *vcpu, struct kvm_run *run)
+/*
+ * Guest access to SVE registers should be routed to this handler only
+ * when the system doesn't support SVE.
+ */
+static int handle_sve(struct kvm_vcpu *vcpu)
{
- /* Until SVE is supported for guests: */
+ if (guest_hyp_sve_traps_enabled(vcpu))
+ return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+
kvm_inject_undefined(vcpu);
return 1;
}
-#define __ptrauth_save_key(regs, key) \
-({ \
- regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
- regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
-})
-
/*
- * Handle the guest trying to use a ptrauth instruction, or trying to access a
- * ptrauth register.
+ * Two possibilities to handle a trapping ptrauth instruction:
+ *
+ * - Guest usage of a ptrauth instruction (which the guest EL1 did not
+ * turn into a NOP). If we get here, it is because we didn't enable
+ * ptrauth for the guest. This results in an UNDEF, as it isn't
+ * supposed to use ptrauth without being told it could.
+ *
+ * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
+ * which we reinject the exception into L1.
+ *
+ * Anything else is an emulation bug (hence the WARN_ON + UNDEF).
*/
-void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu)
+static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
{
- struct kvm_cpu_context *ctxt;
-
- if (vcpu_has_ptrauth(vcpu)) {
- vcpu_ptrauth_enable(vcpu);
- ctxt = vcpu->arch.host_cpu_context;
- __ptrauth_save_key(ctxt->sys_regs, APIA);
- __ptrauth_save_key(ctxt->sys_regs, APIB);
- __ptrauth_save_key(ctxt->sys_regs, APDA);
- __ptrauth_save_key(ctxt->sys_regs, APDB);
- __ptrauth_save_key(ctxt->sys_regs, APGA);
- } else {
+ if (!vcpu_has_ptrauth(vcpu)) {
kvm_inject_undefined(vcpu);
+ return 1;
+ }
+
+ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
+ kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+ return 1;
}
+
+ /* Really shouldn't be here! */
+ WARN_ON_ONCE(1);
+ kvm_inject_undefined(vcpu);
+ return 1;
}
-/*
- * Guest usage of a ptrauth instruction (which the guest EL1 did not turn into
- * a NOP).
- */
-static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu, struct kvm_run *run)
+static int kvm_handle_eret(struct kvm_vcpu *vcpu)
{
- kvm_arm_vcpu_ptrauth_trap(vcpu);
+ if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
+ !vcpu_has_ptrauth(vcpu))
+ return kvm_handle_ptrauth(vcpu);
+
+ /*
+ * If we got here, two possibilities:
+ *
+ * - the guest is in EL2, and we need to fully emulate ERET
+ *
+ * - the guest is in EL1, and we need to reinject the
+ * exception into the L1 hypervisor.
+ *
+ * If KVM ever traps ERET for its own use, we'll have to
+ * revisit this.
+ */
+ if (is_hyp_ctxt(vcpu))
+ kvm_emulate_nested_eret(vcpu);
+ else
+ kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+
+ return 1;
+}
+
+static int handle_svc(struct kvm_vcpu *vcpu)
+{
+ /*
+ * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
+ * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
+ * we should only have to deal with a 64 bit exception.
+ */
+ kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
return 1;
}
@@ -206,13 +305,16 @@ static exit_handle_fn arm_exit_handlers[] = {
[ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
[ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
[ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
+ [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
[ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
[ESR_ELx_EC_HVC32] = handle_hvc,
[ESR_ELx_EC_SMC32] = handle_smc,
[ESR_ELx_EC_HVC64] = handle_hvc,
[ESR_ELx_EC_SMC64] = handle_smc,
+ [ESR_ELx_EC_SVC64] = handle_svc,
[ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
[ESR_ELx_EC_SVE] = handle_sve,
+ [ESR_ELx_EC_ERET] = kvm_handle_eret,
[ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
[ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
@@ -220,16 +322,16 @@ static exit_handle_fn arm_exit_handlers[] = {
[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
[ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
[ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
- [ESR_ELx_EC_FP_ASIMD] = handle_no_fpsimd,
+ [ESR_ELx_EC_FP_ASIMD] = kvm_handle_fpasimd,
[ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
};
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
{
- u32 hsr = kvm_vcpu_get_hsr(vcpu);
- u8 hsr_ec = ESR_ELx_EC(hsr);
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+ u8 esr_ec = ESR_ELx_EC(esr);
- return arm_exit_handlers[hsr_ec];
+ return arm_exit_handlers[esr_ec];
}
/*
@@ -238,7 +340,7 @@ static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
* KVM_EXIT_DEBUG, otherwise userspace needs to complete its
* emulation first.
*/
-static int handle_trap_exceptions(struct kvm_vcpu *vcpu, struct kvm_run *run)
+static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
{
int handled;
@@ -247,13 +349,13 @@ static int handle_trap_exceptions(struct kvm_vcpu *vcpu, struct kvm_run *run)
* that fail their condition code check"
*/
if (!kvm_condition_valid(vcpu)) {
- kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+ kvm_incr_pc(vcpu);
handled = 1;
} else {
exit_handle_fn exit_handler;
exit_handler = kvm_get_exit_handler(vcpu);
- handled = exit_handler(vcpu, run);
+ handled = exit_handler(vcpu);
}
return handled;
@@ -263,23 +365,15 @@ static int handle_trap_exceptions(struct kvm_vcpu *vcpu, struct kvm_run *run)
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
* proper exit to userspace.
*/
-int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
- int exception_index)
+int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
{
- if (ARM_SERROR_PENDING(exception_index)) {
- u8 hsr_ec = ESR_ELx_EC(kvm_vcpu_get_hsr(vcpu));
+ struct kvm_run *run = vcpu->run;
+ if (ARM_SERROR_PENDING(exception_index)) {
/*
- * HVC/SMC already have an adjusted PC, which we need
- * to correct in order to return to after having
- * injected the SError.
+ * The SError is handled by handle_exit_early(). If the guest
+ * survives it will re-execute the original instruction.
*/
- if (hsr_ec == ESR_ELx_EC_HVC32 || hsr_ec == ESR_ELx_EC_HVC64 ||
- hsr_ec == ESR_ELx_EC_SMC32 || hsr_ec == ESR_ELx_EC_SMC64) {
- u32 adj = kvm_vcpu_trap_il_is32bit(vcpu) ? 4 : 2;
- *vcpu_pc(vcpu) -= adj;
- }
-
return 1;
}
@@ -291,11 +385,11 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
case ARM_EXCEPTION_EL1_SERROR:
return 1;
case ARM_EXCEPTION_TRAP:
- return handle_trap_exceptions(vcpu, run);
+ return handle_trap_exceptions(vcpu);
case ARM_EXCEPTION_HYP_GONE:
/*
* EL2 has been reset to the hyp-stub. This happens when a guest
- * is pre-empted by kvm_reboot()'s shutdown call.
+ * is pre-emptied by kvm_reboot()'s shutdown call.
*/
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
return 0;
@@ -315,8 +409,7 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
}
/* For exit types that need handling before we can be preempted */
-void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
- int exception_index)
+void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
{
if (ARM_SERROR_PENDING(exception_index)) {
if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
@@ -333,5 +426,69 @@ void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
exception_index = ARM_EXCEPTION_CODE(exception_index);
if (exception_index == ARM_EXCEPTION_EL1_SERROR)
- kvm_handle_guest_serror(vcpu, kvm_vcpu_get_hsr(vcpu));
+ kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
+}
+
+static void print_nvhe_hyp_panic(const char *name, u64 panic_addr)
+{
+ kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr,
+ (void *)(panic_addr + kaslr_offset()));
+}
+
+static void kvm_nvhe_report_cfi_failure(u64 panic_addr)
+{
+ print_nvhe_hyp_panic("CFI failure", panic_addr);
+
+ if (IS_ENABLED(CONFIG_CFI_PERMISSIVE))
+ kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n");
+}
+
+void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
+ u64 elr_virt, u64 elr_phys,
+ u64 par, uintptr_t vcpu,
+ u64 far, u64 hpfar) {
+ u64 elr_in_kimg = __phys_to_kimg(elr_phys);
+ u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
+ u64 mode = spsr & PSR_MODE_MASK;
+ u64 panic_addr = elr_virt + hyp_offset;
+
+ if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
+ kvm_err("Invalid host exception to nVHE hyp!\n");
+ } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
+ esr_brk_comment(esr) == BUG_BRK_IMM) {
+ const char *file = NULL;
+ unsigned int line = 0;
+
+ /* All hyp bugs, including warnings, are treated as fatal. */
+ if (!is_protected_kvm_enabled() ||
+ IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
+ struct bug_entry *bug = find_bug(elr_in_kimg);
+
+ if (bug)
+ bug_get_file_line(bug, &file, &line);
+ }
+
+ if (file)
+ kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
+ else
+ print_nvhe_hyp_panic("BUG", panic_addr);
+ } else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) {
+ kvm_nvhe_report_cfi_failure(panic_addr);
+ } else {
+ print_nvhe_hyp_panic("panic", panic_addr);
+ }
+
+ /* Dump the nVHE hypervisor backtrace */
+ kvm_nvhe_dump_backtrace(hyp_offset);
+
+ /*
+ * Hyp has panicked and we're going to handle that by panicking the
+ * kernel. The kernel offset will be revealed in the panic so we're
+ * also safe to reveal the hyp offset as a debugging aid for translating
+ * hyp VAs to vmlinux addresses.
+ */
+ kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
+
+ panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
+ spsr, elr_virt, esr, far, hpfar, par, vcpu);
}