diff options
Diffstat (limited to 'arch/arm64/mm/init.c')
-rw-r--r-- | arch/arm64/mm/init.c | 670 |
1 files changed, 296 insertions, 374 deletions
diff --git a/arch/arm64/mm/init.c b/arch/arm64/mm/init.c index b65dffdfb201..0c8c35dd645e 100644 --- a/arch/arm64/mm/init.c +++ b/arch/arm64/mm/init.c @@ -16,33 +16,38 @@ #include <linux/nodemask.h> #include <linux/initrd.h> #include <linux/gfp.h> +#include <linux/math.h> #include <linux/memblock.h> #include <linux/sort.h> #include <linux/of.h> #include <linux/of_fdt.h> #include <linux/dma-direct.h> -#include <linux/dma-mapping.h> -#include <linux/dma-contiguous.h> +#include <linux/dma-map-ops.h> #include <linux/efi.h> #include <linux/swiotlb.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/kexec.h> #include <linux/crash_dump.h> +#include <linux/hugetlb.h> +#include <linux/acpi_iort.h> +#include <linux/kmemleak.h> +#include <linux/execmem.h> #include <asm/boot.h> #include <asm/fixmap.h> #include <asm/kasan.h> #include <asm/kernel-pgtable.h> +#include <asm/kvm_host.h> #include <asm/memory.h> #include <asm/numa.h> +#include <asm/rsi.h> #include <asm/sections.h> #include <asm/setup.h> #include <linux/sizes.h> #include <asm/tlb.h> #include <asm/alternative.h> - -#define ARM64_ZONE_DMA_BITS 30 +#include <asm/xen/swiotlb-xen.h> /* * We need to be able to catch inadvertent references to memstart_addr @@ -53,232 +58,114 @@ s64 memstart_addr __ro_after_init = -1; EXPORT_SYMBOL(memstart_addr); -s64 physvirt_offset __ro_after_init; -EXPORT_SYMBOL(physvirt_offset); - -struct page *vmemmap __ro_after_init; -EXPORT_SYMBOL(vmemmap); - /* - * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of - * memory as some devices, namely the Raspberry Pi 4, have peripherals with - * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32 - * bit addressable memory area. + * If the corresponding config options are enabled, we create both ZONE_DMA + * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory + * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). + * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, + * otherwise it is empty. */ -phys_addr_t arm64_dma_phys_limit __ro_after_init; -static phys_addr_t arm64_dma32_phys_limit __ro_after_init; +phys_addr_t __ro_after_init arm64_dma_phys_limit; -#ifdef CONFIG_KEXEC_CORE /* - * reserve_crashkernel() - reserves memory for crash kernel - * - * This function reserves memory area given in "crashkernel=" kernel command - * line parameter. The memory reserved is used by dump capture kernel when - * primary kernel is crashing. + * To make optimal use of block mappings when laying out the linear + * mapping, round down the base of physical memory to a size that can + * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE + * (64k granule), or a multiple that can be mapped using contiguous bits + * in the page tables: 32 * PMD_SIZE (16k granule) */ -static void __init reserve_crashkernel(void) -{ - unsigned long long crash_base, crash_size; - int ret; - - ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), - &crash_size, &crash_base); - /* no crashkernel= or invalid value specified */ - if (ret || !crash_size) - return; - - crash_size = PAGE_ALIGN(crash_size); - - if (crash_base == 0) { - /* Current arm64 boot protocol requires 2MB alignment */ - crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit, - crash_size, SZ_2M); - if (crash_base == 0) { - pr_warn("cannot allocate crashkernel (size:0x%llx)\n", - crash_size); - return; - } - } else { - /* User specifies base address explicitly. */ - if (!memblock_is_region_memory(crash_base, crash_size)) { - pr_warn("cannot reserve crashkernel: region is not memory\n"); - return; - } - - if (memblock_is_region_reserved(crash_base, crash_size)) { - pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); - return; - } - - if (!IS_ALIGNED(crash_base, SZ_2M)) { - pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); - return; - } - } - memblock_reserve(crash_base, crash_size); - - pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", - crash_base, crash_base + crash_size, crash_size >> 20); - - crashk_res.start = crash_base; - crashk_res.end = crash_base + crash_size - 1; -} +#if defined(CONFIG_ARM64_4K_PAGES) +#define ARM64_MEMSTART_SHIFT PUD_SHIFT +#elif defined(CONFIG_ARM64_16K_PAGES) +#define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT #else -static void __init reserve_crashkernel(void) -{ -} -#endif /* CONFIG_KEXEC_CORE */ - -#ifdef CONFIG_CRASH_DUMP -static int __init early_init_dt_scan_elfcorehdr(unsigned long node, - const char *uname, int depth, void *data) -{ - const __be32 *reg; - int len; - - if (depth != 1 || strcmp(uname, "chosen") != 0) - return 0; - - reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); - if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) - return 1; - - elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); - elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); - - return 1; -} +#define ARM64_MEMSTART_SHIFT PMD_SHIFT +#endif /* - * reserve_elfcorehdr() - reserves memory for elf core header - * - * This function reserves the memory occupied by an elf core header - * described in the device tree. This region contains all the - * information about primary kernel's core image and is used by a dump - * capture kernel to access the system memory on primary kernel. + * sparsemem vmemmap imposes an additional requirement on the alignment of + * memstart_addr, due to the fact that the base of the vmemmap region + * has a direct correspondence, and needs to appear sufficiently aligned + * in the virtual address space. */ -static void __init reserve_elfcorehdr(void) +#if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS +#define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS) +#else +#define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT) +#endif + +static void __init arch_reserve_crashkernel(void) { - of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); + unsigned long long low_size = 0; + unsigned long long crash_base, crash_size; + bool high = false; + int ret; - if (!elfcorehdr_size) + if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) return; - if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { - pr_warn("elfcorehdr is overlapped\n"); + ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), + &crash_size, &crash_base, + &low_size, &high); + if (ret) return; - } - - memblock_reserve(elfcorehdr_addr, elfcorehdr_size); - pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", - elfcorehdr_size >> 10, elfcorehdr_addr); + reserve_crashkernel_generic(crash_size, crash_base, low_size, high); } -#else -static void __init reserve_elfcorehdr(void) -{ -} -#endif /* CONFIG_CRASH_DUMP */ -/* - * Return the maximum physical address for a zone with a given address size - * limit. It currently assumes that for memory starting above 4G, 32-bit - * devices will use a DMA offset. - */ -static phys_addr_t __init max_zone_phys(unsigned int zone_bits) +static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit) { - phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits); - return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM()); + return min(zone_limit, memblock_end_of_DRAM() - 1) + 1; } -#ifdef CONFIG_NUMA - -static void __init zone_sizes_init(unsigned long min, unsigned long max) +static void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; + phys_addr_t __maybe_unused acpi_zone_dma_limit; + phys_addr_t __maybe_unused dt_zone_dma_limit; + phys_addr_t __maybe_unused dma32_phys_limit = + max_zone_phys(DMA_BIT_MASK(32)); #ifdef CONFIG_ZONE_DMA + acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address(); + dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL); + zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit); + /* + * Information we get from firmware (e.g. DT dma-ranges) describe DMA + * bus constraints. Devices using DMA might have their own limitations. + * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM + * DMA zone on platforms that have RAM there. + */ + if (memblock_start_of_DRAM() < U32_MAX) + zone_dma_limit = min(zone_dma_limit, U32_MAX); + arm64_dma_phys_limit = max_zone_phys(zone_dma_limit); max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); #endif #ifdef CONFIG_ZONE_DMA32 - max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit); + max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); + if (!arm64_dma_phys_limit) + arm64_dma_phys_limit = dma32_phys_limit; #endif - max_zone_pfns[ZONE_NORMAL] = max; + if (!arm64_dma_phys_limit) + arm64_dma_phys_limit = PHYS_MASK + 1; + max_zone_pfns[ZONE_NORMAL] = max_pfn; - free_area_init_nodes(max_zone_pfns); + free_area_init(max_zone_pfns); } -#else - -static void __init zone_sizes_init(unsigned long min, unsigned long max) +int pfn_is_map_memory(unsigned long pfn) { - struct memblock_region *reg; - unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; - unsigned long __maybe_unused max_dma, max_dma32; + phys_addr_t addr = PFN_PHYS(pfn); - memset(zone_size, 0, sizeof(zone_size)); - - max_dma = max_dma32 = min; -#ifdef CONFIG_ZONE_DMA - max_dma = max_dma32 = PFN_DOWN(arm64_dma_phys_limit); - zone_size[ZONE_DMA] = max_dma - min; -#endif -#ifdef CONFIG_ZONE_DMA32 - max_dma32 = PFN_DOWN(arm64_dma32_phys_limit); - zone_size[ZONE_DMA32] = max_dma32 - max_dma; -#endif - zone_size[ZONE_NORMAL] = max - max_dma32; - - memcpy(zhole_size, zone_size, sizeof(zhole_size)); - - for_each_memblock(memory, reg) { - unsigned long start = memblock_region_memory_base_pfn(reg); - unsigned long end = memblock_region_memory_end_pfn(reg); - -#ifdef CONFIG_ZONE_DMA - if (start >= min && start < max_dma) { - unsigned long dma_end = min(end, max_dma); - zhole_size[ZONE_DMA] -= dma_end - start; - start = dma_end; - } -#endif -#ifdef CONFIG_ZONE_DMA32 - if (start >= max_dma && start < max_dma32) { - unsigned long dma32_end = min(end, max_dma32); - zhole_size[ZONE_DMA32] -= dma32_end - start; - start = dma32_end; - } -#endif - if (start >= max_dma32 && start < max) { - unsigned long normal_end = min(end, max); - zhole_size[ZONE_NORMAL] -= normal_end - start; - } - } - - free_area_init_node(0, zone_size, min, zhole_size); -} - -#endif /* CONFIG_NUMA */ - -int pfn_valid(unsigned long pfn) -{ - phys_addr_t addr = pfn << PAGE_SHIFT; - - if ((addr >> PAGE_SHIFT) != pfn) - return 0; - -#ifdef CONFIG_SPARSEMEM - if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) + /* avoid false positives for bogus PFNs, see comment in pfn_valid() */ + if (PHYS_PFN(addr) != pfn) return 0; - if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn)))) - return 0; -#endif return memblock_is_map_memory(addr); } -EXPORT_SYMBOL(pfn_valid); +EXPORT_SYMBOL(pfn_is_map_memory); -static phys_addr_t memory_limit = PHYS_ADDR_MAX; +static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX; /* * Limit the memory size that was specified via FDT. @@ -295,44 +182,23 @@ static int __init early_mem(char *p) } early_param("mem", early_mem); -static int __init early_init_dt_scan_usablemem(unsigned long node, - const char *uname, int depth, void *data) -{ - struct memblock_region *usablemem = data; - const __be32 *reg; - int len; - - if (depth != 1 || strcmp(uname, "chosen") != 0) - return 0; - - reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); - if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) - return 1; - - usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); - usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); - - return 1; -} - -static void __init fdt_enforce_memory_region(void) -{ - struct memblock_region reg = { - .size = 0, - }; - - of_scan_flat_dt(early_init_dt_scan_usablemem, ®); - - if (reg.size) - memblock_cap_memory_range(reg.base, reg.size); -} - void __init arm64_memblock_init(void) { - const s64 linear_region_size = BIT(vabits_actual - 1); + s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual); - /* Handle linux,usable-memory-range property */ - fdt_enforce_memory_region(); + /* + * Corner case: 52-bit VA capable systems running KVM in nVHE mode may + * be limited in their ability to support a linear map that exceeds 51 + * bits of VA space, depending on the placement of the ID map. Given + * that the placement of the ID map may be randomized, let's simply + * limit the kernel's linear map to 51 bits as well if we detect this + * configuration. + */ + if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 && + is_hyp_mode_available() && !is_kernel_in_hyp_mode()) { + pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n"); + linear_region_size = min_t(u64, linear_region_size, BIT(51)); + } /* Remove memory above our supported physical address size */ memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); @@ -343,19 +209,8 @@ void __init arm64_memblock_init(void) memstart_addr = round_down(memblock_start_of_DRAM(), ARM64_MEMSTART_ALIGN); - physvirt_offset = PHYS_OFFSET - PAGE_OFFSET; - - vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)); - - /* - * If we are running with a 52-bit kernel VA config on a system that - * does not support it, we have to offset our vmemmap and physvirt_offset - * s.t. we avoid the 52-bit portion of the direct linear map - */ - if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) { - vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT; - physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48); - } + if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size) + pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n"); /* * Remove the memory that we will not be able to cover with the @@ -372,6 +227,16 @@ void __init arm64_memblock_init(void) } /* + * If we are running with a 52-bit kernel VA config on a system that + * does not support it, we have to place the available physical + * memory in the 48-bit addressable part of the linear region, i.e., + * we have to move it upward. Since memstart_addr represents the + * physical address of PAGE_OFFSET, we have to *subtract* from it. + */ + if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) + memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52); + + /* * Apply the memory limit if it was set. Since the kernel may be loaded * high up in memory, add back the kernel region that must be accessible * via the linear mapping. @@ -404,34 +269,17 @@ void __init arm64_memblock_init(void) "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { phys_initrd_size = 0; } else { - memblock_remove(base, size); /* clear MEMBLOCK_ flags */ memblock_add(base, size); + memblock_clear_nomap(base, size); memblock_reserve(base, size); } } - if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { - extern u16 memstart_offset_seed; - u64 range = linear_region_size - - (memblock_end_of_DRAM() - memblock_start_of_DRAM()); - - /* - * If the size of the linear region exceeds, by a sufficient - * margin, the size of the region that the available physical - * memory spans, randomize the linear region as well. - */ - if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { - range /= ARM64_MEMSTART_ALIGN; - memstart_addr -= ARM64_MEMSTART_ALIGN * - ((range * memstart_offset_seed) >> 16); - } - } - /* * Register the kernel text, kernel data, initrd, and initial * pagetables with memblock. */ - memblock_reserve(__pa_symbol(_text), _end - _text); + memblock_reserve(__pa_symbol(_stext), _end - _stext); if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { /* the generic initrd code expects virtual addresses */ initrd_start = __phys_to_virt(phys_initrd_start); @@ -439,24 +287,6 @@ void __init arm64_memblock_init(void) } early_init_fdt_scan_reserved_mem(); - - if (IS_ENABLED(CONFIG_ZONE_DMA)) { - zone_dma_bits = ARM64_ZONE_DMA_BITS; - arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS); - } - - if (IS_ENABLED(CONFIG_ZONE_DMA32)) - arm64_dma32_phys_limit = max_zone_phys(32); - else - arm64_dma32_phys_limit = PHYS_MASK + 1; - - reserve_crashkernel(); - - reserve_elfcorehdr(); - - high_memory = __va(memblock_end_of_DRAM() - 1) + 1; - - dma_contiguous_reserve(arm64_dma32_phys_limit); } void __init bootmem_init(void) @@ -471,109 +301,63 @@ void __init bootmem_init(void) max_pfn = max_low_pfn = max; min_low_pfn = min; - arm64_numa_init(); + arch_numa_init(); + /* - * Sparsemem tries to allocate bootmem in memory_present(), so must be - * done after the fixed reservations. + * must be done after arch_numa_init() which calls numa_init() to + * initialize node_online_map that gets used in hugetlb_cma_reserve() + * while allocating required CMA size across online nodes. */ - memblocks_present(); - - sparse_init(); - zone_sizes_init(min, max); +#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) + arm64_hugetlb_cma_reserve(); +#endif - memblock_dump_all(); -} - -#ifndef CONFIG_SPARSEMEM_VMEMMAP -static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) -{ - struct page *start_pg, *end_pg; - unsigned long pg, pgend; + kvm_hyp_reserve(); /* - * Convert start_pfn/end_pfn to a struct page pointer. + * sparse_init() tries to allocate memory from memblock, so must be + * done after the fixed reservations */ - start_pg = pfn_to_page(start_pfn - 1) + 1; - end_pg = pfn_to_page(end_pfn - 1) + 1; + sparse_init(); + zone_sizes_init(); /* - * Convert to physical addresses, and round start upwards and end - * downwards. + * Reserve the CMA area after arm64_dma_phys_limit was initialised. */ - pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); - pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; + dma_contiguous_reserve(arm64_dma_phys_limit); /* - * If there are free pages between these, free the section of the - * memmap array. + * request_standard_resources() depends on crashkernel's memory being + * reserved, so do it here. */ - if (pg < pgend) - memblock_free(pg, pgend - pg); + arch_reserve_crashkernel(); + + memblock_dump_all(); } -/* - * The mem_map array can get very big. Free the unused area of the memory map. - */ -static void __init free_unused_memmap(void) +void __init arch_mm_preinit(void) { - unsigned long start, prev_end = 0; - struct memblock_region *reg; + unsigned int flags = SWIOTLB_VERBOSE; + bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit); - for_each_memblock(memory, reg) { - start = __phys_to_pfn(reg->base); - -#ifdef CONFIG_SPARSEMEM - /* - * Take care not to free memmap entries that don't exist due - * to SPARSEMEM sections which aren't present. - */ - start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); -#endif - /* - * If we had a previous bank, and there is a space between the - * current bank and the previous, free it. - */ - if (prev_end && prev_end < start) - free_memmap(prev_end, start); + if (is_realm_world()) { + swiotlb = true; + flags |= SWIOTLB_FORCE; + } + if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) { /* - * Align up here since the VM subsystem insists that the - * memmap entries are valid from the bank end aligned to - * MAX_ORDER_NR_PAGES. + * If no bouncing needed for ZONE_DMA, reduce the swiotlb + * buffer for kmalloc() bouncing to 1MB per 1GB of RAM. */ - prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), - MAX_ORDER_NR_PAGES); + unsigned long size = + DIV_ROUND_UP(memblock_phys_mem_size(), 1024); + swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); + swiotlb = true; } -#ifdef CONFIG_SPARSEMEM - if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) - free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); -#endif -} -#endif /* !CONFIG_SPARSEMEM_VMEMMAP */ - -/* - * mem_init() marks the free areas in the mem_map and tells us how much memory - * is free. This is done after various parts of the system have claimed their - * memory after the kernel image. - */ -void __init mem_init(void) -{ - if (swiotlb_force == SWIOTLB_FORCE || - max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit)) - swiotlb_init(1); - else - swiotlb_force = SWIOTLB_NO_FORCE; - - set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); - -#ifndef CONFIG_SPARSEMEM_VMEMMAP - free_unused_memmap(); -#endif - /* this will put all unused low memory onto the freelists */ - memblock_free_all(); - - mem_init_print_info(NULL); + swiotlb_init(swiotlb, flags); + swiotlb_update_mem_attributes(); /* * Check boundaries twice: Some fundamental inconsistencies can be @@ -583,6 +367,13 @@ void __init mem_init(void) BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); #endif + /* + * Selected page table levels should match when derived from + * scratch using the virtual address range and page size. + */ + BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) != + CONFIG_PGTABLE_LEVELS); + if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { extern int sysctl_overcommit_memory; /* @@ -595,38 +386,169 @@ void __init mem_init(void) void free_initmem(void) { - free_reserved_area(lm_alias(__init_begin), - lm_alias(__init_end), + void *lm_init_begin = lm_alias(__init_begin); + void *lm_init_end = lm_alias(__init_end); + + WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE)); + WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE)); + + /* Delete __init region from memblock.reserved. */ + memblock_free(lm_init_begin, lm_init_end - lm_init_begin); + + free_reserved_area(lm_init_begin, lm_init_end, POISON_FREE_INITMEM, "unused kernel"); /* * Unmap the __init region but leave the VM area in place. This * prevents the region from being reused for kernel modules, which * is not supported by kallsyms. */ - unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); + vunmap_range((u64)__init_begin, (u64)__init_end); } -/* - * Dump out memory limit information on panic. - */ -static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) +void dump_mem_limit(void) { if (memory_limit != PHYS_ADDR_MAX) { pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); } else { pr_emerg("Memory Limit: none\n"); } - return 0; } -static struct notifier_block mem_limit_notifier = { - .notifier_call = dump_mem_limit, -}; +#ifdef CONFIG_EXECMEM +static u64 module_direct_base __ro_after_init = 0; +static u64 module_plt_base __ro_after_init = 0; -static int __init register_mem_limit_dumper(void) +/* + * Choose a random page-aligned base address for a window of 'size' bytes which + * entirely contains the interval [start, end - 1]. + */ +static u64 __init random_bounding_box(u64 size, u64 start, u64 end) { - atomic_notifier_chain_register(&panic_notifier_list, - &mem_limit_notifier); + u64 max_pgoff, pgoff; + + if ((end - start) >= size) + return 0; + + max_pgoff = (size - (end - start)) / PAGE_SIZE; + pgoff = get_random_u32_inclusive(0, max_pgoff); + + return start - pgoff * PAGE_SIZE; +} + +/* + * Modules may directly reference data and text anywhere within the kernel + * image and other modules. References using PREL32 relocations have a +/-2G + * range, and so we need to ensure that the entire kernel image and all modules + * fall within a 2G window such that these are always within range. + * + * Modules may directly branch to functions and code within the kernel text, + * and to functions and code within other modules. These branches will use + * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure + * that the entire kernel text and all module text falls within a 128M window + * such that these are always within range. With PLTs, we can expand this to a + * 2G window. + * + * We chose the 128M region to surround the entire kernel image (rather than + * just the text) as using the same bounds for the 128M and 2G regions ensures + * by construction that we never select a 128M region that is not a subset of + * the 2G region. For very large and unusual kernel configurations this means + * we may fall back to PLTs where they could have been avoided, but this keeps + * the logic significantly simpler. + */ +static int __init module_init_limits(void) +{ + u64 kernel_end = (u64)_end; + u64 kernel_start = (u64)_text; + u64 kernel_size = kernel_end - kernel_start; + + /* + * The default modules region is placed immediately below the kernel + * image, and is large enough to use the full 2G relocation range. + */ + BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END); + BUILD_BUG_ON(MODULES_VSIZE < SZ_2G); + + if (!kaslr_enabled()) { + if (kernel_size < SZ_128M) + module_direct_base = kernel_end - SZ_128M; + if (kernel_size < SZ_2G) + module_plt_base = kernel_end - SZ_2G; + } else { + u64 min = kernel_start; + u64 max = kernel_end; + + if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) { + pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n"); + } else { + module_direct_base = random_bounding_box(SZ_128M, min, max); + if (module_direct_base) { + min = module_direct_base; + max = module_direct_base + SZ_128M; + } + } + + module_plt_base = random_bounding_box(SZ_2G, min, max); + } + + pr_info("%llu pages in range for non-PLT usage", + module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0); + pr_info("%llu pages in range for PLT usage", + module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0); + return 0; } -__initcall(register_mem_limit_dumper); + +static struct execmem_info execmem_info __ro_after_init; + +struct execmem_info __init *execmem_arch_setup(void) +{ + unsigned long fallback_start = 0, fallback_end = 0; + unsigned long start = 0, end = 0; + + module_init_limits(); + + /* + * Where possible, prefer to allocate within direct branch range of the + * kernel such that no PLTs are necessary. + */ + if (module_direct_base) { + start = module_direct_base; + end = module_direct_base + SZ_128M; + + if (module_plt_base) { + fallback_start = module_plt_base; + fallback_end = module_plt_base + SZ_2G; + } + } else if (module_plt_base) { + start = module_plt_base; + end = module_plt_base + SZ_2G; + } + + execmem_info = (struct execmem_info){ + .ranges = { + [EXECMEM_DEFAULT] = { + .start = start, + .end = end, + .pgprot = PAGE_KERNEL, + .alignment = 1, + .fallback_start = fallback_start, + .fallback_end = fallback_end, + }, + [EXECMEM_KPROBES] = { + .start = VMALLOC_START, + .end = VMALLOC_END, + .pgprot = PAGE_KERNEL_ROX, + .alignment = 1, + }, + [EXECMEM_BPF] = { + .start = VMALLOC_START, + .end = VMALLOC_END, + .pgprot = PAGE_KERNEL, + .alignment = 1, + }, + }, + }; + + return &execmem_info; +} +#endif /* CONFIG_EXECMEM */ |