summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp/pgtable.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm64/kvm/hyp/pgtable.c')
-rw-r--r--arch/arm64/kvm/hyp/pgtable.c1636
1 files changed, 1636 insertions, 0 deletions
diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c
new file mode 100644
index 000000000000..3fae5830f8d2
--- /dev/null
+++ b/arch/arm64/kvm/hyp/pgtable.c
@@ -0,0 +1,1636 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
+ * No bombay mix was harmed in the writing of this file.
+ *
+ * Copyright (C) 2020 Google LLC
+ * Author: Will Deacon <will@kernel.org>
+ */
+
+#include <linux/bitfield.h>
+#include <asm/kvm_pgtable.h>
+#include <asm/stage2_pgtable.h>
+
+
+#define KVM_PTE_TYPE BIT(1)
+#define KVM_PTE_TYPE_BLOCK 0
+#define KVM_PTE_TYPE_PAGE 1
+#define KVM_PTE_TYPE_TABLE 1
+
+#define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
+
+#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
+#define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
+#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \
+ ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
+#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \
+ ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
+#define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
+#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
+#define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
+
+#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
+#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
+#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
+#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
+#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
+#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
+
+#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50)
+
+#define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
+
+#define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
+
+#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
+
+#define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50)
+
+#define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
+ KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
+ KVM_PTE_LEAF_ATTR_HI_S2_XN)
+
+#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
+#define KVM_MAX_OWNER_ID 1
+
+/*
+ * Used to indicate a pte for which a 'break-before-make' sequence is in
+ * progress.
+ */
+#define KVM_INVALID_PTE_LOCKED BIT(10)
+
+struct kvm_pgtable_walk_data {
+ struct kvm_pgtable_walker *walker;
+
+ const u64 start;
+ u64 addr;
+ const u64 end;
+};
+
+static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
+{
+ return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
+}
+
+static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
+{
+ return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
+}
+
+static bool kvm_phys_is_valid(u64 phys)
+{
+ u64 parange_max = kvm_get_parange_max();
+ u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);
+
+ return phys < BIT(shift);
+}
+
+static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
+{
+ u64 granule = kvm_granule_size(ctx->level);
+
+ if (!kvm_level_supports_block_mapping(ctx->level))
+ return false;
+
+ if (granule > (ctx->end - ctx->addr))
+ return false;
+
+ if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
+ return false;
+
+ return IS_ALIGNED(ctx->addr, granule);
+}
+
+static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
+{
+ u64 shift = kvm_granule_shift(level);
+ u64 mask = BIT(PAGE_SHIFT - 3) - 1;
+
+ return (data->addr >> shift) & mask;
+}
+
+static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
+{
+ u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
+ u64 mask = BIT(pgt->ia_bits) - 1;
+
+ return (addr & mask) >> shift;
+}
+
+static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
+{
+ struct kvm_pgtable pgt = {
+ .ia_bits = ia_bits,
+ .start_level = start_level,
+ };
+
+ return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
+}
+
+static bool kvm_pte_table(kvm_pte_t pte, s8 level)
+{
+ if (level == KVM_PGTABLE_LAST_LEVEL)
+ return false;
+
+ if (!kvm_pte_valid(pte))
+ return false;
+
+ return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
+}
+
+static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
+{
+ return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
+}
+
+static void kvm_clear_pte(kvm_pte_t *ptep)
+{
+ WRITE_ONCE(*ptep, 0);
+}
+
+static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
+{
+ kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
+
+ pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
+ pte |= KVM_PTE_VALID;
+ return pte;
+}
+
+static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
+{
+ kvm_pte_t pte = kvm_phys_to_pte(pa);
+ u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
+ KVM_PTE_TYPE_BLOCK;
+
+ pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
+ pte |= FIELD_PREP(KVM_PTE_TYPE, type);
+ pte |= KVM_PTE_VALID;
+
+ return pte;
+}
+
+static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
+{
+ return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
+}
+
+static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
+ const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable_walker *walker = data->walker;
+
+ /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
+ WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
+ return walker->cb(ctx, visit);
+}
+
+static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
+ int r)
+{
+ /*
+ * Visitor callbacks return EAGAIN when the conditions that led to a
+ * fault are no longer reflected in the page tables due to a race to
+ * update a PTE. In the context of a fault handler this is interpreted
+ * as a signal to retry guest execution.
+ *
+ * Ignore the return code altogether for walkers outside a fault handler
+ * (e.g. write protecting a range of memory) and chug along with the
+ * page table walk.
+ */
+ if (r == -EAGAIN)
+ return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
+
+ return !r;
+}
+
+static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
+ struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
+
+static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
+ struct kvm_pgtable_mm_ops *mm_ops,
+ kvm_pteref_t pteref, s8 level)
+{
+ enum kvm_pgtable_walk_flags flags = data->walker->flags;
+ kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
+ struct kvm_pgtable_visit_ctx ctx = {
+ .ptep = ptep,
+ .old = READ_ONCE(*ptep),
+ .arg = data->walker->arg,
+ .mm_ops = mm_ops,
+ .start = data->start,
+ .addr = data->addr,
+ .end = data->end,
+ .level = level,
+ .flags = flags,
+ };
+ int ret = 0;
+ bool reload = false;
+ kvm_pteref_t childp;
+ bool table = kvm_pte_table(ctx.old, level);
+
+ if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
+ ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
+ reload = true;
+ }
+
+ if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
+ ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
+ reload = true;
+ }
+
+ /*
+ * Reload the page table after invoking the walker callback for leaf
+ * entries or after pre-order traversal, to allow the walker to descend
+ * into a newly installed or replaced table.
+ */
+ if (reload) {
+ ctx.old = READ_ONCE(*ptep);
+ table = kvm_pte_table(ctx.old, level);
+ }
+
+ if (!kvm_pgtable_walk_continue(data->walker, ret))
+ goto out;
+
+ if (!table) {
+ data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
+ data->addr += kvm_granule_size(level);
+ goto out;
+ }
+
+ childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
+ ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
+ if (!kvm_pgtable_walk_continue(data->walker, ret))
+ goto out;
+
+ if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
+ ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
+
+out:
+ if (kvm_pgtable_walk_continue(data->walker, ret))
+ return 0;
+
+ return ret;
+}
+
+static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
+ struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
+{
+ u32 idx;
+ int ret = 0;
+
+ if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
+ level > KVM_PGTABLE_LAST_LEVEL))
+ return -EINVAL;
+
+ for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
+ kvm_pteref_t pteref = &pgtable[idx];
+
+ if (data->addr >= data->end)
+ break;
+
+ ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
+{
+ u32 idx;
+ int ret = 0;
+ u64 limit = BIT(pgt->ia_bits);
+
+ if (data->addr > limit || data->end > limit)
+ return -ERANGE;
+
+ if (!pgt->pgd)
+ return -EINVAL;
+
+ for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
+ kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
+
+ ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ struct kvm_pgtable_walker *walker)
+{
+ struct kvm_pgtable_walk_data walk_data = {
+ .start = ALIGN_DOWN(addr, PAGE_SIZE),
+ .addr = ALIGN_DOWN(addr, PAGE_SIZE),
+ .end = PAGE_ALIGN(walk_data.addr + size),
+ .walker = walker,
+ };
+ int r;
+
+ r = kvm_pgtable_walk_begin(walker);
+ if (r)
+ return r;
+
+ r = _kvm_pgtable_walk(pgt, &walk_data);
+ kvm_pgtable_walk_end(walker);
+
+ return r;
+}
+
+struct leaf_walk_data {
+ kvm_pte_t pte;
+ s8 level;
+};
+
+static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct leaf_walk_data *data = ctx->arg;
+
+ data->pte = ctx->old;
+ data->level = ctx->level;
+
+ return 0;
+}
+
+int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
+ kvm_pte_t *ptep, s8 *level)
+{
+ struct leaf_walk_data data;
+ struct kvm_pgtable_walker walker = {
+ .cb = leaf_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = &data,
+ };
+ int ret;
+
+ ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
+ PAGE_SIZE, &walker);
+ if (!ret) {
+ if (ptep)
+ *ptep = data.pte;
+ if (level)
+ *level = data.level;
+ }
+
+ return ret;
+}
+
+struct hyp_map_data {
+ const u64 phys;
+ kvm_pte_t attr;
+};
+
+static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
+{
+ bool device = prot & KVM_PGTABLE_PROT_DEVICE;
+ u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
+ kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
+ u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
+ u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
+ KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
+
+ if (!(prot & KVM_PGTABLE_PROT_R))
+ return -EINVAL;
+
+ if (prot & KVM_PGTABLE_PROT_X) {
+ if (prot & KVM_PGTABLE_PROT_W)
+ return -EINVAL;
+
+ if (device)
+ return -EINVAL;
+
+ if (system_supports_bti_kernel())
+ attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
+ } else {
+ attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
+ }
+
+ attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
+ if (!kvm_lpa2_is_enabled())
+ attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
+ attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
+ attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
+ *ptep = attr;
+
+ return 0;
+}
+
+enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
+{
+ enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
+ u32 ap;
+
+ if (!kvm_pte_valid(pte))
+ return prot;
+
+ if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
+ prot |= KVM_PGTABLE_PROT_X;
+
+ ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
+ if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
+ prot |= KVM_PGTABLE_PROT_R;
+ else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
+ prot |= KVM_PGTABLE_PROT_RW;
+
+ return prot;
+}
+
+static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
+ struct hyp_map_data *data)
+{
+ u64 phys = data->phys + (ctx->addr - ctx->start);
+ kvm_pte_t new;
+
+ if (!kvm_block_mapping_supported(ctx, phys))
+ return false;
+
+ new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
+ if (ctx->old == new)
+ return true;
+ if (!kvm_pte_valid(ctx->old))
+ ctx->mm_ops->get_page(ctx->ptep);
+ else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
+ return false;
+
+ smp_store_release(ctx->ptep, new);
+ return true;
+}
+
+static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ kvm_pte_t *childp, new;
+ struct hyp_map_data *data = ctx->arg;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (hyp_map_walker_try_leaf(ctx, data))
+ return 0;
+
+ if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
+ return -EINVAL;
+
+ childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
+ if (!childp)
+ return -ENOMEM;
+
+ new = kvm_init_table_pte(childp, mm_ops);
+ mm_ops->get_page(ctx->ptep);
+ smp_store_release(ctx->ptep, new);
+
+ return 0;
+}
+
+int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
+ enum kvm_pgtable_prot prot)
+{
+ int ret;
+ struct hyp_map_data map_data = {
+ .phys = ALIGN_DOWN(phys, PAGE_SIZE),
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = hyp_map_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = &map_data,
+ };
+
+ ret = hyp_set_prot_attr(prot, &map_data.attr);
+ if (ret)
+ return ret;
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ dsb(ishst);
+ isb();
+ return ret;
+}
+
+static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ kvm_pte_t *childp = NULL;
+ u64 granule = kvm_granule_size(ctx->level);
+ u64 *unmapped = ctx->arg;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!kvm_pte_valid(ctx->old))
+ return -EINVAL;
+
+ if (kvm_pte_table(ctx->old, ctx->level)) {
+ childp = kvm_pte_follow(ctx->old, mm_ops);
+
+ if (mm_ops->page_count(childp) != 1)
+ return 0;
+
+ kvm_clear_pte(ctx->ptep);
+ dsb(ishst);
+ __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
+ } else {
+ if (ctx->end - ctx->addr < granule)
+ return -EINVAL;
+
+ kvm_clear_pte(ctx->ptep);
+ dsb(ishst);
+ __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
+ *unmapped += granule;
+ }
+
+ dsb(ish);
+ isb();
+ mm_ops->put_page(ctx->ptep);
+
+ if (childp)
+ mm_ops->put_page(childp);
+
+ return 0;
+}
+
+u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
+{
+ u64 unmapped = 0;
+ struct kvm_pgtable_walker walker = {
+ .cb = hyp_unmap_walker,
+ .arg = &unmapped,
+ .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
+ };
+
+ if (!pgt->mm_ops->page_count)
+ return 0;
+
+ kvm_pgtable_walk(pgt, addr, size, &walker);
+ return unmapped;
+}
+
+int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
+ struct kvm_pgtable_mm_ops *mm_ops)
+{
+ s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
+ ARM64_HW_PGTABLE_LEVELS(va_bits);
+
+ if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
+ start_level > KVM_PGTABLE_LAST_LEVEL)
+ return -EINVAL;
+
+ pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
+ if (!pgt->pgd)
+ return -ENOMEM;
+
+ pgt->ia_bits = va_bits;
+ pgt->start_level = start_level;
+ pgt->mm_ops = mm_ops;
+ pgt->mmu = NULL;
+ pgt->force_pte_cb = NULL;
+
+ return 0;
+}
+
+static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!kvm_pte_valid(ctx->old))
+ return 0;
+
+ mm_ops->put_page(ctx->ptep);
+
+ if (kvm_pte_table(ctx->old, ctx->level))
+ mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
+
+ return 0;
+}
+
+void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = hyp_free_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
+ };
+
+ WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
+ pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
+ pgt->pgd = NULL;
+}
+
+struct stage2_map_data {
+ const u64 phys;
+ kvm_pte_t attr;
+ u8 owner_id;
+
+ kvm_pte_t *anchor;
+ kvm_pte_t *childp;
+
+ struct kvm_s2_mmu *mmu;
+ void *memcache;
+
+ /* Force mappings to page granularity */
+ bool force_pte;
+};
+
+u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
+{
+ u64 vtcr = VTCR_EL2_FLAGS;
+ s8 lvls;
+
+ vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
+ vtcr |= VTCR_EL2_T0SZ(phys_shift);
+ /*
+ * Use a minimum 2 level page table to prevent splitting
+ * host PMD huge pages at stage2.
+ */
+ lvls = stage2_pgtable_levels(phys_shift);
+ if (lvls < 2)
+ lvls = 2;
+
+ /*
+ * When LPA2 is enabled, the HW supports an extra level of translation
+ * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
+ * to as an addition to SL0 to enable encoding this extra start level.
+ * However, since we always use concatenated pages for the first level
+ * lookup, we will never need this extra level and therefore do not need
+ * to touch SL2.
+ */
+ vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
+
+#ifdef CONFIG_ARM64_HW_AFDBM
+ /*
+ * Enable the Hardware Access Flag management, unconditionally
+ * on all CPUs. In systems that have asymmetric support for the feature
+ * this allows KVM to leverage hardware support on the subset of cores
+ * that implement the feature.
+ *
+ * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
+ * hardware) on implementations that do not advertise support for the
+ * feature. As such, setting HA unconditionally is safe, unless you
+ * happen to be running on a design that has unadvertised support for
+ * HAFDBS. Here be dragons.
+ */
+ if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
+ vtcr |= VTCR_EL2_HA;
+#endif /* CONFIG_ARM64_HW_AFDBM */
+
+ if (kvm_lpa2_is_enabled())
+ vtcr |= VTCR_EL2_DS;
+
+ /* Set the vmid bits */
+ vtcr |= (get_vmid_bits(mmfr1) == 16) ?
+ VTCR_EL2_VS_16BIT :
+ VTCR_EL2_VS_8BIT;
+
+ return vtcr;
+}
+
+static bool stage2_has_fwb(struct kvm_pgtable *pgt)
+{
+ if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
+ return false;
+
+ return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
+}
+
+void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
+ phys_addr_t addr, size_t size)
+{
+ unsigned long pages, inval_pages;
+
+ if (!system_supports_tlb_range()) {
+ kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
+ return;
+ }
+
+ pages = size >> PAGE_SHIFT;
+ while (pages > 0) {
+ inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
+ kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
+
+ addr += inval_pages << PAGE_SHIFT;
+ pages -= inval_pages;
+ }
+}
+
+#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
+
+static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
+ kvm_pte_t *ptep)
+{
+ kvm_pte_t attr;
+ u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
+
+ switch (prot & (KVM_PGTABLE_PROT_DEVICE |
+ KVM_PGTABLE_PROT_NORMAL_NC)) {
+ case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
+ return -EINVAL;
+ case KVM_PGTABLE_PROT_DEVICE:
+ if (prot & KVM_PGTABLE_PROT_X)
+ return -EINVAL;
+ attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
+ break;
+ case KVM_PGTABLE_PROT_NORMAL_NC:
+ if (prot & KVM_PGTABLE_PROT_X)
+ return -EINVAL;
+ attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
+ break;
+ default:
+ attr = KVM_S2_MEMATTR(pgt, NORMAL);
+ }
+
+ if (!(prot & KVM_PGTABLE_PROT_X))
+ attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
+
+ if (prot & KVM_PGTABLE_PROT_R)
+ attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
+
+ if (prot & KVM_PGTABLE_PROT_W)
+ attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
+
+ if (!kvm_lpa2_is_enabled())
+ attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
+
+ attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
+ attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
+ *ptep = attr;
+
+ return 0;
+}
+
+enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
+{
+ enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
+
+ if (!kvm_pte_valid(pte))
+ return prot;
+
+ if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
+ prot |= KVM_PGTABLE_PROT_R;
+ if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
+ prot |= KVM_PGTABLE_PROT_W;
+ if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
+ prot |= KVM_PGTABLE_PROT_X;
+
+ return prot;
+}
+
+static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
+{
+ if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
+ return true;
+
+ return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
+}
+
+static bool stage2_pte_is_counted(kvm_pte_t pte)
+{
+ /*
+ * The refcount tracks valid entries as well as invalid entries if they
+ * encode ownership of a page to another entity than the page-table
+ * owner, whose id is 0.
+ */
+ return !!pte;
+}
+
+static bool stage2_pte_is_locked(kvm_pte_t pte)
+{
+ return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
+}
+
+static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
+{
+ if (!kvm_pgtable_walk_shared(ctx)) {
+ WRITE_ONCE(*ctx->ptep, new);
+ return true;
+ }
+
+ return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
+}
+
+/**
+ * stage2_try_break_pte() - Invalidates a pte according to the
+ * 'break-before-make' requirements of the
+ * architecture.
+ *
+ * @ctx: context of the visited pte.
+ * @mmu: stage-2 mmu
+ *
+ * Returns: true if the pte was successfully broken.
+ *
+ * If the removed pte was valid, performs the necessary serialization and TLB
+ * invalidation for the old value. For counted ptes, drops the reference count
+ * on the containing table page.
+ */
+static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
+ struct kvm_s2_mmu *mmu)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (stage2_pte_is_locked(ctx->old)) {
+ /*
+ * Should never occur if this walker has exclusive access to the
+ * page tables.
+ */
+ WARN_ON(!kvm_pgtable_walk_shared(ctx));
+ return false;
+ }
+
+ if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
+ return false;
+
+ if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
+ /*
+ * Perform the appropriate TLB invalidation based on the
+ * evicted pte value (if any).
+ */
+ if (kvm_pte_table(ctx->old, ctx->level))
+ kvm_tlb_flush_vmid_range(mmu, ctx->addr,
+ kvm_granule_size(ctx->level));
+ else if (kvm_pte_valid(ctx->old))
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
+ ctx->addr, ctx->level);
+ }
+
+ if (stage2_pte_is_counted(ctx->old))
+ mm_ops->put_page(ctx->ptep);
+
+ return true;
+}
+
+static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
+
+ if (stage2_pte_is_counted(new))
+ mm_ops->get_page(ctx->ptep);
+
+ smp_store_release(ctx->ptep, new);
+}
+
+static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
+{
+ /*
+ * If FEAT_TLBIRANGE is implemented, defer the individual
+ * TLB invalidations until the entire walk is finished, and
+ * then use the range-based TLBI instructions to do the
+ * invalidations. Condition deferred TLB invalidation on the
+ * system supporting FWB as the optimization is entirely
+ * pointless when the unmap walker needs to perform CMOs.
+ */
+ return system_supports_tlb_range() && stage2_has_fwb(pgt);
+}
+
+static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
+ struct kvm_s2_mmu *mmu,
+ struct kvm_pgtable_mm_ops *mm_ops)
+{
+ struct kvm_pgtable *pgt = ctx->arg;
+
+ /*
+ * Clear the existing PTE, and perform break-before-make if it was
+ * valid. Depending on the system support, defer the TLB maintenance
+ * for the same until the entire unmap walk is completed.
+ */
+ if (kvm_pte_valid(ctx->old)) {
+ kvm_clear_pte(ctx->ptep);
+
+ if (!stage2_unmap_defer_tlb_flush(pgt))
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
+ ctx->addr, ctx->level);
+ }
+
+ mm_ops->put_page(ctx->ptep);
+}
+
+static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
+{
+ u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
+ return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
+}
+
+static bool stage2_pte_executable(kvm_pte_t pte)
+{
+ return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
+}
+
+static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
+ const struct stage2_map_data *data)
+{
+ u64 phys = data->phys;
+
+ /*
+ * Stage-2 walks to update ownership data are communicated to the map
+ * walker using an invalid PA. Avoid offsetting an already invalid PA,
+ * which could overflow and make the address valid again.
+ */
+ if (!kvm_phys_is_valid(phys))
+ return phys;
+
+ /*
+ * Otherwise, work out the correct PA based on how far the walk has
+ * gotten.
+ */
+ return phys + (ctx->addr - ctx->start);
+}
+
+static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
+ struct stage2_map_data *data)
+{
+ u64 phys = stage2_map_walker_phys_addr(ctx, data);
+
+ if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
+ return false;
+
+ return kvm_block_mapping_supported(ctx, phys);
+}
+
+static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
+ struct stage2_map_data *data)
+{
+ kvm_pte_t new;
+ u64 phys = stage2_map_walker_phys_addr(ctx, data);
+ u64 granule = kvm_granule_size(ctx->level);
+ struct kvm_pgtable *pgt = data->mmu->pgt;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!stage2_leaf_mapping_allowed(ctx, data))
+ return -E2BIG;
+
+ if (kvm_phys_is_valid(phys))
+ new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
+ else
+ new = kvm_init_invalid_leaf_owner(data->owner_id);
+
+ /*
+ * Skip updating the PTE if we are trying to recreate the exact
+ * same mapping or only change the access permissions. Instead,
+ * the vCPU will exit one more time from guest if still needed
+ * and then go through the path of relaxing permissions.
+ */
+ if (!stage2_pte_needs_update(ctx->old, new))
+ return -EAGAIN;
+
+ if (!stage2_try_break_pte(ctx, data->mmu))
+ return -EAGAIN;
+
+ /* Perform CMOs before installation of the guest stage-2 PTE */
+ if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
+ stage2_pte_cacheable(pgt, new))
+ mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
+ granule);
+
+ if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
+ stage2_pte_executable(new))
+ mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
+
+ stage2_make_pte(ctx, new);
+
+ return 0;
+}
+
+static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
+ struct stage2_map_data *data)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+ kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
+ int ret;
+
+ if (!stage2_leaf_mapping_allowed(ctx, data))
+ return 0;
+
+ ret = stage2_map_walker_try_leaf(ctx, data);
+ if (ret)
+ return ret;
+
+ mm_ops->free_unlinked_table(childp, ctx->level);
+ return 0;
+}
+
+static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
+ struct stage2_map_data *data)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+ kvm_pte_t *childp, new;
+ int ret;
+
+ ret = stage2_map_walker_try_leaf(ctx, data);
+ if (ret != -E2BIG)
+ return ret;
+
+ if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
+ return -EINVAL;
+
+ if (!data->memcache)
+ return -ENOMEM;
+
+ childp = mm_ops->zalloc_page(data->memcache);
+ if (!childp)
+ return -ENOMEM;
+
+ if (!stage2_try_break_pte(ctx, data->mmu)) {
+ mm_ops->put_page(childp);
+ return -EAGAIN;
+ }
+
+ /*
+ * If we've run into an existing block mapping then replace it with
+ * a table. Accesses beyond 'end' that fall within the new table
+ * will be mapped lazily.
+ */
+ new = kvm_init_table_pte(childp, mm_ops);
+ stage2_make_pte(ctx, new);
+
+ return 0;
+}
+
+/*
+ * The TABLE_PRE callback runs for table entries on the way down, looking
+ * for table entries which we could conceivably replace with a block entry
+ * for this mapping. If it finds one it replaces the entry and calls
+ * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
+ *
+ * Otherwise, the LEAF callback performs the mapping at the existing leaves
+ * instead.
+ */
+static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct stage2_map_data *data = ctx->arg;
+
+ switch (visit) {
+ case KVM_PGTABLE_WALK_TABLE_PRE:
+ return stage2_map_walk_table_pre(ctx, data);
+ case KVM_PGTABLE_WALK_LEAF:
+ return stage2_map_walk_leaf(ctx, data);
+ default:
+ return -EINVAL;
+ }
+}
+
+int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ u64 phys, enum kvm_pgtable_prot prot,
+ void *mc, enum kvm_pgtable_walk_flags flags)
+{
+ int ret;
+ struct stage2_map_data map_data = {
+ .phys = ALIGN_DOWN(phys, PAGE_SIZE),
+ .mmu = pgt->mmu,
+ .memcache = mc,
+ .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_map_walker,
+ .flags = flags |
+ KVM_PGTABLE_WALK_TABLE_PRE |
+ KVM_PGTABLE_WALK_LEAF,
+ .arg = &map_data,
+ };
+
+ if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
+ return -EINVAL;
+
+ ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
+ if (ret)
+ return ret;
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ dsb(ishst);
+ return ret;
+}
+
+int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ void *mc, u8 owner_id)
+{
+ int ret;
+ struct stage2_map_data map_data = {
+ .phys = KVM_PHYS_INVALID,
+ .mmu = pgt->mmu,
+ .memcache = mc,
+ .owner_id = owner_id,
+ .force_pte = true,
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_map_walker,
+ .flags = KVM_PGTABLE_WALK_TABLE_PRE |
+ KVM_PGTABLE_WALK_LEAF,
+ .arg = &map_data,
+ };
+
+ if (owner_id > KVM_MAX_OWNER_ID)
+ return -EINVAL;
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ return ret;
+}
+
+static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable *pgt = ctx->arg;
+ struct kvm_s2_mmu *mmu = pgt->mmu;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+ kvm_pte_t *childp = NULL;
+ bool need_flush = false;
+
+ if (!kvm_pte_valid(ctx->old)) {
+ if (stage2_pte_is_counted(ctx->old)) {
+ kvm_clear_pte(ctx->ptep);
+ mm_ops->put_page(ctx->ptep);
+ }
+ return 0;
+ }
+
+ if (kvm_pte_table(ctx->old, ctx->level)) {
+ childp = kvm_pte_follow(ctx->old, mm_ops);
+
+ if (mm_ops->page_count(childp) != 1)
+ return 0;
+ } else if (stage2_pte_cacheable(pgt, ctx->old)) {
+ need_flush = !stage2_has_fwb(pgt);
+ }
+
+ /*
+ * This is similar to the map() path in that we unmap the entire
+ * block entry and rely on the remaining portions being faulted
+ * back lazily.
+ */
+ stage2_unmap_put_pte(ctx, mmu, mm_ops);
+
+ if (need_flush && mm_ops->dcache_clean_inval_poc)
+ mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
+ kvm_granule_size(ctx->level));
+
+ if (childp)
+ mm_ops->put_page(childp);
+
+ return 0;
+}
+
+int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
+{
+ int ret;
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_unmap_walker,
+ .arg = pgt,
+ .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
+ };
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ if (stage2_unmap_defer_tlb_flush(pgt))
+ /* Perform the deferred TLB invalidations */
+ kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
+
+ return ret;
+}
+
+struct stage2_attr_data {
+ kvm_pte_t attr_set;
+ kvm_pte_t attr_clr;
+ kvm_pte_t pte;
+ s8 level;
+};
+
+static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ kvm_pte_t pte = ctx->old;
+ struct stage2_attr_data *data = ctx->arg;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!kvm_pte_valid(ctx->old))
+ return -EAGAIN;
+
+ data->level = ctx->level;
+ data->pte = pte;
+ pte &= ~data->attr_clr;
+ pte |= data->attr_set;
+
+ /*
+ * We may race with the CPU trying to set the access flag here,
+ * but worst-case the access flag update gets lost and will be
+ * set on the next access instead.
+ */
+ if (data->pte != pte) {
+ /*
+ * Invalidate instruction cache before updating the guest
+ * stage-2 PTE if we are going to add executable permission.
+ */
+ if (mm_ops->icache_inval_pou &&
+ stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
+ mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
+ kvm_granule_size(ctx->level));
+
+ if (!stage2_try_set_pte(ctx, pte))
+ return -EAGAIN;
+ }
+
+ return 0;
+}
+
+static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
+ u64 size, kvm_pte_t attr_set,
+ kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
+ s8 *level, enum kvm_pgtable_walk_flags flags)
+{
+ int ret;
+ kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
+ struct stage2_attr_data data = {
+ .attr_set = attr_set & attr_mask,
+ .attr_clr = attr_clr & attr_mask,
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_attr_walker,
+ .arg = &data,
+ .flags = flags | KVM_PGTABLE_WALK_LEAF,
+ };
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ if (ret)
+ return ret;
+
+ if (orig_pte)
+ *orig_pte = data.pte;
+
+ if (level)
+ *level = data.level;
+ return 0;
+}
+
+int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
+{
+ return stage2_update_leaf_attrs(pgt, addr, size, 0,
+ KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
+ NULL, NULL, 0);
+}
+
+kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
+{
+ kvm_pte_t pte = 0;
+ int ret;
+
+ ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
+ &pte, NULL,
+ KVM_PGTABLE_WALK_HANDLE_FAULT |
+ KVM_PGTABLE_WALK_SHARED);
+ if (!ret)
+ dsb(ishst);
+
+ return pte;
+}
+
+struct stage2_age_data {
+ bool mkold;
+ bool young;
+};
+
+static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
+ struct stage2_age_data *data = ctx->arg;
+
+ if (!kvm_pte_valid(ctx->old) || new == ctx->old)
+ return 0;
+
+ data->young = true;
+
+ /*
+ * stage2_age_walker() is always called while holding the MMU lock for
+ * write, so this will always succeed. Nonetheless, this deliberately
+ * follows the race detection pattern of the other stage-2 walkers in
+ * case the locking mechanics of the MMU notifiers is ever changed.
+ */
+ if (data->mkold && !stage2_try_set_pte(ctx, new))
+ return -EAGAIN;
+
+ /*
+ * "But where's the TLBI?!", you scream.
+ * "Over in the core code", I sigh.
+ *
+ * See the '->clear_flush_young()' callback on the KVM mmu notifier.
+ */
+ return 0;
+}
+
+bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
+ u64 size, bool mkold)
+{
+ struct stage2_age_data data = {
+ .mkold = mkold,
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_age_walker,
+ .arg = &data,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ };
+
+ WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
+ return data.young;
+}
+
+int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
+ enum kvm_pgtable_prot prot)
+{
+ int ret;
+ s8 level;
+ kvm_pte_t set = 0, clr = 0;
+
+ if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
+ return -EINVAL;
+
+ if (prot & KVM_PGTABLE_PROT_R)
+ set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
+
+ if (prot & KVM_PGTABLE_PROT_W)
+ set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
+
+ if (prot & KVM_PGTABLE_PROT_X)
+ clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
+
+ ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
+ KVM_PGTABLE_WALK_HANDLE_FAULT |
+ KVM_PGTABLE_WALK_SHARED);
+ if (!ret || ret == -EAGAIN)
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
+ return ret;
+}
+
+static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable *pgt = ctx->arg;
+ struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
+
+ if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
+ return 0;
+
+ if (mm_ops->dcache_clean_inval_poc)
+ mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
+ kvm_granule_size(ctx->level));
+ return 0;
+}
+
+int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_flush_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = pgt,
+ };
+
+ if (stage2_has_fwb(pgt))
+ return 0;
+
+ return kvm_pgtable_walk(pgt, addr, size, &walker);
+}
+
+kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
+ u64 phys, s8 level,
+ enum kvm_pgtable_prot prot,
+ void *mc, bool force_pte)
+{
+ struct stage2_map_data map_data = {
+ .phys = phys,
+ .mmu = pgt->mmu,
+ .memcache = mc,
+ .force_pte = force_pte,
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_map_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF |
+ KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
+ KVM_PGTABLE_WALK_SKIP_CMO,
+ .arg = &map_data,
+ };
+ /*
+ * The input address (.addr) is irrelevant for walking an
+ * unlinked table. Construct an ambiguous IA range to map
+ * kvm_granule_size(level) worth of memory.
+ */
+ struct kvm_pgtable_walk_data data = {
+ .walker = &walker,
+ .addr = 0,
+ .end = kvm_granule_size(level),
+ };
+ struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
+ kvm_pte_t *pgtable;
+ int ret;
+
+ if (!IS_ALIGNED(phys, kvm_granule_size(level)))
+ return ERR_PTR(-EINVAL);
+
+ ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
+ if (ret)
+ return ERR_PTR(ret);
+
+ pgtable = mm_ops->zalloc_page(mc);
+ if (!pgtable)
+ return ERR_PTR(-ENOMEM);
+
+ ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
+ level + 1);
+ if (ret) {
+ kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
+ return ERR_PTR(ret);
+ }
+
+ return pgtable;
+}
+
+/*
+ * Get the number of page-tables needed to replace a block with a
+ * fully populated tree up to the PTE entries. Note that @level is
+ * interpreted as in "level @level entry".
+ */
+static int stage2_block_get_nr_page_tables(s8 level)
+{
+ switch (level) {
+ case 1:
+ return PTRS_PER_PTE + 1;
+ case 2:
+ return 1;
+ case 3:
+ return 0;
+ default:
+ WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
+ level > KVM_PGTABLE_LAST_LEVEL);
+ return -EINVAL;
+ };
+}
+
+static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+ struct kvm_mmu_memory_cache *mc = ctx->arg;
+ struct kvm_s2_mmu *mmu;
+ kvm_pte_t pte = ctx->old, new, *childp;
+ enum kvm_pgtable_prot prot;
+ s8 level = ctx->level;
+ bool force_pte;
+ int nr_pages;
+ u64 phys;
+
+ /* No huge-pages exist at the last level */
+ if (level == KVM_PGTABLE_LAST_LEVEL)
+ return 0;
+
+ /* We only split valid block mappings */
+ if (!kvm_pte_valid(pte))
+ return 0;
+
+ nr_pages = stage2_block_get_nr_page_tables(level);
+ if (nr_pages < 0)
+ return nr_pages;
+
+ if (mc->nobjs >= nr_pages) {
+ /* Build a tree mapped down to the PTE granularity. */
+ force_pte = true;
+ } else {
+ /*
+ * Don't force PTEs, so create_unlinked() below does
+ * not populate the tree up to the PTE level. The
+ * consequence is that the call will require a single
+ * page of level 2 entries at level 1, or a single
+ * page of PTEs at level 2. If we are at level 1, the
+ * PTEs will be created recursively.
+ */
+ force_pte = false;
+ nr_pages = 1;
+ }
+
+ if (mc->nobjs < nr_pages)
+ return -ENOMEM;
+
+ mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
+ phys = kvm_pte_to_phys(pte);
+ prot = kvm_pgtable_stage2_pte_prot(pte);
+
+ childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
+ level, prot, mc, force_pte);
+ if (IS_ERR(childp))
+ return PTR_ERR(childp);
+
+ if (!stage2_try_break_pte(ctx, mmu)) {
+ kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
+ return -EAGAIN;
+ }
+
+ /*
+ * Note, the contents of the page table are guaranteed to be made
+ * visible before the new PTE is assigned because stage2_make_pte()
+ * writes the PTE using smp_store_release().
+ */
+ new = kvm_init_table_pte(childp, mm_ops);
+ stage2_make_pte(ctx, new);
+ dsb(ishst);
+ return 0;
+}
+
+int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ struct kvm_mmu_memory_cache *mc)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_split_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = mc,
+ };
+
+ return kvm_pgtable_walk(pgt, addr, size, &walker);
+}
+
+int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
+ struct kvm_pgtable_mm_ops *mm_ops,
+ enum kvm_pgtable_stage2_flags flags,
+ kvm_pgtable_force_pte_cb_t force_pte_cb)
+{
+ size_t pgd_sz;
+ u64 vtcr = mmu->vtcr;
+ u32 ia_bits = VTCR_EL2_IPA(vtcr);
+ u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
+ s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
+
+ pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
+ pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
+ if (!pgt->pgd)
+ return -ENOMEM;
+
+ pgt->ia_bits = ia_bits;
+ pgt->start_level = start_level;
+ pgt->mm_ops = mm_ops;
+ pgt->mmu = mmu;
+ pgt->flags = flags;
+ pgt->force_pte_cb = force_pte_cb;
+
+ /* Ensure zeroed PGD pages are visible to the hardware walker */
+ dsb(ishst);
+ return 0;
+}
+
+size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
+{
+ u32 ia_bits = VTCR_EL2_IPA(vtcr);
+ u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
+ s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
+
+ return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
+}
+
+static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!stage2_pte_is_counted(ctx->old))
+ return 0;
+
+ mm_ops->put_page(ctx->ptep);
+
+ if (kvm_pte_table(ctx->old, ctx->level))
+ mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
+
+ return 0;
+}
+
+void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
+{
+ size_t pgd_sz;
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_free_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF |
+ KVM_PGTABLE_WALK_TABLE_POST,
+ };
+
+ WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
+ pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
+ pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
+ pgt->pgd = NULL;
+}
+
+void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
+{
+ kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_free_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF |
+ KVM_PGTABLE_WALK_TABLE_POST,
+ };
+ struct kvm_pgtable_walk_data data = {
+ .walker = &walker,
+
+ /*
+ * At this point the IPA really doesn't matter, as the page
+ * table being traversed has already been removed from the stage
+ * 2. Set an appropriate range to cover the entire page table.
+ */
+ .addr = 0,
+ .end = kvm_granule_size(level),
+ };
+
+ WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
+
+ WARN_ON(mm_ops->page_count(pgtable) != 1);
+ mm_ops->put_page(pgtable);
+}