summaryrefslogtreecommitdiff
path: root/arch/s390/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'arch/s390/crypto')
-rw-r--r--arch/s390/crypto/Makefile3
-rw-r--r--arch/s390/crypto/aes_s390.c230
-rw-r--r--arch/s390/crypto/crc32-vx.c310
-rw-r--r--arch/s390/crypto/crc32be-vx.S207
-rw-r--r--arch/s390/crypto/crc32le-vx.S268
-rw-r--r--arch/s390/crypto/crypt_s390.h493
-rw-r--r--arch/s390/crypto/des_s390.c72
-rw-r--r--arch/s390/crypto/ghash_s390.c16
-rw-r--r--arch/s390/crypto/prng.c60
-rw-r--r--arch/s390/crypto/sha1_s390.c10
-rw-r--r--arch/s390/crypto/sha256_s390.c14
-rw-r--r--arch/s390/crypto/sha512_s390.c14
-rw-r--r--arch/s390/crypto/sha_common.c10
13 files changed, 994 insertions, 713 deletions
diff --git a/arch/s390/crypto/Makefile b/arch/s390/crypto/Makefile
index 7f0b7cda6259..d1033de4c4ee 100644
--- a/arch/s390/crypto/Makefile
+++ b/arch/s390/crypto/Makefile
@@ -9,3 +9,6 @@ obj-$(CONFIG_CRYPTO_DES_S390) += des_s390.o
obj-$(CONFIG_CRYPTO_AES_S390) += aes_s390.o
obj-$(CONFIG_S390_PRNG) += prng.o
obj-$(CONFIG_CRYPTO_GHASH_S390) += ghash_s390.o
+obj-$(CONFIG_CRYPTO_CRC32_S390) += crc32-vx_s390.o
+
+crc32-vx_s390-y := crc32-vx.o crc32le-vx.o crc32be-vx.o
diff --git a/arch/s390/crypto/aes_s390.c b/arch/s390/crypto/aes_s390.c
index 48e1a2d3e318..2ea18b050309 100644
--- a/arch/s390/crypto/aes_s390.c
+++ b/arch/s390/crypto/aes_s390.c
@@ -22,13 +22,14 @@
#include <crypto/aes.h>
#include <crypto/algapi.h>
+#include <crypto/internal/skcipher.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/cpufeature.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <crypto/xts.h>
-#include "crypt_s390.h"
+#include <asm/cpacf.h>
#define AES_KEYLEN_128 1
#define AES_KEYLEN_192 2
@@ -44,7 +45,7 @@ struct s390_aes_ctx {
long dec;
int key_len;
union {
- struct crypto_blkcipher *blk;
+ struct crypto_skcipher *blk;
struct crypto_cipher *cip;
} fallback;
};
@@ -63,7 +64,7 @@ struct s390_xts_ctx {
long enc;
long dec;
int key_len;
- struct crypto_blkcipher *fallback;
+ struct crypto_skcipher *fallback;
};
/*
@@ -145,16 +146,16 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
switch (sctx->key_len) {
case 16:
- crypt_s390_km(KM_AES_128_ENCRYPT, &sctx->key, out, in,
- AES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_AES_128_ENC, &sctx->key, out, in,
+ AES_BLOCK_SIZE);
break;
case 24:
- crypt_s390_km(KM_AES_192_ENCRYPT, &sctx->key, out, in,
- AES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_AES_192_ENC, &sctx->key, out, in,
+ AES_BLOCK_SIZE);
break;
case 32:
- crypt_s390_km(KM_AES_256_ENCRYPT, &sctx->key, out, in,
- AES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_AES_256_ENC, &sctx->key, out, in,
+ AES_BLOCK_SIZE);
break;
}
}
@@ -170,16 +171,16 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
switch (sctx->key_len) {
case 16:
- crypt_s390_km(KM_AES_128_DECRYPT, &sctx->key, out, in,
- AES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_AES_128_DEC, &sctx->key, out, in,
+ AES_BLOCK_SIZE);
break;
case 24:
- crypt_s390_km(KM_AES_192_DECRYPT, &sctx->key, out, in,
- AES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_AES_192_DEC, &sctx->key, out, in,
+ AES_BLOCK_SIZE);
break;
case 32:
- crypt_s390_km(KM_AES_256_DECRYPT, &sctx->key, out, in,
- AES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_AES_256_DEC, &sctx->key, out, in,
+ AES_BLOCK_SIZE);
break;
}
}
@@ -212,7 +213,7 @@ static void fallback_exit_cip(struct crypto_tfm *tfm)
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
@@ -237,16 +238,16 @@ static int setkey_fallback_blk(struct crypto_tfm *tfm, const u8 *key,
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
unsigned int ret;
- sctx->fallback.blk->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
- sctx->fallback.blk->base.crt_flags |= (tfm->crt_flags &
- CRYPTO_TFM_REQ_MASK);
+ crypto_skcipher_clear_flags(sctx->fallback.blk, CRYPTO_TFM_REQ_MASK);
+ crypto_skcipher_set_flags(sctx->fallback.blk, tfm->crt_flags &
+ CRYPTO_TFM_REQ_MASK);
+
+ ret = crypto_skcipher_setkey(sctx->fallback.blk, key, len);
+
+ tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
+ tfm->crt_flags |= crypto_skcipher_get_flags(sctx->fallback.blk) &
+ CRYPTO_TFM_RES_MASK;
- ret = crypto_blkcipher_setkey(sctx->fallback.blk, key, len);
- if (ret) {
- tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
- tfm->crt_flags |= (sctx->fallback.blk->base.crt_flags &
- CRYPTO_TFM_RES_MASK);
- }
return ret;
}
@@ -255,15 +256,17 @@ static int fallback_blk_dec(struct blkcipher_desc *desc,
unsigned int nbytes)
{
unsigned int ret;
- struct crypto_blkcipher *tfm;
- struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
+ struct crypto_blkcipher *tfm = desc->tfm;
+ struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
+ SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
- tfm = desc->tfm;
- desc->tfm = sctx->fallback.blk;
+ skcipher_request_set_tfm(req, sctx->fallback.blk);
+ skcipher_request_set_callback(req, desc->flags, NULL, NULL);
+ skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
- ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
+ ret = crypto_skcipher_decrypt(req);
- desc->tfm = tfm;
+ skcipher_request_zero(req);
return ret;
}
@@ -272,15 +275,15 @@ static int fallback_blk_enc(struct blkcipher_desc *desc,
unsigned int nbytes)
{
unsigned int ret;
- struct crypto_blkcipher *tfm;
- struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
+ struct crypto_blkcipher *tfm = desc->tfm;
+ struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
+ SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
- tfm = desc->tfm;
- desc->tfm = sctx->fallback.blk;
+ skcipher_request_set_tfm(req, sctx->fallback.blk);
+ skcipher_request_set_callback(req, desc->flags, NULL, NULL);
+ skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
- ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
-
- desc->tfm = tfm;
+ ret = crypto_skcipher_encrypt(req);
return ret;
}
@@ -298,16 +301,16 @@ static int ecb_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
switch (key_len) {
case 16:
- sctx->enc = KM_AES_128_ENCRYPT;
- sctx->dec = KM_AES_128_DECRYPT;
+ sctx->enc = CPACF_KM_AES_128_ENC;
+ sctx->dec = CPACF_KM_AES_128_DEC;
break;
case 24:
- sctx->enc = KM_AES_192_ENCRYPT;
- sctx->dec = KM_AES_192_DECRYPT;
+ sctx->enc = CPACF_KM_AES_192_ENC;
+ sctx->dec = CPACF_KM_AES_192_DEC;
break;
case 32:
- sctx->enc = KM_AES_256_ENCRYPT;
- sctx->dec = KM_AES_256_DECRYPT;
+ sctx->enc = CPACF_KM_AES_256_ENC;
+ sctx->dec = CPACF_KM_AES_256_DEC;
break;
}
@@ -326,7 +329,7 @@ static int ecb_aes_crypt(struct blkcipher_desc *desc, long func, void *param,
u8 *out = walk->dst.virt.addr;
u8 *in = walk->src.virt.addr;
- ret = crypt_s390_km(func, param, out, in, n);
+ ret = cpacf_km(func, param, out, in, n);
if (ret < 0 || ret != n)
return -EIO;
@@ -370,8 +373,9 @@ static int fallback_init_blk(struct crypto_tfm *tfm)
const char *name = tfm->__crt_alg->cra_name;
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
- sctx->fallback.blk = crypto_alloc_blkcipher(name, 0,
- CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
+ sctx->fallback.blk = crypto_alloc_skcipher(name, 0,
+ CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(sctx->fallback.blk)) {
pr_err("Allocating AES fallback algorithm %s failed\n",
@@ -386,14 +390,13 @@ static void fallback_exit_blk(struct crypto_tfm *tfm)
{
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
- crypto_free_blkcipher(sctx->fallback.blk);
- sctx->fallback.blk = NULL;
+ crypto_free_skcipher(sctx->fallback.blk);
}
static struct crypto_alg ecb_aes_alg = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: aes + ecb */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
@@ -427,16 +430,16 @@ static int cbc_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
switch (key_len) {
case 16:
- sctx->enc = KMC_AES_128_ENCRYPT;
- sctx->dec = KMC_AES_128_DECRYPT;
+ sctx->enc = CPACF_KMC_AES_128_ENC;
+ sctx->dec = CPACF_KMC_AES_128_DEC;
break;
case 24:
- sctx->enc = KMC_AES_192_ENCRYPT;
- sctx->dec = KMC_AES_192_DECRYPT;
+ sctx->enc = CPACF_KMC_AES_192_ENC;
+ sctx->dec = CPACF_KMC_AES_192_DEC;
break;
case 32:
- sctx->enc = KMC_AES_256_ENCRYPT;
- sctx->dec = KMC_AES_256_DECRYPT;
+ sctx->enc = CPACF_KMC_AES_256_ENC;
+ sctx->dec = CPACF_KMC_AES_256_DEC;
break;
}
@@ -465,7 +468,7 @@ static int cbc_aes_crypt(struct blkcipher_desc *desc, long func,
u8 *out = walk->dst.virt.addr;
u8 *in = walk->src.virt.addr;
- ret = crypt_s390_kmc(func, &param, out, in, n);
+ ret = cpacf_kmc(func, &param, out, in, n);
if (ret < 0 || ret != n)
return -EIO;
@@ -509,7 +512,7 @@ static int cbc_aes_decrypt(struct blkcipher_desc *desc,
static struct crypto_alg cbc_aes_alg = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: aes + cbc */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
@@ -536,16 +539,16 @@ static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
unsigned int ret;
- xts_ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
- xts_ctx->fallback->base.crt_flags |= (tfm->crt_flags &
- CRYPTO_TFM_REQ_MASK);
+ crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
+ crypto_skcipher_set_flags(xts_ctx->fallback, tfm->crt_flags &
+ CRYPTO_TFM_REQ_MASK);
+
+ ret = crypto_skcipher_setkey(xts_ctx->fallback, key, len);
+
+ tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
+ tfm->crt_flags |= crypto_skcipher_get_flags(xts_ctx->fallback) &
+ CRYPTO_TFM_RES_MASK;
- ret = crypto_blkcipher_setkey(xts_ctx->fallback, key, len);
- if (ret) {
- tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
- tfm->crt_flags |= (xts_ctx->fallback->base.crt_flags &
- CRYPTO_TFM_RES_MASK);
- }
return ret;
}
@@ -553,16 +556,18 @@ static int xts_fallback_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
- struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
- struct crypto_blkcipher *tfm;
+ struct crypto_blkcipher *tfm = desc->tfm;
+ struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
+ SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
unsigned int ret;
- tfm = desc->tfm;
- desc->tfm = xts_ctx->fallback;
+ skcipher_request_set_tfm(req, xts_ctx->fallback);
+ skcipher_request_set_callback(req, desc->flags, NULL, NULL);
+ skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
- ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
+ ret = crypto_skcipher_decrypt(req);
- desc->tfm = tfm;
+ skcipher_request_zero(req);
return ret;
}
@@ -570,16 +575,18 @@ static int xts_fallback_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
- struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
- struct crypto_blkcipher *tfm;
+ struct crypto_blkcipher *tfm = desc->tfm;
+ struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
+ SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
unsigned int ret;
- tfm = desc->tfm;
- desc->tfm = xts_ctx->fallback;
+ skcipher_request_set_tfm(req, xts_ctx->fallback);
+ skcipher_request_set_callback(req, desc->flags, NULL, NULL);
+ skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
- ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
+ ret = crypto_skcipher_encrypt(req);
- desc->tfm = tfm;
+ skcipher_request_zero(req);
return ret;
}
@@ -596,8 +603,8 @@ static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
switch (key_len) {
case 32:
- xts_ctx->enc = KM_XTS_128_ENCRYPT;
- xts_ctx->dec = KM_XTS_128_DECRYPT;
+ xts_ctx->enc = CPACF_KM_XTS_128_ENC;
+ xts_ctx->dec = CPACF_KM_XTS_128_DEC;
memcpy(xts_ctx->key + 16, in_key, 16);
memcpy(xts_ctx->pcc_key + 16, in_key + 16, 16);
break;
@@ -607,8 +614,8 @@ static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
xts_fallback_setkey(tfm, in_key, key_len);
break;
case 64:
- xts_ctx->enc = KM_XTS_256_ENCRYPT;
- xts_ctx->dec = KM_XTS_256_DECRYPT;
+ xts_ctx->enc = CPACF_KM_XTS_256_ENC;
+ xts_ctx->dec = CPACF_KM_XTS_256_DEC;
memcpy(xts_ctx->key, in_key, 32);
memcpy(xts_ctx->pcc_key, in_key + 32, 32);
break;
@@ -643,7 +650,8 @@ static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
memcpy(pcc_param.tweak, walk->iv, sizeof(pcc_param.tweak));
memcpy(pcc_param.key, xts_ctx->pcc_key, 32);
- ret = crypt_s390_pcc(func, &pcc_param.key[offset]);
+ /* remove decipher modifier bit from 'func' and call PCC */
+ ret = cpacf_pcc(func & 0x7f, &pcc_param.key[offset]);
if (ret < 0)
return -EIO;
@@ -655,7 +663,7 @@ static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
- ret = crypt_s390_km(func, &xts_param.key[offset], out, in, n);
+ ret = cpacf_km(func, &xts_param.key[offset], out, in, n);
if (ret < 0 || ret != n)
return -EIO;
@@ -699,8 +707,9 @@ static int xts_fallback_init(struct crypto_tfm *tfm)
const char *name = tfm->__crt_alg->cra_name;
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
- xts_ctx->fallback = crypto_alloc_blkcipher(name, 0,
- CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
+ xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
+ CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(xts_ctx->fallback)) {
pr_err("Allocating XTS fallback algorithm %s failed\n",
@@ -714,14 +723,13 @@ static void xts_fallback_exit(struct crypto_tfm *tfm)
{
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
- crypto_free_blkcipher(xts_ctx->fallback);
- xts_ctx->fallback = NULL;
+ crypto_free_skcipher(xts_ctx->fallback);
}
static struct crypto_alg xts_aes_alg = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: aes + xts */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
@@ -751,16 +759,16 @@ static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
switch (key_len) {
case 16:
- sctx->enc = KMCTR_AES_128_ENCRYPT;
- sctx->dec = KMCTR_AES_128_DECRYPT;
+ sctx->enc = CPACF_KMCTR_AES_128_ENC;
+ sctx->dec = CPACF_KMCTR_AES_128_DEC;
break;
case 24:
- sctx->enc = KMCTR_AES_192_ENCRYPT;
- sctx->dec = KMCTR_AES_192_DECRYPT;
+ sctx->enc = CPACF_KMCTR_AES_192_ENC;
+ sctx->dec = CPACF_KMCTR_AES_192_DEC;
break;
case 32:
- sctx->enc = KMCTR_AES_256_ENCRYPT;
- sctx->dec = KMCTR_AES_256_DECRYPT;
+ sctx->enc = CPACF_KMCTR_AES_256_ENC;
+ sctx->dec = CPACF_KMCTR_AES_256_DEC;
break;
}
@@ -804,8 +812,7 @@ static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
n = __ctrblk_init(ctrptr, nbytes);
else
n = AES_BLOCK_SIZE;
- ret = crypt_s390_kmctr(func, sctx->key, out, in,
- n, ctrptr);
+ ret = cpacf_kmctr(func, sctx->key, out, in, n, ctrptr);
if (ret < 0 || ret != n) {
if (ctrptr == ctrblk)
spin_unlock(&ctrblk_lock);
@@ -837,8 +844,8 @@ static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
if (nbytes) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
- ret = crypt_s390_kmctr(func, sctx->key, buf, in,
- AES_BLOCK_SIZE, ctrbuf);
+ ret = cpacf_kmctr(func, sctx->key, buf, in,
+ AES_BLOCK_SIZE, ctrbuf);
if (ret < 0 || ret != AES_BLOCK_SIZE)
return -EIO;
memcpy(out, buf, nbytes);
@@ -875,7 +882,7 @@ static int ctr_aes_decrypt(struct blkcipher_desc *desc,
static struct crypto_alg ctr_aes_alg = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: aes + ctr */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_aes_ctx),
@@ -899,11 +906,11 @@ static int __init aes_s390_init(void)
{
int ret;
- if (crypt_s390_func_available(KM_AES_128_ENCRYPT, CRYPT_S390_MSA))
+ if (cpacf_query(CPACF_KM, CPACF_KM_AES_128_ENC))
keylen_flag |= AES_KEYLEN_128;
- if (crypt_s390_func_available(KM_AES_192_ENCRYPT, CRYPT_S390_MSA))
+ if (cpacf_query(CPACF_KM, CPACF_KM_AES_192_ENC))
keylen_flag |= AES_KEYLEN_192;
- if (crypt_s390_func_available(KM_AES_256_ENCRYPT, CRYPT_S390_MSA))
+ if (cpacf_query(CPACF_KM, CPACF_KM_AES_256_ENC))
keylen_flag |= AES_KEYLEN_256;
if (!keylen_flag)
@@ -926,22 +933,17 @@ static int __init aes_s390_init(void)
if (ret)
goto cbc_aes_err;
- if (crypt_s390_func_available(KM_XTS_128_ENCRYPT,
- CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
- crypt_s390_func_available(KM_XTS_256_ENCRYPT,
- CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
+ if (cpacf_query(CPACF_KM, CPACF_KM_XTS_128_ENC) &&
+ cpacf_query(CPACF_KM, CPACF_KM_XTS_256_ENC)) {
ret = crypto_register_alg(&xts_aes_alg);
if (ret)
goto xts_aes_err;
xts_aes_alg_reg = 1;
}
- if (crypt_s390_func_available(KMCTR_AES_128_ENCRYPT,
- CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
- crypt_s390_func_available(KMCTR_AES_192_ENCRYPT,
- CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
- crypt_s390_func_available(KMCTR_AES_256_ENCRYPT,
- CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
+ if (cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_128_ENC) &&
+ cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_192_ENC) &&
+ cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_256_ENC)) {
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) {
ret = -ENOMEM;
diff --git a/arch/s390/crypto/crc32-vx.c b/arch/s390/crypto/crc32-vx.c
new file mode 100644
index 000000000000..577ae1d4ae89
--- /dev/null
+++ b/arch/s390/crypto/crc32-vx.c
@@ -0,0 +1,310 @@
+/*
+ * Crypto-API module for CRC-32 algorithms implemented with the
+ * z/Architecture Vector Extension Facility.
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+#define KMSG_COMPONENT "crc32-vx"
+#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
+
+#include <linux/module.h>
+#include <linux/cpufeature.h>
+#include <linux/crc32.h>
+#include <crypto/internal/hash.h>
+#include <asm/fpu/api.h>
+
+
+#define CRC32_BLOCK_SIZE 1
+#define CRC32_DIGEST_SIZE 4
+
+#define VX_MIN_LEN 64
+#define VX_ALIGNMENT 16L
+#define VX_ALIGN_MASK (VX_ALIGNMENT - 1)
+
+struct crc_ctx {
+ u32 key;
+};
+
+struct crc_desc_ctx {
+ u32 crc;
+};
+
+/* Prototypes for functions in assembly files */
+u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
+u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
+u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
+
+/*
+ * DEFINE_CRC32_VX() - Define a CRC-32 function using the vector extension
+ *
+ * Creates a function to perform a particular CRC-32 computation. Depending
+ * on the message buffer, the hardware-accelerated or software implementation
+ * is used. Note that the message buffer is aligned to improve fetch
+ * operations of VECTOR LOAD MULTIPLE instructions.
+ *
+ */
+#define DEFINE_CRC32_VX(___fname, ___crc32_vx, ___crc32_sw) \
+ static u32 __pure ___fname(u32 crc, \
+ unsigned char const *data, size_t datalen) \
+ { \
+ struct kernel_fpu vxstate; \
+ unsigned long prealign, aligned, remaining; \
+ \
+ if ((unsigned long)data & VX_ALIGN_MASK) { \
+ prealign = VX_ALIGNMENT - \
+ ((unsigned long)data & VX_ALIGN_MASK); \
+ datalen -= prealign; \
+ crc = ___crc32_sw(crc, data, prealign); \
+ data = (void *)((unsigned long)data + prealign); \
+ } \
+ \
+ if (datalen < VX_MIN_LEN) \
+ return ___crc32_sw(crc, data, datalen); \
+ \
+ aligned = datalen & ~VX_ALIGN_MASK; \
+ remaining = datalen & VX_ALIGN_MASK; \
+ \
+ kernel_fpu_begin(&vxstate, KERNEL_VXR_LOW); \
+ crc = ___crc32_vx(crc, data, aligned); \
+ kernel_fpu_end(&vxstate); \
+ \
+ if (remaining) \
+ crc = ___crc32_sw(crc, data + aligned, remaining); \
+ \
+ return crc; \
+ }
+
+DEFINE_CRC32_VX(crc32_le_vx, crc32_le_vgfm_16, crc32_le)
+DEFINE_CRC32_VX(crc32_be_vx, crc32_be_vgfm_16, crc32_be)
+DEFINE_CRC32_VX(crc32c_le_vx, crc32c_le_vgfm_16, __crc32c_le)
+
+
+static int crc32_vx_cra_init_zero(struct crypto_tfm *tfm)
+{
+ struct crc_ctx *mctx = crypto_tfm_ctx(tfm);
+
+ mctx->key = 0;
+ return 0;
+}
+
+static int crc32_vx_cra_init_invert(struct crypto_tfm *tfm)
+{
+ struct crc_ctx *mctx = crypto_tfm_ctx(tfm);
+
+ mctx->key = ~0;
+ return 0;
+}
+
+static int crc32_vx_init(struct shash_desc *desc)
+{
+ struct crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
+ struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
+
+ ctx->crc = mctx->key;
+ return 0;
+}
+
+static int crc32_vx_setkey(struct crypto_shash *tfm, const u8 *newkey,
+ unsigned int newkeylen)
+{
+ struct crc_ctx *mctx = crypto_shash_ctx(tfm);
+
+ if (newkeylen != sizeof(mctx->key)) {
+ crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
+ return -EINVAL;
+ }
+ mctx->key = le32_to_cpu(*(__le32 *)newkey);
+ return 0;
+}
+
+static int crc32be_vx_setkey(struct crypto_shash *tfm, const u8 *newkey,
+ unsigned int newkeylen)
+{
+ struct crc_ctx *mctx = crypto_shash_ctx(tfm);
+
+ if (newkeylen != sizeof(mctx->key)) {
+ crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
+ return -EINVAL;
+ }
+ mctx->key = be32_to_cpu(*(__be32 *)newkey);
+ return 0;
+}
+
+static int crc32le_vx_final(struct shash_desc *desc, u8 *out)
+{
+ struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
+
+ *(__le32 *)out = cpu_to_le32p(&ctx->crc);
+ return 0;
+}
+
+static int crc32be_vx_final(struct shash_desc *desc, u8 *out)
+{
+ struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
+
+ *(__be32 *)out = cpu_to_be32p(&ctx->crc);
+ return 0;
+}
+
+static int crc32c_vx_final(struct shash_desc *desc, u8 *out)
+{
+ struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
+
+ /*
+ * Perform a final XOR with 0xFFFFFFFF to be in sync
+ * with the generic crc32c shash implementation.
+ */
+ *(__le32 *)out = ~cpu_to_le32p(&ctx->crc);
+ return 0;
+}
+
+static int __crc32le_vx_finup(u32 *crc, const u8 *data, unsigned int len,
+ u8 *out)
+{
+ *(__le32 *)out = cpu_to_le32(crc32_le_vx(*crc, data, len));
+ return 0;
+}
+
+static int __crc32be_vx_finup(u32 *crc, const u8 *data, unsigned int len,
+ u8 *out)
+{
+ *(__be32 *)out = cpu_to_be32(crc32_be_vx(*crc, data, len));
+ return 0;
+}
+
+static int __crc32c_vx_finup(u32 *crc, const u8 *data, unsigned int len,
+ u8 *out)
+{
+ /*
+ * Perform a final XOR with 0xFFFFFFFF to be in sync
+ * with the generic crc32c shash implementation.
+ */
+ *(__le32 *)out = ~cpu_to_le32(crc32c_le_vx(*crc, data, len));
+ return 0;
+}
+
+
+#define CRC32_VX_FINUP(alg, func) \
+ static int alg ## _vx_finup(struct shash_desc *desc, const u8 *data, \
+ unsigned int datalen, u8 *out) \
+ { \
+ return __ ## alg ## _vx_finup(shash_desc_ctx(desc), \
+ data, datalen, out); \
+ }
+
+CRC32_VX_FINUP(crc32le, crc32_le_vx)
+CRC32_VX_FINUP(crc32be, crc32_be_vx)
+CRC32_VX_FINUP(crc32c, crc32c_le_vx)
+
+#define CRC32_VX_DIGEST(alg, func) \
+ static int alg ## _vx_digest(struct shash_desc *desc, const u8 *data, \
+ unsigned int len, u8 *out) \
+ { \
+ return __ ## alg ## _vx_finup(crypto_shash_ctx(desc->tfm), \
+ data, len, out); \
+ }
+
+CRC32_VX_DIGEST(crc32le, crc32_le_vx)
+CRC32_VX_DIGEST(crc32be, crc32_be_vx)
+CRC32_VX_DIGEST(crc32c, crc32c_le_vx)
+
+#define CRC32_VX_UPDATE(alg, func) \
+ static int alg ## _vx_update(struct shash_desc *desc, const u8 *data, \
+ unsigned int datalen) \
+ { \
+ struct crc_desc_ctx *ctx = shash_desc_ctx(desc); \
+ ctx->crc = func(ctx->crc, data, datalen); \
+ return 0; \
+ }
+
+CRC32_VX_UPDATE(crc32le, crc32_le_vx)
+CRC32_VX_UPDATE(crc32be, crc32_be_vx)
+CRC32_VX_UPDATE(crc32c, crc32c_le_vx)
+
+
+static struct shash_alg crc32_vx_algs[] = {
+ /* CRC-32 LE */
+ {
+ .init = crc32_vx_init,
+ .setkey = crc32_vx_setkey,
+ .update = crc32le_vx_update,
+ .final = crc32le_vx_final,
+ .finup = crc32le_vx_finup,
+ .digest = crc32le_vx_digest,
+ .descsize = sizeof(struct crc_desc_ctx),
+ .digestsize = CRC32_DIGEST_SIZE,
+ .base = {
+ .cra_name = "crc32",
+ .cra_driver_name = "crc32-vx",
+ .cra_priority = 200,
+ .cra_blocksize = CRC32_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct crc_ctx),
+ .cra_module = THIS_MODULE,
+ .cra_init = crc32_vx_cra_init_zero,
+ },
+ },
+ /* CRC-32 BE */
+ {
+ .init = crc32_vx_init,
+ .setkey = crc32be_vx_setkey,
+ .update = crc32be_vx_update,
+ .final = crc32be_vx_final,
+ .finup = crc32be_vx_finup,
+ .digest = crc32be_vx_digest,
+ .descsize = sizeof(struct crc_desc_ctx),
+ .digestsize = CRC32_DIGEST_SIZE,
+ .base = {
+ .cra_name = "crc32be",
+ .cra_driver_name = "crc32be-vx",
+ .cra_priority = 200,
+ .cra_blocksize = CRC32_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct crc_ctx),
+ .cra_module = THIS_MODULE,
+ .cra_init = crc32_vx_cra_init_zero,
+ },
+ },
+ /* CRC-32C LE */
+ {
+ .init = crc32_vx_init,
+ .setkey = crc32_vx_setkey,
+ .update = crc32c_vx_update,
+ .final = crc32c_vx_final,
+ .finup = crc32c_vx_finup,
+ .digest = crc32c_vx_digest,
+ .descsize = sizeof(struct crc_desc_ctx),
+ .digestsize = CRC32_DIGEST_SIZE,
+ .base = {
+ .cra_name = "crc32c",
+ .cra_driver_name = "crc32c-vx",
+ .cra_priority = 200,
+ .cra_blocksize = CRC32_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct crc_ctx),
+ .cra_module = THIS_MODULE,
+ .cra_init = crc32_vx_cra_init_invert,
+ },
+ },
+};
+
+
+static int __init crc_vx_mod_init(void)
+{
+ return crypto_register_shashes(crc32_vx_algs,
+ ARRAY_SIZE(crc32_vx_algs));
+}
+
+static void __exit crc_vx_mod_exit(void)
+{
+ crypto_unregister_shashes(crc32_vx_algs, ARRAY_SIZE(crc32_vx_algs));
+}
+
+module_cpu_feature_match(VXRS, crc_vx_mod_init);
+module_exit(crc_vx_mod_exit);
+
+MODULE_AUTHOR("Hendrik Brueckner <brueckner@linux.vnet.ibm.com>");
+MODULE_LICENSE("GPL");
+
+MODULE_ALIAS_CRYPTO("crc32");
+MODULE_ALIAS_CRYPTO("crc32-vx");
+MODULE_ALIAS_CRYPTO("crc32c");
+MODULE_ALIAS_CRYPTO("crc32c-vx");
diff --git a/arch/s390/crypto/crc32be-vx.S b/arch/s390/crypto/crc32be-vx.S
new file mode 100644
index 000000000000..8013989cd2e5
--- /dev/null
+++ b/arch/s390/crypto/crc32be-vx.S
@@ -0,0 +1,207 @@
+/*
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
+ *
+ * Use the z/Architecture Vector Extension Facility to accelerate the
+ * computing of CRC-32 checksums.
+ *
+ * This CRC-32 implementation algorithm processes the most-significant
+ * bit first (BE).
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+
+#include <linux/linkage.h>
+#include <asm/vx-insn.h>
+
+/* Vector register range containing CRC-32 constants */
+#define CONST_R1R2 %v9
+#define CONST_R3R4 %v10
+#define CONST_R5 %v11
+#define CONST_R6 %v12
+#define CONST_RU_POLY %v13
+#define CONST_CRC_POLY %v14
+
+.data
+.align 8
+
+/*
+ * The CRC-32 constant block contains reduction constants to fold and
+ * process particular chunks of the input data stream in parallel.
+ *
+ * For the CRC-32 variants, the constants are precomputed according to
+ * these defintions:
+ *
+ * R1 = x4*128+64 mod P(x)
+ * R2 = x4*128 mod P(x)
+ * R3 = x128+64 mod P(x)
+ * R4 = x128 mod P(x)
+ * R5 = x96 mod P(x)
+ * R6 = x64 mod P(x)
+ *
+ * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
+ *
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
+ * polynomial in the reversed (bitreflected) domain.
+ *
+ * Note that the constant definitions below are extended in order to compute
+ * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
+ * The righmost doubleword can be 0 to prevent contribution to the result or
+ * can be multiplied by 1 to perform an XOR without the need for a separate
+ * VECTOR EXCLUSIVE OR instruction.
+ *
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
+ *
+ * P(x) = 0x04C11DB7
+ * P'(x) = 0xEDB88320
+ */
+
+.Lconstants_CRC_32_BE:
+ .quad 0x08833794c, 0x0e6228b11 # R1, R2
+ .quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4
+ .quad 0x0f200aa66, 1 << 32 # R5, x32
+ .quad 0x0490d678d, 1 # R6, 1
+ .quad 0x104d101df, 0 # u
+ .quad 0x104C11DB7, 0 # P(x)
+
+.previous
+
+.text
+/*
+ * The CRC-32 function(s) use these calling conventions:
+ *
+ * Parameters:
+ *
+ * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
+ * %r3: Input buffer pointer, performance might be improved if the
+ * buffer is on a doubleword boundary.
+ * %r4: Length of the buffer, must be 64 bytes or greater.
+ *
+ * Register usage:
+ *
+ * %r5: CRC-32 constant pool base pointer.
+ * V0: Initial CRC value and intermediate constants and results.
+ * V1..V4: Data for CRC computation.
+ * V5..V8: Next data chunks that are fetched from the input buffer.
+ *
+ * V9..V14: CRC-32 constants.
+ */
+ENTRY(crc32_be_vgfm_16)
+ /* Load CRC-32 constants */
+ larl %r5,.Lconstants_CRC_32_BE
+ VLM CONST_R1R2,CONST_CRC_POLY,0,%r5
+
+ /* Load the initial CRC value into the leftmost word of V0. */
+ VZERO %v0
+ VLVGF %v0,%r2,0
+
+ /* Load a 64-byte data chunk and XOR with CRC */
+ VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
+ VX %v1,%v0,%v1 /* V1 ^= CRC */
+ aghi %r3,64 /* BUF = BUF + 64 */
+ aghi %r4,-64 /* LEN = LEN - 64 */
+
+ /* Check remaining buffer size and jump to proper folding method */
+ cghi %r4,64
+ jl .Lless_than_64bytes
+
+.Lfold_64bytes_loop:
+ /* Load the next 64-byte data chunk into V5 to V8 */
+ VLM %v5,%v8,0,%r3
+
+ /*
+ * Perform a GF(2) multiplication of the doublewords in V1 with
+ * the reduction constants in V0. The intermediate result is
+ * then folded (accumulated) with the next data chunk in V5 and
+ * stored in V1. Repeat this step for the register contents
+ * in V2, V3, and V4 respectively.
+ */
+ VGFMAG %v1,CONST_R1R2,%v1,%v5
+ VGFMAG %v2,CONST_R1R2,%v2,%v6
+ VGFMAG %v3,CONST_R1R2,%v3,%v7
+ VGFMAG %v4,CONST_R1R2,%v4,%v8
+
+ /* Adjust buffer pointer and length for next loop */
+ aghi %r3,64 /* BUF = BUF + 64 */
+ aghi %r4,-64 /* LEN = LEN - 64 */
+
+ cghi %r4,64
+ jnl .Lfold_64bytes_loop
+
+.Lless_than_64bytes:
+ /* Fold V1 to V4 into a single 128-bit value in V1 */
+ VGFMAG %v1,CONST_R3R4,%v1,%v2
+ VGFMAG %v1,CONST_R3R4,%v1,%v3
+ VGFMAG %v1,CONST_R3R4,%v1,%v4
+
+ /* Check whether to continue with 64-bit folding */
+ cghi %r4,16
+ jl .Lfinal_fold
+
+.Lfold_16bytes_loop:
+
+ VL %v2,0,,%r3 /* Load next data chunk */
+ VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */
+
+ /* Adjust buffer pointer and size for folding next data chunk */
+ aghi %r3,16
+ aghi %r4,-16
+
+ /* Process remaining data chunks */
+ cghi %r4,16
+ jnl .Lfold_16bytes_loop
+
+.Lfinal_fold:
+ /*
+ * The R5 constant is used to fold a 128-bit value into an 96-bit value
+ * that is XORed with the next 96-bit input data chunk. To use a single
+ * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
+ * form an intermediate 96-bit value (with appended zeros) which is then
+ * XORed with the intermediate reduction result.
+ */
+ VGFMG %v1,CONST_R5,%v1
+
+ /*
+ * Further reduce the remaining 96-bit value to a 64-bit value using a
+ * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
+ * intermediate result is then XORed with the product of the leftmost
+ * doubleword with R6. The result is a 64-bit value and is subject to
+ * the Barret reduction.
+ */
+ VGFMG %v1,CONST_R6,%v1
+
+ /*
+ * The input values to the Barret reduction are the degree-63 polynomial
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
+ * P(x).
+ *
+ * The Barret reduction algorithm is defined as:
+ *
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
+ *
+ * Note: To compensate the division by x^32, use the vector unpack
+ * instruction to move the leftmost word into the leftmost doubleword
+ * of the vector register. The rightmost doubleword is multiplied
+ * with zero to not contribute to the intermedate results.
+ */
+
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
+ VUPLLF %v2,%v1
+ VGFMG %v2,CONST_RU_POLY,%v2
+
+ /*
+ * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
+ * The final result is in the rightmost word of V2.
+ */
+ VUPLLF %v2,%v2
+ VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
+
+.Ldone:
+ VLGVF %r2,%v2,3
+ br %r14
+
+.previous
diff --git a/arch/s390/crypto/crc32le-vx.S b/arch/s390/crypto/crc32le-vx.S
new file mode 100644
index 000000000000..17f2504c2633
--- /dev/null
+++ b/arch/s390/crypto/crc32le-vx.S
@@ -0,0 +1,268 @@
+/*
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
+ *
+ * Use the z/Architecture Vector Extension Facility to accelerate the
+ * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
+ * and Castagnoli.
+ *
+ * This CRC-32 implementation algorithm is bitreflected and processes
+ * the least-significant bit first (Little-Endian).
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+
+#include <linux/linkage.h>
+#include <asm/vx-insn.h>
+
+/* Vector register range containing CRC-32 constants */
+#define CONST_PERM_LE2BE %v9
+#define CONST_R2R1 %v10
+#define CONST_R4R3 %v11
+#define CONST_R5 %v12
+#define CONST_RU_POLY %v13
+#define CONST_CRC_POLY %v14
+
+.data
+.align 8
+
+/*
+ * The CRC-32 constant block contains reduction constants to fold and
+ * process particular chunks of the input data stream in parallel.
+ *
+ * For the CRC-32 variants, the constants are precomputed according to
+ * these definitions:
+ *
+ * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
+ * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
+ * R3 = [(x128+32 mod P'(x) << 32)]' << 1
+ * R4 = [(x128-32 mod P'(x) << 32)]' << 1
+ * R5 = [(x64 mod P'(x) << 32)]' << 1
+ * R6 = [(x32 mod P'(x) << 32)]' << 1
+ *
+ * The bitreflected Barret reduction constant, u', is defined as
+ * the bit reversal of floor(x**64 / P(x)).
+ *
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
+ * polynomial in the reversed (bitreflected) domain.
+ *
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
+ *
+ * P(x) = 0x04C11DB7
+ * P'(x) = 0xEDB88320
+ *
+ * CRC-32C (Castagnoli) polynomials:
+ *
+ * P(x) = 0x1EDC6F41
+ * P'(x) = 0x82F63B78
+ */
+
+.Lconstants_CRC_32_LE:
+ .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
+ .quad 0x1c6e41596, 0x154442bd4 # R2, R1
+ .quad 0x0ccaa009e, 0x1751997d0 # R4, R3
+ .octa 0x163cd6124 # R5
+ .octa 0x1F7011641 # u'
+ .octa 0x1DB710641 # P'(x) << 1
+
+.Lconstants_CRC_32C_LE:
+ .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
+ .quad 0x09e4addf8, 0x740eef02 # R2, R1
+ .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3
+ .octa 0x0dd45aab8 # R5
+ .octa 0x0dea713f1 # u'
+ .octa 0x105ec76f0 # P'(x) << 1
+
+.previous
+
+
+.text
+
+/*
+ * The CRC-32 functions use these calling conventions:
+ *
+ * Parameters:
+ *
+ * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
+ * %r3: Input buffer pointer, performance might be improved if the
+ * buffer is on a doubleword boundary.
+ * %r4: Length of the buffer, must be 64 bytes or greater.
+ *
+ * Register usage:
+ *
+ * %r5: CRC-32 constant pool base pointer.
+ * V0: Initial CRC value and intermediate constants and results.
+ * V1..V4: Data for CRC computation.
+ * V5..V8: Next data chunks that are fetched from the input buffer.
+ * V9: Constant for BE->LE conversion and shift operations
+ *
+ * V10..V14: CRC-32 constants.
+ */
+
+ENTRY(crc32_le_vgfm_16)
+ larl %r5,.Lconstants_CRC_32_LE
+ j crc32_le_vgfm_generic
+
+ENTRY(crc32c_le_vgfm_16)
+ larl %r5,.Lconstants_CRC_32C_LE
+ j crc32_le_vgfm_generic
+
+
+crc32_le_vgfm_generic:
+ /* Load CRC-32 constants */
+ VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
+
+ /*
+ * Load the initial CRC value.
+ *
+ * The CRC value is loaded into the rightmost word of the
+ * vector register and is later XORed with the LSB portion
+ * of the loaded input data.
+ */
+ VZERO %v0 /* Clear V0 */
+ VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
+
+ /* Load a 64-byte data chunk and XOR with CRC */
+ VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
+ VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
+ VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
+ VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
+ VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
+
+ VX %v1,%v0,%v1 /* V1 ^= CRC */
+ aghi %r3,64 /* BUF = BUF + 64 */
+ aghi %r4,-64 /* LEN = LEN - 64 */
+
+ cghi %r4,64
+ jl .Lless_than_64bytes
+
+.Lfold_64bytes_loop:
+ /* Load the next 64-byte data chunk into V5 to V8 */
+ VLM %v5,%v8,0,%r3
+ VPERM %v5,%v5,%v5,CONST_PERM_LE2BE
+ VPERM %v6,%v6,%v6,CONST_PERM_LE2BE
+ VPERM %v7,%v7,%v7,CONST_PERM_LE2BE
+ VPERM %v8,%v8,%v8,CONST_PERM_LE2BE
+
+ /*
+ * Perform a GF(2) multiplication of the doublewords in V1 with
+ * the R1 and R2 reduction constants in V0. The intermediate result
+ * is then folded (accumulated) with the next data chunk in V5 and
+ * stored in V1. Repeat this step for the register contents
+ * in V2, V3, and V4 respectively.
+ */
+ VGFMAG %v1,CONST_R2R1,%v1,%v5
+ VGFMAG %v2,CONST_R2R1,%v2,%v6
+ VGFMAG %v3,CONST_R2R1,%v3,%v7
+ VGFMAG %v4,CONST_R2R1,%v4,%v8
+
+ aghi %r3,64 /* BUF = BUF + 64 */
+ aghi %r4,-64 /* LEN = LEN - 64 */
+
+ cghi %r4,64
+ jnl .Lfold_64bytes_loop
+
+.Lless_than_64bytes:
+ /*
+ * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
+ * and R4 and accumulating the next 128-bit chunk until a single 128-bit
+ * value remains.
+ */
+ VGFMAG %v1,CONST_R4R3,%v1,%v2
+ VGFMAG %v1,CONST_R4R3,%v1,%v3
+ VGFMAG %v1,CONST_R4R3,%v1,%v4
+
+ cghi %r4,16
+ jl .Lfinal_fold
+
+.Lfold_16bytes_loop:
+
+ VL %v2,0,,%r3 /* Load next data chunk */
+ VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
+ VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
+
+ aghi %r3,16
+ aghi %r4,-16
+
+ cghi %r4,16
+ jnl .Lfold_16bytes_loop
+
+.Lfinal_fold:
+ /*
+ * Set up a vector register for byte shifts. The shift value must
+ * be loaded in bits 1-4 in byte element 7 of a vector register.
+ * Shift by 8 bytes: 0x40
+ * Shift by 4 bytes: 0x20
+ */
+ VLEIB %v9,0x40,7
+
+ /*
+ * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
+ * to move R4 into the rightmost doubleword and set the leftmost
+ * doubleword to 0x1.
+ */
+ VSRLB %v0,CONST_R4R3,%v9
+ VLEIG %v0,1,0
+
+ /*
+ * Compute GF(2) product of V1 and V0. The rightmost doubleword
+ * of V1 is multiplied with R4. The leftmost doubleword of V1 is
+ * multiplied by 0x1 and is then XORed with rightmost product.
+ * Implicitly, the intermediate leftmost product becomes padded
+ */
+ VGFMG %v1,%v0,%v1
+
+ /*
+ * Now do the final 32-bit fold by multiplying the rightmost word
+ * in V1 with R5 and XOR the result with the remaining bits in V1.
+ *
+ * To achieve this by a single VGFMAG, right shift V1 by a word
+ * and store the result in V2 which is then accumulated. Use the
+ * vector unpack instruction to load the rightmost half of the
+ * doubleword into the rightmost doubleword element of V1; the other
+ * half is loaded in the leftmost doubleword.
+ * The vector register with CONST_R5 contains the R5 constant in the
+ * rightmost doubleword and the leftmost doubleword is zero to ignore
+ * the leftmost product of V1.
+ */
+ VLEIB %v9,0x20,7 /* Shift by words */
+ VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */
+ VUPLLF %v1,%v1 /* Split rightmost doubleword */
+ VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
+
+ /*
+ * Apply a Barret reduction to compute the final 32-bit CRC value.
+ *
+ * The input values to the Barret reduction are the degree-63 polynomial
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
+ * P(x).
+ *
+ * The Barret reduction algorithm is defined as:
+ *
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
+ *
+ * Note: The leftmost doubleword of vector register containing
+ * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
+ * is zero and does not contribute to the final result.
+ */
+
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
+ VUPLLF %v2,%v1
+ VGFMG %v2,CONST_RU_POLY,%v2
+
+ /*
+ * Compute the GF(2) product of the CRC polynomial with T1(x) in
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
+ * The final result is stored in word element 2 of V2.
+ */
+ VUPLLF %v2,%v2
+ VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
+
+.Ldone:
+ VLGVF %r2,%v2,2
+ br %r14
+
+.previous
diff --git a/arch/s390/crypto/crypt_s390.h b/arch/s390/crypto/crypt_s390.h
deleted file mode 100644
index d9c4c313fbc6..000000000000
--- a/arch/s390/crypto/crypt_s390.h
+++ /dev/null
@@ -1,493 +0,0 @@
-/*
- * Cryptographic API.
- *
- * Support for s390 cryptographic instructions.
- *
- * Copyright IBM Corp. 2003, 2015
- * Author(s): Thomas Spatzier
- * Jan Glauber (jan.glauber@de.ibm.com)
- * Harald Freudenberger (freude@de.ibm.com)
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the Free
- * Software Foundation; either version 2 of the License, or (at your option)
- * any later version.
- *
- */
-#ifndef _CRYPTO_ARCH_S390_CRYPT_S390_H
-#define _CRYPTO_ARCH_S390_CRYPT_S390_H
-
-#include <asm/errno.h>
-#include <asm/facility.h>
-
-#define CRYPT_S390_OP_MASK 0xFF00
-#define CRYPT_S390_FUNC_MASK 0x00FF
-
-#define CRYPT_S390_PRIORITY 300
-#define CRYPT_S390_COMPOSITE_PRIORITY 400
-
-#define CRYPT_S390_MSA 0x1
-#define CRYPT_S390_MSA3 0x2
-#define CRYPT_S390_MSA4 0x4
-#define CRYPT_S390_MSA5 0x8
-
-/* s390 cryptographic operations */
-enum crypt_s390_operations {
- CRYPT_S390_KM = 0x0100,
- CRYPT_S390_KMC = 0x0200,
- CRYPT_S390_KIMD = 0x0300,
- CRYPT_S390_KLMD = 0x0400,
- CRYPT_S390_KMAC = 0x0500,
- CRYPT_S390_KMCTR = 0x0600,
- CRYPT_S390_PPNO = 0x0700
-};
-
-/*
- * function codes for KM (CIPHER MESSAGE) instruction
- * 0x80 is the decipher modifier bit
- */
-enum crypt_s390_km_func {
- KM_QUERY = CRYPT_S390_KM | 0x0,
- KM_DEA_ENCRYPT = CRYPT_S390_KM | 0x1,
- KM_DEA_DECRYPT = CRYPT_S390_KM | 0x1 | 0x80,
- KM_TDEA_128_ENCRYPT = CRYPT_S390_KM | 0x2,
- KM_TDEA_128_DECRYPT = CRYPT_S390_KM | 0x2 | 0x80,
- KM_TDEA_192_ENCRYPT = CRYPT_S390_KM | 0x3,
- KM_TDEA_192_DECRYPT = CRYPT_S390_KM | 0x3 | 0x80,
- KM_AES_128_ENCRYPT = CRYPT_S390_KM | 0x12,
- KM_AES_128_DECRYPT = CRYPT_S390_KM | 0x12 | 0x80,
- KM_AES_192_ENCRYPT = CRYPT_S390_KM | 0x13,
- KM_AES_192_DECRYPT = CRYPT_S390_KM | 0x13 | 0x80,
- KM_AES_256_ENCRYPT = CRYPT_S390_KM | 0x14,
- KM_AES_256_DECRYPT = CRYPT_S390_KM | 0x14 | 0x80,
- KM_XTS_128_ENCRYPT = CRYPT_S390_KM | 0x32,
- KM_XTS_128_DECRYPT = CRYPT_S390_KM | 0x32 | 0x80,
- KM_XTS_256_ENCRYPT = CRYPT_S390_KM | 0x34,
- KM_XTS_256_DECRYPT = CRYPT_S390_KM | 0x34 | 0x80,
-};
-
-/*
- * function codes for KMC (CIPHER MESSAGE WITH CHAINING)
- * instruction
- */
-enum crypt_s390_kmc_func {
- KMC_QUERY = CRYPT_S390_KMC | 0x0,
- KMC_DEA_ENCRYPT = CRYPT_S390_KMC | 0x1,
- KMC_DEA_DECRYPT = CRYPT_S390_KMC | 0x1 | 0x80,
- KMC_TDEA_128_ENCRYPT = CRYPT_S390_KMC | 0x2,
- KMC_TDEA_128_DECRYPT = CRYPT_S390_KMC | 0x2 | 0x80,
- KMC_TDEA_192_ENCRYPT = CRYPT_S390_KMC | 0x3,
- KMC_TDEA_192_DECRYPT = CRYPT_S390_KMC | 0x3 | 0x80,
- KMC_AES_128_ENCRYPT = CRYPT_S390_KMC | 0x12,
- KMC_AES_128_DECRYPT = CRYPT_S390_KMC | 0x12 | 0x80,
- KMC_AES_192_ENCRYPT = CRYPT_S390_KMC | 0x13,
- KMC_AES_192_DECRYPT = CRYPT_S390_KMC | 0x13 | 0x80,
- KMC_AES_256_ENCRYPT = CRYPT_S390_KMC | 0x14,
- KMC_AES_256_DECRYPT = CRYPT_S390_KMC | 0x14 | 0x80,
- KMC_PRNG = CRYPT_S390_KMC | 0x43,
-};
-
-/*
- * function codes for KMCTR (CIPHER MESSAGE WITH COUNTER)
- * instruction
- */
-enum crypt_s390_kmctr_func {
- KMCTR_QUERY = CRYPT_S390_KMCTR | 0x0,
- KMCTR_DEA_ENCRYPT = CRYPT_S390_KMCTR | 0x1,
- KMCTR_DEA_DECRYPT = CRYPT_S390_KMCTR | 0x1 | 0x80,
- KMCTR_TDEA_128_ENCRYPT = CRYPT_S390_KMCTR | 0x2,
- KMCTR_TDEA_128_DECRYPT = CRYPT_S390_KMCTR | 0x2 | 0x80,
- KMCTR_TDEA_192_ENCRYPT = CRYPT_S390_KMCTR | 0x3,
- KMCTR_TDEA_192_DECRYPT = CRYPT_S390_KMCTR | 0x3 | 0x80,
- KMCTR_AES_128_ENCRYPT = CRYPT_S390_KMCTR | 0x12,
- KMCTR_AES_128_DECRYPT = CRYPT_S390_KMCTR | 0x12 | 0x80,
- KMCTR_AES_192_ENCRYPT = CRYPT_S390_KMCTR | 0x13,
- KMCTR_AES_192_DECRYPT = CRYPT_S390_KMCTR | 0x13 | 0x80,
- KMCTR_AES_256_ENCRYPT = CRYPT_S390_KMCTR | 0x14,
- KMCTR_AES_256_DECRYPT = CRYPT_S390_KMCTR | 0x14 | 0x80,
-};
-
-/*
- * function codes for KIMD (COMPUTE INTERMEDIATE MESSAGE DIGEST)
- * instruction
- */
-enum crypt_s390_kimd_func {
- KIMD_QUERY = CRYPT_S390_KIMD | 0,
- KIMD_SHA_1 = CRYPT_S390_KIMD | 1,
- KIMD_SHA_256 = CRYPT_S390_KIMD | 2,
- KIMD_SHA_512 = CRYPT_S390_KIMD | 3,
- KIMD_GHASH = CRYPT_S390_KIMD | 65,
-};
-
-/*
- * function codes for KLMD (COMPUTE LAST MESSAGE DIGEST)
- * instruction
- */
-enum crypt_s390_klmd_func {
- KLMD_QUERY = CRYPT_S390_KLMD | 0,
- KLMD_SHA_1 = CRYPT_S390_KLMD | 1,
- KLMD_SHA_256 = CRYPT_S390_KLMD | 2,
- KLMD_SHA_512 = CRYPT_S390_KLMD | 3,
-};
-
-/*
- * function codes for KMAC (COMPUTE MESSAGE AUTHENTICATION CODE)
- * instruction
- */
-enum crypt_s390_kmac_func {
- KMAC_QUERY = CRYPT_S390_KMAC | 0,
- KMAC_DEA = CRYPT_S390_KMAC | 1,
- KMAC_TDEA_128 = CRYPT_S390_KMAC | 2,
- KMAC_TDEA_192 = CRYPT_S390_KMAC | 3
-};
-
-/*
- * function codes for PPNO (PERFORM PSEUDORANDOM NUMBER
- * OPERATION) instruction
- */
-enum crypt_s390_ppno_func {
- PPNO_QUERY = CRYPT_S390_PPNO | 0,
- PPNO_SHA512_DRNG_GEN = CRYPT_S390_PPNO | 3,
- PPNO_SHA512_DRNG_SEED = CRYPT_S390_PPNO | 0x83
-};
-
-/**
- * crypt_s390_km:
- * @func: the function code passed to KM; see crypt_s390_km_func
- * @param: address of parameter block; see POP for details on each func
- * @dest: address of destination memory area
- * @src: address of source memory area
- * @src_len: length of src operand in bytes
- *
- * Executes the KM (CIPHER MESSAGE) operation of the CPU.
- *
- * Returns -1 for failure, 0 for the query func, number of processed
- * bytes for encryption/decryption funcs
- */
-static inline int crypt_s390_km(long func, void *param,
- u8 *dest, const u8 *src, long src_len)
-{
- register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
- register void *__param asm("1") = param;
- register const u8 *__src asm("2") = src;
- register long __src_len asm("3") = src_len;
- register u8 *__dest asm("4") = dest;
- int ret;
-
- asm volatile(
- "0: .insn rre,0xb92e0000,%3,%1\n" /* KM opcode */
- "1: brc 1,0b\n" /* handle partial completion */
- " la %0,0\n"
- "2:\n"
- EX_TABLE(0b, 2b) EX_TABLE(1b, 2b)
- : "=d" (ret), "+a" (__src), "+d" (__src_len), "+a" (__dest)
- : "d" (__func), "a" (__param), "0" (-1) : "cc", "memory");
- if (ret < 0)
- return ret;
- return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
-}
-
-/**
- * crypt_s390_kmc:
- * @func: the function code passed to KM; see crypt_s390_kmc_func
- * @param: address of parameter block; see POP for details on each func
- * @dest: address of destination memory area
- * @src: address of source memory area
- * @src_len: length of src operand in bytes
- *
- * Executes the KMC (CIPHER MESSAGE WITH CHAINING) operation of the CPU.
- *
- * Returns -1 for failure, 0 for the query func, number of processed
- * bytes for encryption/decryption funcs
- */
-static inline int crypt_s390_kmc(long func, void *param,
- u8 *dest, const u8 *src, long src_len)
-{
- register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
- register void *__param asm("1") = param;
- register const u8 *__src asm("2") = src;
- register long __src_len asm("3") = src_len;
- register u8 *__dest asm("4") = dest;
- int ret;
-
- asm volatile(
- "0: .insn rre,0xb92f0000,%3,%1\n" /* KMC opcode */
- "1: brc 1,0b\n" /* handle partial completion */
- " la %0,0\n"
- "2:\n"
- EX_TABLE(0b, 2b) EX_TABLE(1b, 2b)
- : "=d" (ret), "+a" (__src), "+d" (__src_len), "+a" (__dest)
- : "d" (__func), "a" (__param), "0" (-1) : "cc", "memory");
- if (ret < 0)
- return ret;
- return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
-}
-
-/**
- * crypt_s390_kimd:
- * @func: the function code passed to KM; see crypt_s390_kimd_func
- * @param: address of parameter block; see POP for details on each func
- * @src: address of source memory area
- * @src_len: length of src operand in bytes
- *
- * Executes the KIMD (COMPUTE INTERMEDIATE MESSAGE DIGEST) operation
- * of the CPU.
- *
- * Returns -1 for failure, 0 for the query func, number of processed
- * bytes for digest funcs
- */
-static inline int crypt_s390_kimd(long func, void *param,
- const u8 *src, long src_len)
-{
- register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
- register void *__param asm("1") = param;
- register const u8 *__src asm("2") = src;
- register long __src_len asm("3") = src_len;
- int ret;
-
- asm volatile(
- "0: .insn rre,0xb93e0000,%1,%1\n" /* KIMD opcode */
- "1: brc 1,0b\n" /* handle partial completion */
- " la %0,0\n"
- "2:\n"
- EX_TABLE(0b, 2b) EX_TABLE(1b, 2b)
- : "=d" (ret), "+a" (__src), "+d" (__src_len)
- : "d" (__func), "a" (__param), "0" (-1) : "cc", "memory");
- if (ret < 0)
- return ret;
- return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
-}
-
-/**
- * crypt_s390_klmd:
- * @func: the function code passed to KM; see crypt_s390_klmd_func
- * @param: address of parameter block; see POP for details on each func
- * @src: address of source memory area
- * @src_len: length of src operand in bytes
- *
- * Executes the KLMD (COMPUTE LAST MESSAGE DIGEST) operation of the CPU.
- *
- * Returns -1 for failure, 0 for the query func, number of processed
- * bytes for digest funcs
- */
-static inline int crypt_s390_klmd(long func, void *param,
- const u8 *src, long src_len)
-{
- register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
- register void *__param asm("1") = param;
- register const u8 *__src asm("2") = src;
- register long __src_len asm("3") = src_len;
- int ret;
-
- asm volatile(
- "0: .insn rre,0xb93f0000,%1,%1\n" /* KLMD opcode */
- "1: brc 1,0b\n" /* handle partial completion */
- " la %0,0\n"
- "2:\n"
- EX_TABLE(0b, 2b) EX_TABLE(1b, 2b)
- : "=d" (ret), "+a" (__src), "+d" (__src_len)
- : "d" (__func), "a" (__param), "0" (-1) : "cc", "memory");
- if (ret < 0)
- return ret;
- return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
-}
-
-/**
- * crypt_s390_kmac:
- * @func: the function code passed to KM; see crypt_s390_klmd_func
- * @param: address of parameter block; see POP for details on each func
- * @src: address of source memory area
- * @src_len: length of src operand in bytes
- *
- * Executes the KMAC (COMPUTE MESSAGE AUTHENTICATION CODE) operation
- * of the CPU.
- *
- * Returns -1 for failure, 0 for the query func, number of processed
- * bytes for digest funcs
- */
-static inline int crypt_s390_kmac(long func, void *param,
- const u8 *src, long src_len)
-{
- register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
- register void *__param asm("1") = param;
- register const u8 *__src asm("2") = src;
- register long __src_len asm("3") = src_len;
- int ret;
-
- asm volatile(
- "0: .insn rre,0xb91e0000,%1,%1\n" /* KLAC opcode */
- "1: brc 1,0b\n" /* handle partial completion */
- " la %0,0\n"
- "2:\n"
- EX_TABLE(0b, 2b) EX_TABLE(1b, 2b)
- : "=d" (ret), "+a" (__src), "+d" (__src_len)
- : "d" (__func), "a" (__param), "0" (-1) : "cc", "memory");
- if (ret < 0)
- return ret;
- return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
-}
-
-/**
- * crypt_s390_kmctr:
- * @func: the function code passed to KMCTR; see crypt_s390_kmctr_func
- * @param: address of parameter block; see POP for details on each func
- * @dest: address of destination memory area
- * @src: address of source memory area
- * @src_len: length of src operand in bytes
- * @counter: address of counter value
- *
- * Executes the KMCTR (CIPHER MESSAGE WITH COUNTER) operation of the CPU.
- *
- * Returns -1 for failure, 0 for the query func, number of processed
- * bytes for encryption/decryption funcs
- */
-static inline int crypt_s390_kmctr(long func, void *param, u8 *dest,
- const u8 *src, long src_len, u8 *counter)
-{
- register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
- register void *__param asm("1") = param;
- register const u8 *__src asm("2") = src;
- register long __src_len asm("3") = src_len;
- register u8 *__dest asm("4") = dest;
- register u8 *__ctr asm("6") = counter;
- int ret = -1;
-
- asm volatile(
- "0: .insn rrf,0xb92d0000,%3,%1,%4,0\n" /* KMCTR opcode */
- "1: brc 1,0b\n" /* handle partial completion */
- " la %0,0\n"
- "2:\n"
- EX_TABLE(0b, 2b) EX_TABLE(1b, 2b)
- : "+d" (ret), "+a" (__src), "+d" (__src_len), "+a" (__dest),
- "+a" (__ctr)
- : "d" (__func), "a" (__param) : "cc", "memory");
- if (ret < 0)
- return ret;
- return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
-}
-
-/**
- * crypt_s390_ppno:
- * @func: the function code passed to PPNO; see crypt_s390_ppno_func
- * @param: address of parameter block; see POP for details on each func
- * @dest: address of destination memory area
- * @dest_len: size of destination memory area in bytes
- * @seed: address of seed data
- * @seed_len: size of seed data in bytes
- *
- * Executes the PPNO (PERFORM PSEUDORANDOM NUMBER OPERATION)
- * operation of the CPU.
- *
- * Returns -1 for failure, 0 for the query func, number of random
- * bytes stored in dest buffer for generate function
- */
-static inline int crypt_s390_ppno(long func, void *param,
- u8 *dest, long dest_len,
- const u8 *seed, long seed_len)
-{
- register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
- register void *__param asm("1") = param; /* param block (240 bytes) */
- register u8 *__dest asm("2") = dest; /* buf for recv random bytes */
- register long __dest_len asm("3") = dest_len; /* requested random bytes */
- register const u8 *__seed asm("4") = seed; /* buf with seed data */
- register long __seed_len asm("5") = seed_len; /* bytes in seed buf */
- int ret = -1;
-
- asm volatile (
- "0: .insn rre,0xb93c0000,%1,%5\n" /* PPNO opcode */
- "1: brc 1,0b\n" /* handle partial completion */
- " la %0,0\n"
- "2:\n"
- EX_TABLE(0b, 2b) EX_TABLE(1b, 2b)
- : "+d" (ret), "+a"(__dest), "+d"(__dest_len)
- : "d"(__func), "a"(__param), "a"(__seed), "d"(__seed_len)
- : "cc", "memory");
- if (ret < 0)
- return ret;
- return (func & CRYPT_S390_FUNC_MASK) ? dest_len - __dest_len : 0;
-}
-
-/**
- * crypt_s390_func_available:
- * @func: the function code of the specific function; 0 if op in general
- *
- * Tests if a specific crypto function is implemented on the machine.
- *
- * Returns 1 if func available; 0 if func or op in general not available
- */
-static inline int crypt_s390_func_available(int func,
- unsigned int facility_mask)
-{
- unsigned char status[16];
- int ret;
-
- if (facility_mask & CRYPT_S390_MSA && !test_facility(17))
- return 0;
- if (facility_mask & CRYPT_S390_MSA3 && !test_facility(76))
- return 0;
- if (facility_mask & CRYPT_S390_MSA4 && !test_facility(77))
- return 0;
- if (facility_mask & CRYPT_S390_MSA5 && !test_facility(57))
- return 0;
-
- switch (func & CRYPT_S390_OP_MASK) {
- case CRYPT_S390_KM:
- ret = crypt_s390_km(KM_QUERY, &status, NULL, NULL, 0);
- break;
- case CRYPT_S390_KMC:
- ret = crypt_s390_kmc(KMC_QUERY, &status, NULL, NULL, 0);
- break;
- case CRYPT_S390_KIMD:
- ret = crypt_s390_kimd(KIMD_QUERY, &status, NULL, 0);
- break;
- case CRYPT_S390_KLMD:
- ret = crypt_s390_klmd(KLMD_QUERY, &status, NULL, 0);
- break;
- case CRYPT_S390_KMAC:
- ret = crypt_s390_kmac(KMAC_QUERY, &status, NULL, 0);
- break;
- case CRYPT_S390_KMCTR:
- ret = crypt_s390_kmctr(KMCTR_QUERY, &status,
- NULL, NULL, 0, NULL);
- break;
- case CRYPT_S390_PPNO:
- ret = crypt_s390_ppno(PPNO_QUERY, &status,
- NULL, 0, NULL, 0);
- break;
- default:
- return 0;
- }
- if (ret < 0)
- return 0;
- func &= CRYPT_S390_FUNC_MASK;
- func &= 0x7f; /* mask modifier bit */
- return (status[func >> 3] & (0x80 >> (func & 7))) != 0;
-}
-
-/**
- * crypt_s390_pcc:
- * @func: the function code passed to KM; see crypt_s390_km_func
- * @param: address of parameter block; see POP for details on each func
- *
- * Executes the PCC (PERFORM CRYPTOGRAPHIC COMPUTATION) operation of the CPU.
- *
- * Returns -1 for failure, 0 for success.
- */
-static inline int crypt_s390_pcc(long func, void *param)
-{
- register long __func asm("0") = func & 0x7f; /* encrypt or decrypt */
- register void *__param asm("1") = param;
- int ret = -1;
-
- asm volatile(
- "0: .insn rre,0xb92c0000,0,0\n" /* PCC opcode */
- "1: brc 1,0b\n" /* handle partial completion */
- " la %0,0\n"
- "2:\n"
- EX_TABLE(0b, 2b) EX_TABLE(1b, 2b)
- : "+d" (ret)
- : "d" (__func), "a" (__param) : "cc", "memory");
- return ret;
-}
-
-#endif /* _CRYPTO_ARCH_S390_CRYPT_S390_H */
diff --git a/arch/s390/crypto/des_s390.c b/arch/s390/crypto/des_s390.c
index fba1c10a2dd0..697e71a75fc2 100644
--- a/arch/s390/crypto/des_s390.c
+++ b/arch/s390/crypto/des_s390.c
@@ -20,8 +20,7 @@
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/des.h>
-
-#include "crypt_s390.h"
+#include <asm/cpacf.h>
#define DES3_KEY_SIZE (3 * DES_KEY_SIZE)
@@ -54,20 +53,20 @@ static void des_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
- crypt_s390_km(KM_DEA_ENCRYPT, ctx->key, out, in, DES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_DEA_ENC, ctx->key, out, in, DES_BLOCK_SIZE);
}
static void des_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
- crypt_s390_km(KM_DEA_DECRYPT, ctx->key, out, in, DES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_DEA_DEC, ctx->key, out, in, DES_BLOCK_SIZE);
}
static struct crypto_alg des_alg = {
.cra_name = "des",
.cra_driver_name = "des-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_des_ctx),
@@ -95,7 +94,7 @@ static int ecb_desall_crypt(struct blkcipher_desc *desc, long func,
u8 *out = walk->dst.virt.addr;
u8 *in = walk->src.virt.addr;
- ret = crypt_s390_km(func, key, out, in, n);
+ ret = cpacf_km(func, key, out, in, n);
if (ret < 0 || ret != n)
return -EIO;
@@ -128,7 +127,7 @@ static int cbc_desall_crypt(struct blkcipher_desc *desc, long func,
u8 *out = walk->dst.virt.addr;
u8 *in = walk->src.virt.addr;
- ret = crypt_s390_kmc(func, &param, out, in, n);
+ ret = cpacf_kmc(func, &param, out, in, n);
if (ret < 0 || ret != n)
return -EIO;
@@ -149,7 +148,7 @@ static int ecb_des_encrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return ecb_desall_crypt(desc, KM_DEA_ENCRYPT, ctx->key, &walk);
+ return ecb_desall_crypt(desc, CPACF_KM_DEA_ENC, ctx->key, &walk);
}
static int ecb_des_decrypt(struct blkcipher_desc *desc,
@@ -160,13 +159,13 @@ static int ecb_des_decrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return ecb_desall_crypt(desc, KM_DEA_DECRYPT, ctx->key, &walk);
+ return ecb_desall_crypt(desc, CPACF_KM_DEA_DEC, ctx->key, &walk);
}
static struct crypto_alg ecb_des_alg = {
.cra_name = "ecb(des)",
.cra_driver_name = "ecb-des-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: des + ecb */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_des_ctx),
@@ -190,7 +189,7 @@ static int cbc_des_encrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return cbc_desall_crypt(desc, KMC_DEA_ENCRYPT, &walk);
+ return cbc_desall_crypt(desc, CPACF_KMC_DEA_ENC, &walk);
}
static int cbc_des_decrypt(struct blkcipher_desc *desc,
@@ -200,13 +199,13 @@ static int cbc_des_decrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return cbc_desall_crypt(desc, KMC_DEA_DECRYPT, &walk);
+ return cbc_desall_crypt(desc, CPACF_KMC_DEA_DEC, &walk);
}
static struct crypto_alg cbc_des_alg = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: des + cbc */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_des_ctx),
@@ -258,20 +257,20 @@ static void des3_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
- crypt_s390_km(KM_TDEA_192_ENCRYPT, ctx->key, dst, src, DES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_TDEA_192_ENC, ctx->key, dst, src, DES_BLOCK_SIZE);
}
static void des3_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
- crypt_s390_km(KM_TDEA_192_DECRYPT, ctx->key, dst, src, DES_BLOCK_SIZE);
+ cpacf_km(CPACF_KM_TDEA_192_DEC, ctx->key, dst, src, DES_BLOCK_SIZE);
}
static struct crypto_alg des3_alg = {
.cra_name = "des3_ede",
.cra_driver_name = "des3_ede-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_des_ctx),
@@ -295,7 +294,7 @@ static int ecb_des3_encrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return ecb_desall_crypt(desc, KM_TDEA_192_ENCRYPT, ctx->key, &walk);
+ return ecb_desall_crypt(desc, CPACF_KM_TDEA_192_ENC, ctx->key, &walk);
}
static int ecb_des3_decrypt(struct blkcipher_desc *desc,
@@ -306,13 +305,13 @@ static int ecb_des3_decrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return ecb_desall_crypt(desc, KM_TDEA_192_DECRYPT, ctx->key, &walk);
+ return ecb_desall_crypt(desc, CPACF_KM_TDEA_192_DEC, ctx->key, &walk);
}
static struct crypto_alg ecb_des3_alg = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3_ede-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: des3 + ecb */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_des_ctx),
@@ -336,7 +335,7 @@ static int cbc_des3_encrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return cbc_desall_crypt(desc, KMC_TDEA_192_ENCRYPT, &walk);
+ return cbc_desall_crypt(desc, CPACF_KMC_TDEA_192_ENC, &walk);
}
static int cbc_des3_decrypt(struct blkcipher_desc *desc,
@@ -346,13 +345,13 @@ static int cbc_des3_decrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return cbc_desall_crypt(desc, KMC_TDEA_192_DECRYPT, &walk);
+ return cbc_desall_crypt(desc, CPACF_KMC_TDEA_192_DEC, &walk);
}
static struct crypto_alg cbc_des3_alg = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3_ede-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: des3 + cbc */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_des_ctx),
@@ -407,8 +406,7 @@ static int ctr_desall_crypt(struct blkcipher_desc *desc, long func,
n = __ctrblk_init(ctrptr, nbytes);
else
n = DES_BLOCK_SIZE;
- ret = crypt_s390_kmctr(func, ctx->key, out, in,
- n, ctrptr);
+ ret = cpacf_kmctr(func, ctx->key, out, in, n, ctrptr);
if (ret < 0 || ret != n) {
if (ctrptr == ctrblk)
spin_unlock(&ctrblk_lock);
@@ -438,8 +436,8 @@ static int ctr_desall_crypt(struct blkcipher_desc *desc, long func,
if (nbytes) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
- ret = crypt_s390_kmctr(func, ctx->key, buf, in,
- DES_BLOCK_SIZE, ctrbuf);
+ ret = cpacf_kmctr(func, ctx->key, buf, in,
+ DES_BLOCK_SIZE, ctrbuf);
if (ret < 0 || ret != DES_BLOCK_SIZE)
return -EIO;
memcpy(out, buf, nbytes);
@@ -458,7 +456,7 @@ static int ctr_des_encrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return ctr_desall_crypt(desc, KMCTR_DEA_ENCRYPT, ctx, &walk);
+ return ctr_desall_crypt(desc, CPACF_KMCTR_DEA_ENC, ctx, &walk);
}
static int ctr_des_decrypt(struct blkcipher_desc *desc,
@@ -469,13 +467,13 @@ static int ctr_des_decrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return ctr_desall_crypt(desc, KMCTR_DEA_DECRYPT, ctx, &walk);
+ return ctr_desall_crypt(desc, CPACF_KMCTR_DEA_DEC, ctx, &walk);
}
static struct crypto_alg ctr_des_alg = {
.cra_name = "ctr(des)",
.cra_driver_name = "ctr-des-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: des + ctr */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_des_ctx),
@@ -501,7 +499,7 @@ static int ctr_des3_encrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return ctr_desall_crypt(desc, KMCTR_TDEA_192_ENCRYPT, ctx, &walk);
+ return ctr_desall_crypt(desc, CPACF_KMCTR_TDEA_192_ENC, ctx, &walk);
}
static int ctr_des3_decrypt(struct blkcipher_desc *desc,
@@ -512,13 +510,13 @@ static int ctr_des3_decrypt(struct blkcipher_desc *desc,
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
- return ctr_desall_crypt(desc, KMCTR_TDEA_192_DECRYPT, ctx, &walk);
+ return ctr_desall_crypt(desc, CPACF_KMCTR_TDEA_192_DEC, ctx, &walk);
}
static struct crypto_alg ctr_des3_alg = {
.cra_name = "ctr(des3_ede)",
.cra_driver_name = "ctr-des3_ede-s390",
- .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
+ .cra_priority = 400, /* combo: des3 + ede */
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_des_ctx),
@@ -540,8 +538,8 @@ static int __init des_s390_init(void)
{
int ret;
- if (!crypt_s390_func_available(KM_DEA_ENCRYPT, CRYPT_S390_MSA) ||
- !crypt_s390_func_available(KM_TDEA_192_ENCRYPT, CRYPT_S390_MSA))
+ if (!cpacf_query(CPACF_KM, CPACF_KM_DEA_ENC) ||
+ !cpacf_query(CPACF_KM, CPACF_KM_TDEA_192_ENC))
return -EOPNOTSUPP;
ret = crypto_register_alg(&des_alg);
@@ -563,10 +561,8 @@ static int __init des_s390_init(void)
if (ret)
goto cbc_des3_err;
- if (crypt_s390_func_available(KMCTR_DEA_ENCRYPT,
- CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
- crypt_s390_func_available(KMCTR_TDEA_192_ENCRYPT,
- CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
+ if (cpacf_query(CPACF_KMCTR, CPACF_KMCTR_DEA_ENC) &&
+ cpacf_query(CPACF_KMCTR, CPACF_KMCTR_TDEA_192_ENC)) {
ret = crypto_register_alg(&ctr_des_alg);
if (ret)
goto ctr_des_err;
diff --git a/arch/s390/crypto/ghash_s390.c b/arch/s390/crypto/ghash_s390.c
index 26e14efd30a7..ab68de72e795 100644
--- a/arch/s390/crypto/ghash_s390.c
+++ b/arch/s390/crypto/ghash_s390.c
@@ -10,8 +10,7 @@
#include <crypto/internal/hash.h>
#include <linux/module.h>
#include <linux/cpufeature.h>
-
-#include "crypt_s390.h"
+#include <asm/cpacf.h>
#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
@@ -72,8 +71,8 @@ static int ghash_update(struct shash_desc *desc,
src += n;
if (!dctx->bytes) {
- ret = crypt_s390_kimd(KIMD_GHASH, dctx, buf,
- GHASH_BLOCK_SIZE);
+ ret = cpacf_kimd(CPACF_KIMD_GHASH, dctx, buf,
+ GHASH_BLOCK_SIZE);
if (ret != GHASH_BLOCK_SIZE)
return -EIO;
}
@@ -81,7 +80,7 @@ static int ghash_update(struct shash_desc *desc,
n = srclen & ~(GHASH_BLOCK_SIZE - 1);
if (n) {
- ret = crypt_s390_kimd(KIMD_GHASH, dctx, src, n);
+ ret = cpacf_kimd(CPACF_KIMD_GHASH, dctx, src, n);
if (ret != n)
return -EIO;
src += n;
@@ -106,7 +105,7 @@ static int ghash_flush(struct ghash_desc_ctx *dctx)
memset(pos, 0, dctx->bytes);
- ret = crypt_s390_kimd(KIMD_GHASH, dctx, buf, GHASH_BLOCK_SIZE);
+ ret = cpacf_kimd(CPACF_KIMD_GHASH, dctx, buf, GHASH_BLOCK_SIZE);
if (ret != GHASH_BLOCK_SIZE)
return -EIO;
@@ -137,7 +136,7 @@ static struct shash_alg ghash_alg = {
.base = {
.cra_name = "ghash",
.cra_driver_name = "ghash-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = GHASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ghash_ctx),
@@ -147,8 +146,7 @@ static struct shash_alg ghash_alg = {
static int __init ghash_mod_init(void)
{
- if (!crypt_s390_func_available(KIMD_GHASH,
- CRYPT_S390_MSA | CRYPT_S390_MSA4))
+ if (!cpacf_query(CPACF_KIMD, CPACF_KIMD_GHASH))
return -EOPNOTSUPP;
return crypto_register_shash(&ghash_alg);
diff --git a/arch/s390/crypto/prng.c b/arch/s390/crypto/prng.c
index d750cc0dfe30..41527b113f5a 100644
--- a/arch/s390/crypto/prng.c
+++ b/arch/s390/crypto/prng.c
@@ -23,8 +23,7 @@
#include <asm/debug.h>
#include <asm/uaccess.h>
#include <asm/timex.h>
-
-#include "crypt_s390.h"
+#include <asm/cpacf.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("IBM Corporation");
@@ -136,8 +135,8 @@ static int generate_entropy(u8 *ebuf, size_t nbytes)
else
h = ebuf;
/* generate sha256 from this page */
- if (crypt_s390_kimd(KIMD_SHA_256, h,
- pg, PAGE_SIZE) != PAGE_SIZE) {
+ if (cpacf_kimd(CPACF_KIMD_SHA_256, h,
+ pg, PAGE_SIZE) != PAGE_SIZE) {
prng_errorflag = PRNG_GEN_ENTROPY_FAILED;
ret = -EIO;
goto out;
@@ -164,9 +163,9 @@ static void prng_tdes_add_entropy(void)
int ret;
for (i = 0; i < 16; i++) {
- ret = crypt_s390_kmc(KMC_PRNG, prng_data->prngws.parm_block,
- (char *)entropy, (char *)entropy,
- sizeof(entropy));
+ ret = cpacf_kmc(CPACF_KMC_PRNG, prng_data->prngws.parm_block,
+ (char *)entropy, (char *)entropy,
+ sizeof(entropy));
BUG_ON(ret < 0 || ret != sizeof(entropy));
memcpy(prng_data->prngws.parm_block, entropy, sizeof(entropy));
}
@@ -311,9 +310,8 @@ static int __init prng_sha512_selftest(void)
memset(&ws, 0, sizeof(ws));
/* initial seed */
- ret = crypt_s390_ppno(PPNO_SHA512_DRNG_SEED,
- &ws, NULL, 0,
- seed, sizeof(seed));
+ ret = cpacf_ppno(CPACF_PPNO_SHA512_DRNG_SEED, &ws, NULL, 0,
+ seed, sizeof(seed));
if (ret < 0) {
pr_err("The prng self test seed operation for the "
"SHA-512 mode failed with rc=%d\n", ret);
@@ -331,18 +329,16 @@ static int __init prng_sha512_selftest(void)
}
/* generate random bytes */
- ret = crypt_s390_ppno(PPNO_SHA512_DRNG_GEN,
- &ws, buf, sizeof(buf),
- NULL, 0);
+ ret = cpacf_ppno(CPACF_PPNO_SHA512_DRNG_GEN,
+ &ws, buf, sizeof(buf), NULL, 0);
if (ret < 0) {
pr_err("The prng self test generate operation for "
"the SHA-512 mode failed with rc=%d\n", ret);
prng_errorflag = PRNG_SELFTEST_FAILED;
return -EIO;
}
- ret = crypt_s390_ppno(PPNO_SHA512_DRNG_GEN,
- &ws, buf, sizeof(buf),
- NULL, 0);
+ ret = cpacf_ppno(CPACF_PPNO_SHA512_DRNG_GEN,
+ &ws, buf, sizeof(buf), NULL, 0);
if (ret < 0) {
pr_err("The prng self test generate operation for "
"the SHA-512 mode failed with rc=%d\n", ret);
@@ -396,9 +392,8 @@ static int __init prng_sha512_instantiate(void)
get_tod_clock_ext(seed + 48);
/* initial seed of the ppno drng */
- ret = crypt_s390_ppno(PPNO_SHA512_DRNG_SEED,
- &prng_data->ppnows, NULL, 0,
- seed, sizeof(seed));
+ ret = cpacf_ppno(CPACF_PPNO_SHA512_DRNG_SEED,
+ &prng_data->ppnows, NULL, 0, seed, sizeof(seed));
if (ret < 0) {
prng_errorflag = PRNG_SEED_FAILED;
ret = -EIO;
@@ -409,11 +404,9 @@ static int __init prng_sha512_instantiate(void)
bytes for the FIPS 140-2 Conditional Self Test */
if (fips_enabled) {
prng_data->prev = prng_data->buf + prng_chunk_size;
- ret = crypt_s390_ppno(PPNO_SHA512_DRNG_GEN,
- &prng_data->ppnows,
- prng_data->prev,
- prng_chunk_size,
- NULL, 0);
+ ret = cpacf_ppno(CPACF_PPNO_SHA512_DRNG_GEN,
+ &prng_data->ppnows,
+ prng_data->prev, prng_chunk_size, NULL, 0);
if (ret < 0 || ret != prng_chunk_size) {
prng_errorflag = PRNG_GEN_FAILED;
ret = -EIO;
@@ -447,9 +440,8 @@ static int prng_sha512_reseed(void)
return ret;
/* do a reseed of the ppno drng with this bytestring */
- ret = crypt_s390_ppno(PPNO_SHA512_DRNG_SEED,
- &prng_data->ppnows, NULL, 0,
- seed, sizeof(seed));
+ ret = cpacf_ppno(CPACF_PPNO_SHA512_DRNG_SEED,
+ &prng_data->ppnows, NULL, 0, seed, sizeof(seed));
if (ret) {
prng_errorflag = PRNG_RESEED_FAILED;
return -EIO;
@@ -471,9 +463,8 @@ static int prng_sha512_generate(u8 *buf, size_t nbytes)
}
/* PPNO generate */
- ret = crypt_s390_ppno(PPNO_SHA512_DRNG_GEN,
- &prng_data->ppnows, buf, nbytes,
- NULL, 0);
+ ret = cpacf_ppno(CPACF_PPNO_SHA512_DRNG_GEN,
+ &prng_data->ppnows, buf, nbytes, NULL, 0);
if (ret < 0 || ret != nbytes) {
prng_errorflag = PRNG_GEN_FAILED;
return -EIO;
@@ -555,8 +546,8 @@ static ssize_t prng_tdes_read(struct file *file, char __user *ubuf,
* Note: you can still get strict X9.17 conformity by setting
* prng_chunk_size to 8 bytes.
*/
- tmp = crypt_s390_kmc(KMC_PRNG, prng_data->prngws.parm_block,
- prng_data->buf, prng_data->buf, n);
+ tmp = cpacf_kmc(CPACF_KMC_PRNG, prng_data->prngws.parm_block,
+ prng_data->buf, prng_data->buf, n);
if (tmp < 0 || tmp != n) {
ret = -EIO;
break;
@@ -815,14 +806,13 @@ static int __init prng_init(void)
int ret;
/* check if the CPU has a PRNG */
- if (!crypt_s390_func_available(KMC_PRNG, CRYPT_S390_MSA))
+ if (!cpacf_query(CPACF_KMC, CPACF_KMC_PRNG))
return -EOPNOTSUPP;
/* choose prng mode */
if (prng_mode != PRNG_MODE_TDES) {
/* check for MSA5 support for PPNO operations */
- if (!crypt_s390_func_available(PPNO_SHA512_DRNG_GEN,
- CRYPT_S390_MSA5)) {
+ if (!cpacf_query(CPACF_PPNO, CPACF_PPNO_SHA512_DRNG_GEN)) {
if (prng_mode == PRNG_MODE_SHA512) {
pr_err("The prng module cannot "
"start in SHA-512 mode\n");
diff --git a/arch/s390/crypto/sha1_s390.c b/arch/s390/crypto/sha1_s390.c
index 9208eadae9f0..5fbf91bbb478 100644
--- a/arch/s390/crypto/sha1_s390.c
+++ b/arch/s390/crypto/sha1_s390.c
@@ -28,8 +28,8 @@
#include <linux/module.h>
#include <linux/cpufeature.h>
#include <crypto/sha.h>
+#include <asm/cpacf.h>
-#include "crypt_s390.h"
#include "sha.h"
static int sha1_init(struct shash_desc *desc)
@@ -42,7 +42,7 @@ static int sha1_init(struct shash_desc *desc)
sctx->state[3] = SHA1_H3;
sctx->state[4] = SHA1_H4;
sctx->count = 0;
- sctx->func = KIMD_SHA_1;
+ sctx->func = CPACF_KIMD_SHA_1;
return 0;
}
@@ -66,7 +66,7 @@ static int sha1_import(struct shash_desc *desc, const void *in)
sctx->count = ictx->count;
memcpy(sctx->state, ictx->state, sizeof(ictx->state));
memcpy(sctx->buf, ictx->buffer, sizeof(ictx->buffer));
- sctx->func = KIMD_SHA_1;
+ sctx->func = CPACF_KIMD_SHA_1;
return 0;
}
@@ -82,7 +82,7 @@ static struct shash_alg alg = {
.base = {
.cra_name = "sha1",
.cra_driver_name= "sha1-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
@@ -91,7 +91,7 @@ static struct shash_alg alg = {
static int __init sha1_s390_init(void)
{
- if (!crypt_s390_func_available(KIMD_SHA_1, CRYPT_S390_MSA))
+ if (!cpacf_query(CPACF_KIMD, CPACF_KIMD_SHA_1))
return -EOPNOTSUPP;
return crypto_register_shash(&alg);
}
diff --git a/arch/s390/crypto/sha256_s390.c b/arch/s390/crypto/sha256_s390.c
index 667888f5c964..10aac0b11988 100644
--- a/arch/s390/crypto/sha256_s390.c
+++ b/arch/s390/crypto/sha256_s390.c
@@ -18,8 +18,8 @@
#include <linux/module.h>
#include <linux/cpufeature.h>
#include <crypto/sha.h>
+#include <asm/cpacf.h>
-#include "crypt_s390.h"
#include "sha.h"
static int sha256_init(struct shash_desc *desc)
@@ -35,7 +35,7 @@ static int sha256_init(struct shash_desc *desc)
sctx->state[6] = SHA256_H6;
sctx->state[7] = SHA256_H7;
sctx->count = 0;
- sctx->func = KIMD_SHA_256;
+ sctx->func = CPACF_KIMD_SHA_256;
return 0;
}
@@ -59,7 +59,7 @@ static int sha256_import(struct shash_desc *desc, const void *in)
sctx->count = ictx->count;
memcpy(sctx->state, ictx->state, sizeof(ictx->state));
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
- sctx->func = KIMD_SHA_256;
+ sctx->func = CPACF_KIMD_SHA_256;
return 0;
}
@@ -75,7 +75,7 @@ static struct shash_alg sha256_alg = {
.base = {
.cra_name = "sha256",
.cra_driver_name= "sha256-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
@@ -95,7 +95,7 @@ static int sha224_init(struct shash_desc *desc)
sctx->state[6] = SHA224_H6;
sctx->state[7] = SHA224_H7;
sctx->count = 0;
- sctx->func = KIMD_SHA_256;
+ sctx->func = CPACF_KIMD_SHA_256;
return 0;
}
@@ -112,7 +112,7 @@ static struct shash_alg sha224_alg = {
.base = {
.cra_name = "sha224",
.cra_driver_name= "sha224-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_module = THIS_MODULE,
@@ -123,7 +123,7 @@ static int __init sha256_s390_init(void)
{
int ret;
- if (!crypt_s390_func_available(KIMD_SHA_256, CRYPT_S390_MSA))
+ if (!cpacf_query(CPACF_KIMD, CPACF_KIMD_SHA_256))
return -EOPNOTSUPP;
ret = crypto_register_shash(&sha256_alg);
if (ret < 0)
diff --git a/arch/s390/crypto/sha512_s390.c b/arch/s390/crypto/sha512_s390.c
index 2ba66b1518f0..ea85757be407 100644
--- a/arch/s390/crypto/sha512_s390.c
+++ b/arch/s390/crypto/sha512_s390.c
@@ -19,9 +19,9 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/cpufeature.h>
+#include <asm/cpacf.h>
#include "sha.h"
-#include "crypt_s390.h"
static int sha512_init(struct shash_desc *desc)
{
@@ -36,7 +36,7 @@ static int sha512_init(struct shash_desc *desc)
*(__u64 *)&ctx->state[12] = 0x1f83d9abfb41bd6bULL;
*(__u64 *)&ctx->state[14] = 0x5be0cd19137e2179ULL;
ctx->count = 0;
- ctx->func = KIMD_SHA_512;
+ ctx->func = CPACF_KIMD_SHA_512;
return 0;
}
@@ -64,7 +64,7 @@ static int sha512_import(struct shash_desc *desc, const void *in)
memcpy(sctx->state, ictx->state, sizeof(ictx->state));
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
- sctx->func = KIMD_SHA_512;
+ sctx->func = CPACF_KIMD_SHA_512;
return 0;
}
@@ -80,7 +80,7 @@ static struct shash_alg sha512_alg = {
.base = {
.cra_name = "sha512",
.cra_driver_name= "sha512-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_module = THIS_MODULE,
@@ -102,7 +102,7 @@ static int sha384_init(struct shash_desc *desc)
*(__u64 *)&ctx->state[12] = 0xdb0c2e0d64f98fa7ULL;
*(__u64 *)&ctx->state[14] = 0x47b5481dbefa4fa4ULL;
ctx->count = 0;
- ctx->func = KIMD_SHA_512;
+ ctx->func = CPACF_KIMD_SHA_512;
return 0;
}
@@ -119,7 +119,7 @@ static struct shash_alg sha384_alg = {
.base = {
.cra_name = "sha384",
.cra_driver_name= "sha384-s390",
- .cra_priority = CRYPT_S390_PRIORITY,
+ .cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_sha_ctx),
@@ -133,7 +133,7 @@ static int __init init(void)
{
int ret;
- if (!crypt_s390_func_available(KIMD_SHA_512, CRYPT_S390_MSA))
+ if (!cpacf_query(CPACF_KIMD, CPACF_KIMD_SHA_512))
return -EOPNOTSUPP;
if ((ret = crypto_register_shash(&sha512_alg)) < 0)
goto out;
diff --git a/arch/s390/crypto/sha_common.c b/arch/s390/crypto/sha_common.c
index 8620b0ec9c42..8e908166c3ee 100644
--- a/arch/s390/crypto/sha_common.c
+++ b/arch/s390/crypto/sha_common.c
@@ -15,8 +15,8 @@
#include <crypto/internal/hash.h>
#include <linux/module.h>
+#include <asm/cpacf.h>
#include "sha.h"
-#include "crypt_s390.h"
int s390_sha_update(struct shash_desc *desc, const u8 *data, unsigned int len)
{
@@ -35,7 +35,7 @@ int s390_sha_update(struct shash_desc *desc, const u8 *data, unsigned int len)
/* process one stored block */
if (index) {
memcpy(ctx->buf + index, data, bsize - index);
- ret = crypt_s390_kimd(ctx->func, ctx->state, ctx->buf, bsize);
+ ret = cpacf_kimd(ctx->func, ctx->state, ctx->buf, bsize);
if (ret != bsize)
return -EIO;
data += bsize - index;
@@ -45,8 +45,8 @@ int s390_sha_update(struct shash_desc *desc, const u8 *data, unsigned int len)
/* process as many blocks as possible */
if (len >= bsize) {
- ret = crypt_s390_kimd(ctx->func, ctx->state, data,
- len & ~(bsize - 1));
+ ret = cpacf_kimd(ctx->func, ctx->state, data,
+ len & ~(bsize - 1));
if (ret != (len & ~(bsize - 1)))
return -EIO;
data += ret;
@@ -89,7 +89,7 @@ int s390_sha_final(struct shash_desc *desc, u8 *out)
bits = ctx->count * 8;
memcpy(ctx->buf + end - 8, &bits, sizeof(bits));
- ret = crypt_s390_kimd(ctx->func, ctx->state, ctx->buf, end);
+ ret = cpacf_kimd(ctx->func, ctx->state, ctx->buf, end);
if (ret != end)
return -EIO;