summaryrefslogtreecommitdiff
path: root/arch/riscv/mm/context.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/riscv/mm/context.c')
-rw-r--r--arch/riscv/mm/context.c291
1 files changed, 281 insertions, 10 deletions
diff --git a/arch/riscv/mm/context.c b/arch/riscv/mm/context.c
index 613ec81a8979..ba8eb3944687 100644
--- a/arch/riscv/mm/context.c
+++ b/arch/riscv/mm/context.c
@@ -2,13 +2,287 @@
/*
* Copyright (C) 2012 Regents of the University of California
* Copyright (C) 2017 SiFive
+ * Copyright (C) 2021 Western Digital Corporation or its affiliates.
*/
+#include <linux/bitops.h>
+#include <linux/cpumask.h>
#include <linux/mm.h>
+#include <linux/percpu.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/static_key.h>
#include <asm/tlbflush.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
+#ifdef CONFIG_MMU
+
+DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
+
+static unsigned long asid_bits;
+static unsigned long num_asids;
+unsigned long asid_mask;
+
+static atomic_long_t current_version;
+
+static DEFINE_RAW_SPINLOCK(context_lock);
+static cpumask_t context_tlb_flush_pending;
+static unsigned long *context_asid_map;
+
+static DEFINE_PER_CPU(atomic_long_t, active_context);
+static DEFINE_PER_CPU(unsigned long, reserved_context);
+
+static bool check_update_reserved_context(unsigned long cntx,
+ unsigned long newcntx)
+{
+ int cpu;
+ bool hit = false;
+
+ /*
+ * Iterate over the set of reserved CONTEXT looking for a match.
+ * If we find one, then we can update our mm to use new CONTEXT
+ * (i.e. the same CONTEXT in the current_version) but we can't
+ * exit the loop early, since we need to ensure that all copies
+ * of the old CONTEXT are updated to reflect the mm. Failure to do
+ * so could result in us missing the reserved CONTEXT in a future
+ * version.
+ */
+ for_each_possible_cpu(cpu) {
+ if (per_cpu(reserved_context, cpu) == cntx) {
+ hit = true;
+ per_cpu(reserved_context, cpu) = newcntx;
+ }
+ }
+
+ return hit;
+}
+
+static void __flush_context(void)
+{
+ int i;
+ unsigned long cntx;
+
+ /* Must be called with context_lock held */
+ lockdep_assert_held(&context_lock);
+
+ /* Update the list of reserved ASIDs and the ASID bitmap. */
+ bitmap_zero(context_asid_map, num_asids);
+
+ /* Mark already active ASIDs as used */
+ for_each_possible_cpu(i) {
+ cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
+ /*
+ * If this CPU has already been through a rollover, but
+ * hasn't run another task in the meantime, we must preserve
+ * its reserved CONTEXT, as this is the only trace we have of
+ * the process it is still running.
+ */
+ if (cntx == 0)
+ cntx = per_cpu(reserved_context, i);
+
+ __set_bit(cntx & asid_mask, context_asid_map);
+ per_cpu(reserved_context, i) = cntx;
+ }
+
+ /* Mark ASID #0 as used because it is used at boot-time */
+ __set_bit(0, context_asid_map);
+
+ /* Queue a TLB invalidation for each CPU on next context-switch */
+ cpumask_setall(&context_tlb_flush_pending);
+}
+
+static unsigned long __new_context(struct mm_struct *mm)
+{
+ static u32 cur_idx = 1;
+ unsigned long cntx = atomic_long_read(&mm->context.id);
+ unsigned long asid, ver = atomic_long_read(&current_version);
+
+ /* Must be called with context_lock held */
+ lockdep_assert_held(&context_lock);
+
+ if (cntx != 0) {
+ unsigned long newcntx = ver | (cntx & asid_mask);
+
+ /*
+ * If our current CONTEXT was active during a rollover, we
+ * can continue to use it and this was just a false alarm.
+ */
+ if (check_update_reserved_context(cntx, newcntx))
+ return newcntx;
+
+ /*
+ * We had a valid CONTEXT in a previous life, so try to
+ * re-use it if possible.
+ */
+ if (!__test_and_set_bit(cntx & asid_mask, context_asid_map))
+ return newcntx;
+ }
+
+ /*
+ * Allocate a free ASID. If we can't find one then increment
+ * current_version and flush all ASIDs.
+ */
+ asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
+ if (asid != num_asids)
+ goto set_asid;
+
+ /* We're out of ASIDs, so increment current_version */
+ ver = atomic_long_add_return_relaxed(num_asids, &current_version);
+
+ /* Flush everything */
+ __flush_context();
+
+ /* We have more ASIDs than CPUs, so this will always succeed */
+ asid = find_next_zero_bit(context_asid_map, num_asids, 1);
+
+set_asid:
+ __set_bit(asid, context_asid_map);
+ cur_idx = asid;
+ return asid | ver;
+}
+
+static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
+{
+ unsigned long flags;
+ bool need_flush_tlb = false;
+ unsigned long cntx, old_active_cntx;
+
+ cntx = atomic_long_read(&mm->context.id);
+
+ /*
+ * If our active_context is non-zero and the context matches the
+ * current_version, then we update the active_context entry with a
+ * relaxed cmpxchg.
+ *
+ * Following is how we handle racing with a concurrent rollover:
+ *
+ * - We get a zero back from the cmpxchg and end up waiting on the
+ * lock. Taking the lock synchronises with the rollover and so
+ * we are forced to see the updated verion.
+ *
+ * - We get a valid context back from the cmpxchg then we continue
+ * using old ASID because __flush_context() would have marked ASID
+ * of active_context as used and next context switch we will
+ * allocate new context.
+ */
+ old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
+ if (old_active_cntx &&
+ ((cntx & ~asid_mask) == atomic_long_read(&current_version)) &&
+ atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
+ old_active_cntx, cntx))
+ goto switch_mm_fast;
+
+ raw_spin_lock_irqsave(&context_lock, flags);
+
+ /* Check that our ASID belongs to the current_version. */
+ cntx = atomic_long_read(&mm->context.id);
+ if ((cntx & ~asid_mask) != atomic_long_read(&current_version)) {
+ cntx = __new_context(mm);
+ atomic_long_set(&mm->context.id, cntx);
+ }
+
+ if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
+ need_flush_tlb = true;
+
+ atomic_long_set(&per_cpu(active_context, cpu), cntx);
+
+ raw_spin_unlock_irqrestore(&context_lock, flags);
+
+switch_mm_fast:
+ csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
+ ((cntx & asid_mask) << SATP_ASID_SHIFT) |
+ satp_mode);
+
+ if (need_flush_tlb)
+ local_flush_tlb_all();
+}
+
+static void set_mm_noasid(struct mm_struct *mm)
+{
+ /* Switch the page table and blindly nuke entire local TLB */
+ csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
+ local_flush_tlb_all();
+}
+
+static inline void set_mm(struct mm_struct *prev,
+ struct mm_struct *next, unsigned int cpu)
+{
+ /*
+ * The mm_cpumask indicates which harts' TLBs contain the virtual
+ * address mapping of the mm. Compared to noasid, using asid
+ * can't guarantee that stale TLB entries are invalidated because
+ * the asid mechanism wouldn't flush TLB for every switch_mm for
+ * performance. So when using asid, keep all CPUs footmarks in
+ * cpumask() until mm reset.
+ */
+ cpumask_set_cpu(cpu, mm_cpumask(next));
+ if (static_branch_unlikely(&use_asid_allocator)) {
+ set_mm_asid(next, cpu);
+ } else {
+ cpumask_clear_cpu(cpu, mm_cpumask(prev));
+ set_mm_noasid(next);
+ }
+}
+
+static int __init asids_init(void)
+{
+ unsigned long old;
+
+ /* Figure-out number of ASID bits in HW */
+ old = csr_read(CSR_SATP);
+ asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
+ csr_write(CSR_SATP, asid_bits);
+ asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT) & SATP_ASID_MASK;
+ asid_bits = fls_long(asid_bits);
+ csr_write(CSR_SATP, old);
+
+ /*
+ * In the process of determining number of ASID bits (above)
+ * we polluted the TLB of current HART so let's do TLB flushed
+ * to remove unwanted TLB enteries.
+ */
+ local_flush_tlb_all();
+
+ /* Pre-compute ASID details */
+ if (asid_bits) {
+ num_asids = 1 << asid_bits;
+ asid_mask = num_asids - 1;
+ }
+
+ /*
+ * Use ASID allocator only if number of HW ASIDs are
+ * at-least twice more than CPUs
+ */
+ if (num_asids > (2 * num_possible_cpus())) {
+ atomic_long_set(&current_version, num_asids);
+
+ context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
+ if (!context_asid_map)
+ panic("Failed to allocate bitmap for %lu ASIDs\n",
+ num_asids);
+
+ __set_bit(0, context_asid_map);
+
+ static_branch_enable(&use_asid_allocator);
+
+ pr_info("ASID allocator using %lu bits (%lu entries)\n",
+ asid_bits, num_asids);
+ } else {
+ pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
+ }
+
+ return 0;
+}
+early_initcall(asids_init);
+#else
+static inline void set_mm(struct mm_struct *prev,
+ struct mm_struct *next, unsigned int cpu)
+{
+ /* Nothing to do here when there is no MMU */
+}
+#endif
+
/*
* When necessary, performs a deferred icache flush for the given MM context,
* on the local CPU. RISC-V has no direct mechanism for instruction cache
@@ -20,11 +294,12 @@
* cache flush to be performed before execution resumes on each hart. This
* actually performs that local instruction cache flush, which implicitly only
* refers to the current hart.
+ *
+ * The "cpu" argument must be the current local CPU number.
*/
-static inline void flush_icache_deferred(struct mm_struct *mm)
+static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu)
{
#ifdef CONFIG_SMP
- unsigned int cpu = smp_processor_id();
cpumask_t *mask = &mm->context.icache_stale_mask;
if (cpumask_test_cpu(cpu, mask)) {
@@ -48,6 +323,8 @@ void switch_mm(struct mm_struct *prev, struct mm_struct *next,
if (unlikely(prev == next))
return;
+ membarrier_arch_switch_mm(prev, next, task);
+
/*
* Mark the current MM context as inactive, and the next as
* active. This is at least used by the icache flushing
@@ -55,13 +332,7 @@ void switch_mm(struct mm_struct *prev, struct mm_struct *next,
*/
cpu = smp_processor_id();
- cpumask_clear_cpu(cpu, mm_cpumask(prev));
- cpumask_set_cpu(cpu, mm_cpumask(next));
-
-#ifdef CONFIG_MMU
- csr_write(CSR_SATP, virt_to_pfn(next->pgd) | SATP_MODE);
- local_flush_tlb_all();
-#endif
+ set_mm(prev, next, cpu);
- flush_icache_deferred(next);
+ flush_icache_deferred(next, cpu);
}