summaryrefslogtreecommitdiff
path: root/arch/ia64/lib/copy_user.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ia64/lib/copy_user.S')
-rw-r--r--arch/ia64/lib/copy_user.S613
1 files changed, 0 insertions, 613 deletions
diff --git a/arch/ia64/lib/copy_user.S b/arch/ia64/lib/copy_user.S
deleted file mode 100644
index f681556c6b86..000000000000
--- a/arch/ia64/lib/copy_user.S
+++ /dev/null
@@ -1,613 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-/*
- *
- * Optimized version of the copy_user() routine.
- * It is used to copy date across the kernel/user boundary.
- *
- * The source and destination are always on opposite side of
- * the boundary. When reading from user space we must catch
- * faults on loads. When writing to user space we must catch
- * errors on stores. Note that because of the nature of the copy
- * we don't need to worry about overlapping regions.
- *
- *
- * Inputs:
- * in0 address of source buffer
- * in1 address of destination buffer
- * in2 number of bytes to copy
- *
- * Outputs:
- * ret0 0 in case of success. The number of bytes NOT copied in
- * case of error.
- *
- * Copyright (C) 2000-2001 Hewlett-Packard Co
- * Stephane Eranian <eranian@hpl.hp.com>
- *
- * Fixme:
- * - handle the case where we have more than 16 bytes and the alignment
- * are different.
- * - more benchmarking
- * - fix extraneous stop bit introduced by the EX() macro.
- */
-
-#include <asm/asmmacro.h>
-#include <asm/export.h>
-
-//
-// Tuneable parameters
-//
-#define COPY_BREAK 16 // we do byte copy below (must be >=16)
-#define PIPE_DEPTH 21 // pipe depth
-
-#define EPI p[PIPE_DEPTH-1]
-
-//
-// arguments
-//
-#define dst in0
-#define src in1
-#define len in2
-
-//
-// local registers
-//
-#define t1 r2 // rshift in bytes
-#define t2 r3 // lshift in bytes
-#define rshift r14 // right shift in bits
-#define lshift r15 // left shift in bits
-#define word1 r16
-#define word2 r17
-#define cnt r18
-#define len2 r19
-#define saved_lc r20
-#define saved_pr r21
-#define tmp r22
-#define val r23
-#define src1 r24
-#define dst1 r25
-#define src2 r26
-#define dst2 r27
-#define len1 r28
-#define enddst r29
-#define endsrc r30
-#define saved_pfs r31
-
-GLOBAL_ENTRY(__copy_user)
- .prologue
- .save ar.pfs, saved_pfs
- alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
-
- .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
- .rotp p[PIPE_DEPTH]
-
- adds len2=-1,len // br.ctop is repeat/until
- mov ret0=r0
-
- ;; // RAW of cfm when len=0
- cmp.eq p8,p0=r0,len // check for zero length
- .save ar.lc, saved_lc
- mov saved_lc=ar.lc // preserve ar.lc (slow)
-(p8) br.ret.spnt.many rp // empty mempcy()
- ;;
- add enddst=dst,len // first byte after end of source
- add endsrc=src,len // first byte after end of destination
- .save pr, saved_pr
- mov saved_pr=pr // preserve predicates
-
- .body
-
- mov dst1=dst // copy because of rotation
- mov ar.ec=PIPE_DEPTH
- mov pr.rot=1<<16 // p16=true all others are false
-
- mov src1=src // copy because of rotation
- mov ar.lc=len2 // initialize lc for small count
- cmp.lt p10,p7=COPY_BREAK,len // if len > COPY_BREAK then long copy
-
- xor tmp=src,dst // same alignment test prepare
-(p10) br.cond.dptk .long_copy_user
- ;; // RAW pr.rot/p16 ?
- //
- // Now we do the byte by byte loop with software pipeline
- //
- // p7 is necessarily false by now
-1:
- EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
- EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
- br.ctop.dptk.few 1b
- ;;
- mov ar.lc=saved_lc
- mov pr=saved_pr,0xffffffffffff0000
- mov ar.pfs=saved_pfs // restore ar.ec
- br.ret.sptk.many rp // end of short memcpy
-
- //
- // Not 8-byte aligned
- //
-.diff_align_copy_user:
- // At this point we know we have more than 16 bytes to copy
- // and also that src and dest do _not_ have the same alignment.
- and src2=0x7,src1 // src offset
- and dst2=0x7,dst1 // dst offset
- ;;
- // The basic idea is that we copy byte-by-byte at the head so
- // that we can reach 8-byte alignment for both src1 and dst1.
- // Then copy the body using software pipelined 8-byte copy,
- // shifting the two back-to-back words right and left, then copy
- // the tail by copying byte-by-byte.
- //
- // Fault handling. If the byte-by-byte at the head fails on the
- // load, then restart and finish the pipleline by copying zeros
- // to the dst1. Then copy zeros for the rest of dst1.
- // If 8-byte software pipeline fails on the load, do the same as
- // failure_in3 does. If the byte-by-byte at the tail fails, it is
- // handled simply by failure_in_pipe1.
- //
- // The case p14 represents the source has more bytes in the
- // the first word (by the shifted part), whereas the p15 needs to
- // copy some bytes from the 2nd word of the source that has the
- // tail of the 1st of the destination.
- //
-
- //
- // Optimization. If dst1 is 8-byte aligned (quite common), we don't need
- // to copy the head to dst1, to start 8-byte copy software pipeline.
- // We know src1 is not 8-byte aligned in this case.
- //
- cmp.eq p14,p15=r0,dst2
-(p15) br.cond.spnt 1f
- ;;
- sub t1=8,src2
- mov t2=src2
- ;;
- shl rshift=t2,3
- sub len1=len,t1 // set len1
- ;;
- sub lshift=64,rshift
- ;;
- br.cond.spnt .word_copy_user
- ;;
-1:
- cmp.leu p14,p15=src2,dst2
- sub t1=dst2,src2
- ;;
- .pred.rel "mutex", p14, p15
-(p14) sub word1=8,src2 // (8 - src offset)
-(p15) sub t1=r0,t1 // absolute value
-(p15) sub word1=8,dst2 // (8 - dst offset)
- ;;
- // For the case p14, we don't need to copy the shifted part to
- // the 1st word of destination.
- sub t2=8,t1
-(p14) sub word1=word1,t1
- ;;
- sub len1=len,word1 // resulting len
-(p15) shl rshift=t1,3 // in bits
-(p14) shl rshift=t2,3
- ;;
-(p14) sub len1=len1,t1
- adds cnt=-1,word1
- ;;
- sub lshift=64,rshift
- mov ar.ec=PIPE_DEPTH
- mov pr.rot=1<<16 // p16=true all others are false
- mov ar.lc=cnt
- ;;
-2:
- EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
- EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
- br.ctop.dptk.few 2b
- ;;
- clrrrb
- ;;
-.word_copy_user:
- cmp.gtu p9,p0=16,len1
-(p9) br.cond.spnt 4f // if (16 > len1) skip 8-byte copy
- ;;
- shr.u cnt=len1,3 // number of 64-bit words
- ;;
- adds cnt=-1,cnt
- ;;
- .pred.rel "mutex", p14, p15
-(p14) sub src1=src1,t2
-(p15) sub src1=src1,t1
- //
- // Now both src1 and dst1 point to an 8-byte aligned address. And
- // we have more than 8 bytes to copy.
- //
- mov ar.lc=cnt
- mov ar.ec=PIPE_DEPTH
- mov pr.rot=1<<16 // p16=true all others are false
- ;;
-3:
- //
- // The pipleline consists of 3 stages:
- // 1 (p16): Load a word from src1
- // 2 (EPI_1): Shift right pair, saving to tmp
- // 3 (EPI): Store tmp to dst1
- //
- // To make it simple, use at least 2 (p16) loops to set up val1[n]
- // because we need 2 back-to-back val1[] to get tmp.
- // Note that this implies EPI_2 must be p18 or greater.
- //
-
-#define EPI_1 p[PIPE_DEPTH-2]
-#define SWITCH(pred, shift) cmp.eq pred,p0=shift,rshift
-#define CASE(pred, shift) \
- (pred) br.cond.spnt .copy_user_bit##shift
-#define BODY(rshift) \
-.copy_user_bit##rshift: \
-1: \
- EX(.failure_out,(EPI) st8 [dst1]=tmp,8); \
-(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \
- EX(3f,(p16) ld8 val1[1]=[src1],8); \
-(p16) mov val1[0]=r0; \
- br.ctop.dptk 1b; \
- ;; \
- br.cond.sptk.many .diff_align_do_tail; \
-2: \
-(EPI) st8 [dst1]=tmp,8; \
-(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \
-3: \
-(p16) mov val1[1]=r0; \
-(p16) mov val1[0]=r0; \
- br.ctop.dptk 2b; \
- ;; \
- br.cond.sptk.many .failure_in2
-
- //
- // Since the instruction 'shrp' requires a fixed 128-bit value
- // specifying the bits to shift, we need to provide 7 cases
- // below.
- //
- SWITCH(p6, 8)
- SWITCH(p7, 16)
- SWITCH(p8, 24)
- SWITCH(p9, 32)
- SWITCH(p10, 40)
- SWITCH(p11, 48)
- SWITCH(p12, 56)
- ;;
- CASE(p6, 8)
- CASE(p7, 16)
- CASE(p8, 24)
- CASE(p9, 32)
- CASE(p10, 40)
- CASE(p11, 48)
- CASE(p12, 56)
- ;;
- BODY(8)
- BODY(16)
- BODY(24)
- BODY(32)
- BODY(40)
- BODY(48)
- BODY(56)
- ;;
-.diff_align_do_tail:
- .pred.rel "mutex", p14, p15
-(p14) sub src1=src1,t1
-(p14) adds dst1=-8,dst1
-(p15) sub dst1=dst1,t1
- ;;
-4:
- // Tail correction.
- //
- // The problem with this piplelined loop is that the last word is not
- // loaded and thus parf of the last word written is not correct.
- // To fix that, we simply copy the tail byte by byte.
-
- sub len1=endsrc,src1,1
- clrrrb
- ;;
- mov ar.ec=PIPE_DEPTH
- mov pr.rot=1<<16 // p16=true all others are false
- mov ar.lc=len1
- ;;
-5:
- EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
- EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
- br.ctop.dptk.few 5b
- ;;
- mov ar.lc=saved_lc
- mov pr=saved_pr,0xffffffffffff0000
- mov ar.pfs=saved_pfs
- br.ret.sptk.many rp
-
- //
- // Beginning of long mempcy (i.e. > 16 bytes)
- //
-.long_copy_user:
- tbit.nz p6,p7=src1,0 // odd alignment
- and tmp=7,tmp
- ;;
- cmp.eq p10,p8=r0,tmp
- mov len1=len // copy because of rotation
-(p8) br.cond.dpnt .diff_align_copy_user
- ;;
- // At this point we know we have more than 16 bytes to copy
- // and also that both src and dest have the same alignment
- // which may not be the one we want. So for now we must move
- // forward slowly until we reach 16byte alignment: no need to
- // worry about reaching the end of buffer.
- //
- EX(.failure_in1,(p6) ld1 val1[0]=[src1],1) // 1-byte aligned
-(p6) adds len1=-1,len1;;
- tbit.nz p7,p0=src1,1
- ;;
- EX(.failure_in1,(p7) ld2 val1[1]=[src1],2) // 2-byte aligned
-(p7) adds len1=-2,len1;;
- tbit.nz p8,p0=src1,2
- ;;
- //
- // Stop bit not required after ld4 because if we fail on ld4
- // we have never executed the ld1, therefore st1 is not executed.
- //
- EX(.failure_in1,(p8) ld4 val2[0]=[src1],4) // 4-byte aligned
- ;;
- EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
- tbit.nz p9,p0=src1,3
- ;;
- //
- // Stop bit not required after ld8 because if we fail on ld8
- // we have never executed the ld2, therefore st2 is not executed.
- //
- EX(.failure_in1,(p9) ld8 val2[1]=[src1],8) // 8-byte aligned
- EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
-(p8) adds len1=-4,len1
- ;;
- EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
-(p9) adds len1=-8,len1;;
- shr.u cnt=len1,4 // number of 128-bit (2x64bit) words
- ;;
- EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
- tbit.nz p6,p0=len1,3
- cmp.eq p7,p0=r0,cnt
- adds tmp=-1,cnt // br.ctop is repeat/until
-(p7) br.cond.dpnt .dotail // we have less than 16 bytes left
- ;;
- adds src2=8,src1
- adds dst2=8,dst1
- mov ar.lc=tmp
- ;;
- //
- // 16bytes/iteration
- //
-2:
- EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
-(p16) ld8 val2[0]=[src2],16
-
- EX(.failure_out, (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16)
-(EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16
- br.ctop.dptk 2b
- ;; // RAW on src1 when fall through from loop
- //
- // Tail correction based on len only
- //
- // No matter where we come from (loop or test) the src1 pointer
- // is 16 byte aligned AND we have less than 16 bytes to copy.
- //
-.dotail:
- EX(.failure_in1,(p6) ld8 val1[0]=[src1],8) // at least 8 bytes
- tbit.nz p7,p0=len1,2
- ;;
- EX(.failure_in1,(p7) ld4 val1[1]=[src1],4) // at least 4 bytes
- tbit.nz p8,p0=len1,1
- ;;
- EX(.failure_in1,(p8) ld2 val2[0]=[src1],2) // at least 2 bytes
- tbit.nz p9,p0=len1,0
- ;;
- EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
- ;;
- EX(.failure_in1,(p9) ld1 val2[1]=[src1]) // only 1 byte left
- mov ar.lc=saved_lc
- ;;
- EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
- mov pr=saved_pr,0xffffffffffff0000
- ;;
- EX(.failure_out, (p8) st2 [dst1]=val2[0],2)
- mov ar.pfs=saved_pfs
- ;;
- EX(.failure_out, (p9) st1 [dst1]=val2[1])
- br.ret.sptk.many rp
-
-
- //
- // Here we handle the case where the byte by byte copy fails
- // on the load.
- // Several factors make the zeroing of the rest of the buffer kind of
- // tricky:
- // - the pipeline: loads/stores are not in sync (pipeline)
- //
- // In the same loop iteration, the dst1 pointer does not directly
- // reflect where the faulty load was.
- //
- // - pipeline effect
- // When you get a fault on load, you may have valid data from
- // previous loads not yet store in transit. Such data must be
- // store normally before moving onto zeroing the rest.
- //
- // - single/multi dispersal independence.
- //
- // solution:
- // - we don't disrupt the pipeline, i.e. data in transit in
- // the software pipeline will be eventually move to memory.
- // We simply replace the load with a simple mov and keep the
- // pipeline going. We can't really do this inline because
- // p16 is always reset to 1 when lc > 0.
- //
-.failure_in_pipe1:
- sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
-1:
-(p16) mov val1[0]=r0
-(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1
- br.ctop.dptk 1b
- ;;
- mov pr=saved_pr,0xffffffffffff0000
- mov ar.lc=saved_lc
- mov ar.pfs=saved_pfs
- br.ret.sptk.many rp
-
- //
- // This is the case where the byte by byte copy fails on the load
- // when we copy the head. We need to finish the pipeline and copy
- // zeros for the rest of the destination. Since this happens
- // at the top we still need to fill the body and tail.
-.failure_in_pipe2:
- sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
-2:
-(p16) mov val1[0]=r0
-(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1
- br.ctop.dptk 2b
- ;;
- sub len=enddst,dst1,1 // precompute len
- br.cond.dptk.many .failure_in1bis
- ;;
-
- //
- // Here we handle the head & tail part when we check for alignment.
- // The following code handles only the load failures. The
- // main diffculty comes from the fact that loads/stores are
- // scheduled. So when you fail on a load, the stores corresponding
- // to previous successful loads must be executed.
- //
- // However some simplifications are possible given the way
- // things work.
- //
- // 1) HEAD
- // Theory of operation:
- //
- // Page A | Page B
- // ---------|-----
- // 1|8 x
- // 1 2|8 x
- // 4|8 x
- // 1 4|8 x
- // 2 4|8 x
- // 1 2 4|8 x
- // |1
- // |2 x
- // |4 x
- //
- // page_size >= 4k (2^12). (x means 4, 2, 1)
- // Here we suppose Page A exists and Page B does not.
- //
- // As we move towards eight byte alignment we may encounter faults.
- // The numbers on each page show the size of the load (current alignment).
- //
- // Key point:
- // - if you fail on 1, 2, 4 then you have never executed any smaller
- // size loads, e.g. failing ld4 means no ld1 nor ld2 executed
- // before.
- //
- // This allows us to simplify the cleanup code, because basically you
- // only have to worry about "pending" stores in the case of a failing
- // ld8(). Given the way the code is written today, this means only
- // worry about st2, st4. There we can use the information encapsulated
- // into the predicates.
- //
- // Other key point:
- // - if you fail on the ld8 in the head, it means you went straight
- // to it, i.e. 8byte alignment within an unexisting page.
- // Again this comes from the fact that if you crossed just for the ld8 then
- // you are 8byte aligned but also 16byte align, therefore you would
- // either go for the 16byte copy loop OR the ld8 in the tail part.
- // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
- // because it would mean you had 15bytes to copy in which case you
- // would have defaulted to the byte by byte copy.
- //
- //
- // 2) TAIL
- // Here we now we have less than 16 bytes AND we are either 8 or 16 byte
- // aligned.
- //
- // Key point:
- // This means that we either:
- // - are right on a page boundary
- // OR
- // - are at more than 16 bytes from a page boundary with
- // at most 15 bytes to copy: no chance of crossing.
- //
- // This allows us to assume that if we fail on a load we haven't possibly
- // executed any of the previous (tail) ones, so we don't need to do
- // any stores. For instance, if we fail on ld2, this means we had
- // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
- //
- // This means that we are in a situation similar the a fault in the
- // head part. That's nice!
- //
-.failure_in1:
- sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
- sub len=endsrc,src1,1
- //
- // we know that ret0 can never be zero at this point
- // because we failed why trying to do a load, i.e. there is still
- // some work to do.
- // The failure_in1bis and length problem is taken care of at the
- // calling side.
- //
- ;;
-.failure_in1bis: // from (.failure_in3)
- mov ar.lc=len // Continue with a stupid byte store.
- ;;
-5:
- st1 [dst1]=r0,1
- br.cloop.dptk 5b
- ;;
- mov pr=saved_pr,0xffffffffffff0000
- mov ar.lc=saved_lc
- mov ar.pfs=saved_pfs
- br.ret.sptk.many rp
-
- //
- // Here we simply restart the loop but instead
- // of doing loads we fill the pipeline with zeroes
- // We can't simply store r0 because we may have valid
- // data in transit in the pipeline.
- // ar.lc and ar.ec are setup correctly at this point
- //
- // we MUST use src1/endsrc here and not dst1/enddst because
- // of the pipeline effect.
- //
-.failure_in3:
- sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
- ;;
-2:
-(p16) mov val1[0]=r0
-(p16) mov val2[0]=r0
-(EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16
-(EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16
- br.ctop.dptk 2b
- ;;
- cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ?
- sub len=enddst,dst1,1 // precompute len
-(p6) br.cond.dptk .failure_in1bis
- ;;
- mov pr=saved_pr,0xffffffffffff0000
- mov ar.lc=saved_lc
- mov ar.pfs=saved_pfs
- br.ret.sptk.many rp
-
-.failure_in2:
- sub ret0=endsrc,src1
- cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ?
- sub len=enddst,dst1,1 // precompute len
-(p6) br.cond.dptk .failure_in1bis
- ;;
- mov pr=saved_pr,0xffffffffffff0000
- mov ar.lc=saved_lc
- mov ar.pfs=saved_pfs
- br.ret.sptk.many rp
-
- //
- // handling of failures on stores: that's the easy part
- //
-.failure_out:
- sub ret0=enddst,dst1
- mov pr=saved_pr,0xffffffffffff0000
- mov ar.lc=saved_lc
-
- mov ar.pfs=saved_pfs
- br.ret.sptk.many rp
-END(__copy_user)
-EXPORT_SYMBOL(__copy_user)