summaryrefslogtreecommitdiff
path: root/arch/s390/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'arch/s390/crypto')
-rw-r--r--arch/s390/crypto/Kconfig25
-rw-r--r--arch/s390/crypto/Makefile3
-rw-r--r--arch/s390/crypto/aes_s390.c167
-rw-r--r--arch/s390/crypto/chacha-glue.c8
-rw-r--r--arch/s390/crypto/crc32-vx.c305
-rw-r--r--arch/s390/crypto/crc32-vx.h12
-rw-r--r--arch/s390/crypto/crc32be-vx.c174
-rw-r--r--arch/s390/crypto/crc32le-vx.c240
-rw-r--r--arch/s390/crypto/hmac_s390.c359
-rw-r--r--arch/s390/crypto/paes_s390.c421
-rw-r--r--arch/s390/crypto/prng.c14
-rw-r--r--arch/s390/crypto/sha.h1
-rw-r--r--arch/s390/crypto/sha3_256_s390.c11
-rw-r--r--arch/s390/crypto/sha3_512_s390.c11
-rw-r--r--arch/s390/crypto/sha_common.c20
15 files changed, 851 insertions, 920 deletions
diff --git a/arch/s390/crypto/Kconfig b/arch/s390/crypto/Kconfig
index 06ee706b0d78..8c4db8b64fa2 100644
--- a/arch/s390/crypto/Kconfig
+++ b/arch/s390/crypto/Kconfig
@@ -2,18 +2,6 @@
menu "Accelerated Cryptographic Algorithms for CPU (s390)"
-config CRYPTO_CRC32_S390
- tristate "CRC32c and CRC32"
- depends on S390
- select CRYPTO_HASH
- select CRC32
- help
- CRC32c and CRC32 CRC algorithms
-
- Architecture: s390
-
- It is available with IBM z13 or later.
-
config CRYPTO_SHA512_S390
tristate "Hash functions: SHA-384 and SHA-512"
depends on S390
@@ -120,11 +108,12 @@ config CRYPTO_DES_S390
As of z196 the CTR mode is hardware accelerated.
config CRYPTO_CHACHA_S390
- tristate "Ciphers: ChaCha20"
+ tristate
depends on S390
select CRYPTO_SKCIPHER
select CRYPTO_LIB_CHACHA_GENERIC
select CRYPTO_ARCH_HAVE_LIB_CHACHA
+ default CRYPTO_LIB_CHACHA_INTERNAL
help
Length-preserving cipher: ChaCha20 stream cipher (RFC 7539)
@@ -132,4 +121,14 @@ config CRYPTO_CHACHA_S390
It is available as of z13.
+config CRYPTO_HMAC_S390
+ tristate "Keyed-hash message authentication code: HMAC"
+ depends on S390
+ select CRYPTO_HASH
+ help
+ s390 specific HMAC hardware support for SHA224, SHA256, SHA384 and
+ SHA512.
+
+ Architecture: s390
+
endmenu
diff --git a/arch/s390/crypto/Makefile b/arch/s390/crypto/Makefile
index 1b1cc478fa94..14dafadbcbed 100644
--- a/arch/s390/crypto/Makefile
+++ b/arch/s390/crypto/Makefile
@@ -14,8 +14,7 @@ obj-$(CONFIG_CRYPTO_PAES_S390) += paes_s390.o
obj-$(CONFIG_CRYPTO_CHACHA_S390) += chacha_s390.o
obj-$(CONFIG_S390_PRNG) += prng.o
obj-$(CONFIG_CRYPTO_GHASH_S390) += ghash_s390.o
-obj-$(CONFIG_CRYPTO_CRC32_S390) += crc32-vx_s390.o
+obj-$(CONFIG_CRYPTO_HMAC_S390) += hmac_s390.o
obj-y += arch_random.o
-crc32-vx_s390-y := crc32-vx.o crc32le-vx.o crc32be-vx.o
chacha_s390-y := chacha-glue.o chacha-s390.o
diff --git a/arch/s390/crypto/aes_s390.c b/arch/s390/crypto/aes_s390.c
index c6fe5405de4a..5d36f4020dfa 100644
--- a/arch/s390/crypto/aes_s390.c
+++ b/arch/s390/crypto/aes_s390.c
@@ -51,8 +51,13 @@ struct s390_aes_ctx {
};
struct s390_xts_ctx {
- u8 key[32];
- u8 pcc_key[32];
+ union {
+ u8 keys[64];
+ struct {
+ u8 key[32];
+ u8 pcc_key[32];
+ };
+ };
int key_len;
unsigned long fc;
struct crypto_skcipher *fallback;
@@ -61,7 +66,6 @@ struct s390_xts_ctx {
struct gcm_sg_walk {
struct scatter_walk walk;
unsigned int walk_bytes;
- u8 *walk_ptr;
unsigned int walk_bytes_remain;
u8 buf[AES_BLOCK_SIZE];
unsigned int buf_bytes;
@@ -526,6 +530,108 @@ static struct skcipher_alg xts_aes_alg = {
.decrypt = xts_aes_decrypt,
};
+static int fullxts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
+ unsigned int key_len)
+{
+ struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
+ unsigned long fc;
+ int err;
+
+ err = xts_fallback_setkey(tfm, in_key, key_len);
+ if (err)
+ return err;
+
+ /* Pick the correct function code based on the key length */
+ fc = (key_len == 32) ? CPACF_KM_XTS_128_FULL :
+ (key_len == 64) ? CPACF_KM_XTS_256_FULL : 0;
+
+ /* Check if the function code is available */
+ xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
+ if (!xts_ctx->fc)
+ return 0;
+
+ /* Store double-key */
+ memcpy(xts_ctx->keys, in_key, key_len);
+ xts_ctx->key_len = key_len;
+ return 0;
+}
+
+static int fullxts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
+ unsigned int offset, nbytes, n;
+ struct skcipher_walk walk;
+ int ret;
+ struct {
+ __u8 key[64];
+ __u8 tweak[16];
+ __u8 nap[16];
+ } fxts_param = {
+ .nap = {0},
+ };
+
+ if (req->cryptlen < AES_BLOCK_SIZE)
+ return -EINVAL;
+
+ if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
+ struct skcipher_request *subreq = skcipher_request_ctx(req);
+
+ *subreq = *req;
+ skcipher_request_set_tfm(subreq, xts_ctx->fallback);
+ return (modifier & CPACF_DECRYPT) ?
+ crypto_skcipher_decrypt(subreq) :
+ crypto_skcipher_encrypt(subreq);
+ }
+
+ ret = skcipher_walk_virt(&walk, req, false);
+ if (ret)
+ return ret;
+
+ offset = xts_ctx->key_len & 0x20;
+ memcpy(fxts_param.key + offset, xts_ctx->keys, xts_ctx->key_len);
+ memcpy(fxts_param.tweak, req->iv, AES_BLOCK_SIZE);
+ fxts_param.nap[0] = 0x01; /* initial alpha power (1, little-endian) */
+
+ while ((nbytes = walk.nbytes) != 0) {
+ /* only use complete blocks */
+ n = nbytes & ~(AES_BLOCK_SIZE - 1);
+ cpacf_km(xts_ctx->fc | modifier, fxts_param.key + offset,
+ walk.dst.virt.addr, walk.src.virt.addr, n);
+ ret = skcipher_walk_done(&walk, nbytes - n);
+ }
+ memzero_explicit(&fxts_param, sizeof(fxts_param));
+ return ret;
+}
+
+static int fullxts_aes_encrypt(struct skcipher_request *req)
+{
+ return fullxts_aes_crypt(req, 0);
+}
+
+static int fullxts_aes_decrypt(struct skcipher_request *req)
+{
+ return fullxts_aes_crypt(req, CPACF_DECRYPT);
+}
+
+static struct skcipher_alg fullxts_aes_alg = {
+ .base.cra_name = "xts(aes)",
+ .base.cra_driver_name = "full-xts-aes-s390",
+ .base.cra_priority = 403, /* aes-xts-s390 + 1 */
+ .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
+ .base.cra_blocksize = AES_BLOCK_SIZE,
+ .base.cra_ctxsize = sizeof(struct s390_xts_ctx),
+ .base.cra_module = THIS_MODULE,
+ .init = xts_fallback_init,
+ .exit = xts_fallback_exit,
+ .min_keysize = 2 * AES_MIN_KEY_SIZE,
+ .max_keysize = 2 * AES_MAX_KEY_SIZE,
+ .ivsize = AES_BLOCK_SIZE,
+ .setkey = fullxts_aes_set_key,
+ .encrypt = fullxts_aes_encrypt,
+ .decrypt = fullxts_aes_decrypt,
+};
+
static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
@@ -680,29 +786,20 @@ static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
{
- struct scatterlist *nextsg;
-
- gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
- while (!gw->walk_bytes) {
- nextsg = sg_next(gw->walk.sg);
- if (!nextsg)
- return 0;
- scatterwalk_start(&gw->walk, nextsg);
- gw->walk_bytes = scatterwalk_clamp(&gw->walk,
- gw->walk_bytes_remain);
- }
- gw->walk_ptr = scatterwalk_map(&gw->walk);
+ if (gw->walk_bytes_remain == 0)
+ return 0;
+ gw->walk_bytes = scatterwalk_next(&gw->walk, gw->walk_bytes_remain);
return gw->walk_bytes;
}
static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
- unsigned int nbytes)
+ unsigned int nbytes, bool out)
{
gw->walk_bytes_remain -= nbytes;
- scatterwalk_unmap(gw->walk_ptr);
- scatterwalk_advance(&gw->walk, nbytes);
- scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
- gw->walk_ptr = NULL;
+ if (out)
+ scatterwalk_done_dst(&gw->walk, nbytes);
+ else
+ scatterwalk_done_src(&gw->walk, nbytes);
}
static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
@@ -728,16 +825,16 @@ static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
}
if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
- gw->ptr = gw->walk_ptr;
+ gw->ptr = gw->walk.addr;
gw->nbytes = gw->walk_bytes;
goto out;
}
while (1) {
n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
- memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
+ memcpy(gw->buf + gw->buf_bytes, gw->walk.addr, n);
gw->buf_bytes += n;
- _gcm_sg_unmap_and_advance(gw, n);
+ _gcm_sg_unmap_and_advance(gw, n, false);
if (gw->buf_bytes >= minbytesneeded) {
gw->ptr = gw->buf;
gw->nbytes = gw->buf_bytes;
@@ -769,13 +866,12 @@ static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
}
if (gw->walk_bytes >= minbytesneeded) {
- gw->ptr = gw->walk_ptr;
+ gw->ptr = gw->walk.addr;
gw->nbytes = gw->walk_bytes;
goto out;
}
- scatterwalk_unmap(gw->walk_ptr);
- gw->walk_ptr = NULL;
+ scatterwalk_unmap(&gw->walk);
gw->ptr = gw->buf;
gw->nbytes = sizeof(gw->buf);
@@ -797,7 +893,7 @@ static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
} else
gw->buf_bytes = 0;
} else
- _gcm_sg_unmap_and_advance(gw, bytesdone);
+ _gcm_sg_unmap_and_advance(gw, bytesdone, false);
return bytesdone;
}
@@ -814,11 +910,11 @@ static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
if (!_gcm_sg_clamp_and_map(gw))
return i;
n = min(gw->walk_bytes, bytesdone - i);
- memcpy(gw->walk_ptr, gw->buf + i, n);
- _gcm_sg_unmap_and_advance(gw, n);
+ memcpy(gw->walk.addr, gw->buf + i, n);
+ _gcm_sg_unmap_and_advance(gw, n, true);
}
} else
- _gcm_sg_unmap_and_advance(gw, bytesdone);
+ _gcm_sg_unmap_and_advance(gw, bytesdone, true);
return bytesdone;
}
@@ -955,7 +1051,7 @@ static struct aead_alg gcm_aes_aead = {
};
static struct crypto_alg *aes_s390_alg;
-static struct skcipher_alg *aes_s390_skcipher_algs[4];
+static struct skcipher_alg *aes_s390_skcipher_algs[5];
static int aes_s390_skciphers_num;
static struct aead_alg *aes_s390_aead_alg;
@@ -1012,6 +1108,13 @@ static int __init aes_s390_init(void)
goto out_err;
}
+ if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128_FULL) ||
+ cpacf_test_func(&km_functions, CPACF_KM_XTS_256_FULL)) {
+ ret = aes_s390_register_skcipher(&fullxts_aes_alg);
+ if (ret)
+ goto out_err;
+ }
+
if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
ret = aes_s390_register_skcipher(&xts_aes_alg);
@@ -1054,4 +1157,4 @@ MODULE_ALIAS_CRYPTO("aes-all");
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
MODULE_LICENSE("GPL");
-MODULE_IMPORT_NS(CRYPTO_INTERNAL);
+MODULE_IMPORT_NS("CRYPTO_INTERNAL");
diff --git a/arch/s390/crypto/chacha-glue.c b/arch/s390/crypto/chacha-glue.c
index f8b0c52e77a4..920e9f0941e7 100644
--- a/arch/s390/crypto/chacha-glue.c
+++ b/arch/s390/crypto/chacha-glue.c
@@ -41,7 +41,7 @@ static int chacha20_s390(struct skcipher_request *req)
int rc;
rc = skcipher_walk_virt(&walk, req, false);
- chacha_init_generic(state, ctx->key, req->iv);
+ chacha_init(state, ctx->key, req->iv);
while (walk.nbytes > 0) {
nbytes = walk.nbytes;
@@ -69,12 +69,6 @@ void hchacha_block_arch(const u32 *state, u32 *stream, int nrounds)
}
EXPORT_SYMBOL(hchacha_block_arch);
-void chacha_init_arch(u32 *state, const u32 *key, const u8 *iv)
-{
- chacha_init_generic(state, key, iv);
-}
-EXPORT_SYMBOL(chacha_init_arch);
-
void chacha_crypt_arch(u32 *state, u8 *dst, const u8 *src,
unsigned int bytes, int nrounds)
{
diff --git a/arch/s390/crypto/crc32-vx.c b/arch/s390/crypto/crc32-vx.c
deleted file mode 100644
index 74f17c905d12..000000000000
--- a/arch/s390/crypto/crc32-vx.c
+++ /dev/null
@@ -1,305 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*
- * Crypto-API module for CRC-32 algorithms implemented with the
- * z/Architecture Vector Extension Facility.
- *
- * Copyright IBM Corp. 2015
- * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
- */
-#define KMSG_COMPONENT "crc32-vx"
-#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
-
-#include <linux/module.h>
-#include <linux/cpufeature.h>
-#include <linux/crc32.h>
-#include <crypto/internal/hash.h>
-#include <asm/fpu.h>
-#include "crc32-vx.h"
-
-#define CRC32_BLOCK_SIZE 1
-#define CRC32_DIGEST_SIZE 4
-
-#define VX_MIN_LEN 64
-#define VX_ALIGNMENT 16L
-#define VX_ALIGN_MASK (VX_ALIGNMENT - 1)
-
-struct crc_ctx {
- u32 key;
-};
-
-struct crc_desc_ctx {
- u32 crc;
-};
-
-/*
- * DEFINE_CRC32_VX() - Define a CRC-32 function using the vector extension
- *
- * Creates a function to perform a particular CRC-32 computation. Depending
- * on the message buffer, the hardware-accelerated or software implementation
- * is used. Note that the message buffer is aligned to improve fetch
- * operations of VECTOR LOAD MULTIPLE instructions.
- *
- */
-#define DEFINE_CRC32_VX(___fname, ___crc32_vx, ___crc32_sw) \
- static u32 __pure ___fname(u32 crc, \
- unsigned char const *data, size_t datalen) \
- { \
- unsigned long prealign, aligned, remaining; \
- DECLARE_KERNEL_FPU_ONSTACK16(vxstate); \
- \
- if (datalen < VX_MIN_LEN + VX_ALIGN_MASK) \
- return ___crc32_sw(crc, data, datalen); \
- \
- if ((unsigned long)data & VX_ALIGN_MASK) { \
- prealign = VX_ALIGNMENT - \
- ((unsigned long)data & VX_ALIGN_MASK); \
- datalen -= prealign; \
- crc = ___crc32_sw(crc, data, prealign); \
- data = (void *)((unsigned long)data + prealign); \
- } \
- \
- aligned = datalen & ~VX_ALIGN_MASK; \
- remaining = datalen & VX_ALIGN_MASK; \
- \
- kernel_fpu_begin(&vxstate, KERNEL_VXR_LOW); \
- crc = ___crc32_vx(crc, data, aligned); \
- kernel_fpu_end(&vxstate, KERNEL_VXR_LOW); \
- \
- if (remaining) \
- crc = ___crc32_sw(crc, data + aligned, remaining); \
- \
- return crc; \
- }
-
-DEFINE_CRC32_VX(crc32_le_vx, crc32_le_vgfm_16, crc32_le)
-DEFINE_CRC32_VX(crc32_be_vx, crc32_be_vgfm_16, crc32_be)
-DEFINE_CRC32_VX(crc32c_le_vx, crc32c_le_vgfm_16, __crc32c_le)
-
-
-static int crc32_vx_cra_init_zero(struct crypto_tfm *tfm)
-{
- struct crc_ctx *mctx = crypto_tfm_ctx(tfm);
-
- mctx->key = 0;
- return 0;
-}
-
-static int crc32_vx_cra_init_invert(struct crypto_tfm *tfm)
-{
- struct crc_ctx *mctx = crypto_tfm_ctx(tfm);
-
- mctx->key = ~0;
- return 0;
-}
-
-static int crc32_vx_init(struct shash_desc *desc)
-{
- struct crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
- struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
-
- ctx->crc = mctx->key;
- return 0;
-}
-
-static int crc32_vx_setkey(struct crypto_shash *tfm, const u8 *newkey,
- unsigned int newkeylen)
-{
- struct crc_ctx *mctx = crypto_shash_ctx(tfm);
-
- if (newkeylen != sizeof(mctx->key))
- return -EINVAL;
- mctx->key = le32_to_cpu(*(__le32 *)newkey);
- return 0;
-}
-
-static int crc32be_vx_setkey(struct crypto_shash *tfm, const u8 *newkey,
- unsigned int newkeylen)
-{
- struct crc_ctx *mctx = crypto_shash_ctx(tfm);
-
- if (newkeylen != sizeof(mctx->key))
- return -EINVAL;
- mctx->key = be32_to_cpu(*(__be32 *)newkey);
- return 0;
-}
-
-static int crc32le_vx_final(struct shash_desc *desc, u8 *out)
-{
- struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
-
- *(__le32 *)out = cpu_to_le32p(&ctx->crc);
- return 0;
-}
-
-static int crc32be_vx_final(struct shash_desc *desc, u8 *out)
-{
- struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
-
- *(__be32 *)out = cpu_to_be32p(&ctx->crc);
- return 0;
-}
-
-static int crc32c_vx_final(struct shash_desc *desc, u8 *out)
-{
- struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
-
- /*
- * Perform a final XOR with 0xFFFFFFFF to be in sync
- * with the generic crc32c shash implementation.
- */
- *(__le32 *)out = ~cpu_to_le32p(&ctx->crc);
- return 0;
-}
-
-static int __crc32le_vx_finup(u32 *crc, const u8 *data, unsigned int len,
- u8 *out)
-{
- *(__le32 *)out = cpu_to_le32(crc32_le_vx(*crc, data, len));
- return 0;
-}
-
-static int __crc32be_vx_finup(u32 *crc, const u8 *data, unsigned int len,
- u8 *out)
-{
- *(__be32 *)out = cpu_to_be32(crc32_be_vx(*crc, data, len));
- return 0;
-}
-
-static int __crc32c_vx_finup(u32 *crc, const u8 *data, unsigned int len,
- u8 *out)
-{
- /*
- * Perform a final XOR with 0xFFFFFFFF to be in sync
- * with the generic crc32c shash implementation.
- */
- *(__le32 *)out = ~cpu_to_le32(crc32c_le_vx(*crc, data, len));
- return 0;
-}
-
-
-#define CRC32_VX_FINUP(alg, func) \
- static int alg ## _vx_finup(struct shash_desc *desc, const u8 *data, \
- unsigned int datalen, u8 *out) \
- { \
- return __ ## alg ## _vx_finup(shash_desc_ctx(desc), \
- data, datalen, out); \
- }
-
-CRC32_VX_FINUP(crc32le, crc32_le_vx)
-CRC32_VX_FINUP(crc32be, crc32_be_vx)
-CRC32_VX_FINUP(crc32c, crc32c_le_vx)
-
-#define CRC32_VX_DIGEST(alg, func) \
- static int alg ## _vx_digest(struct shash_desc *desc, const u8 *data, \
- unsigned int len, u8 *out) \
- { \
- return __ ## alg ## _vx_finup(crypto_shash_ctx(desc->tfm), \
- data, len, out); \
- }
-
-CRC32_VX_DIGEST(crc32le, crc32_le_vx)
-CRC32_VX_DIGEST(crc32be, crc32_be_vx)
-CRC32_VX_DIGEST(crc32c, crc32c_le_vx)
-
-#define CRC32_VX_UPDATE(alg, func) \
- static int alg ## _vx_update(struct shash_desc *desc, const u8 *data, \
- unsigned int datalen) \
- { \
- struct crc_desc_ctx *ctx = shash_desc_ctx(desc); \
- ctx->crc = func(ctx->crc, data, datalen); \
- return 0; \
- }
-
-CRC32_VX_UPDATE(crc32le, crc32_le_vx)
-CRC32_VX_UPDATE(crc32be, crc32_be_vx)
-CRC32_VX_UPDATE(crc32c, crc32c_le_vx)
-
-
-static struct shash_alg crc32_vx_algs[] = {
- /* CRC-32 LE */
- {
- .init = crc32_vx_init,
- .setkey = crc32_vx_setkey,
- .update = crc32le_vx_update,
- .final = crc32le_vx_final,
- .finup = crc32le_vx_finup,
- .digest = crc32le_vx_digest,
- .descsize = sizeof(struct crc_desc_ctx),
- .digestsize = CRC32_DIGEST_SIZE,
- .base = {
- .cra_name = "crc32",
- .cra_driver_name = "crc32-vx",
- .cra_priority = 200,
- .cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
- .cra_blocksize = CRC32_BLOCK_SIZE,
- .cra_ctxsize = sizeof(struct crc_ctx),
- .cra_module = THIS_MODULE,
- .cra_init = crc32_vx_cra_init_zero,
- },
- },
- /* CRC-32 BE */
- {
- .init = crc32_vx_init,
- .setkey = crc32be_vx_setkey,
- .update = crc32be_vx_update,
- .final = crc32be_vx_final,
- .finup = crc32be_vx_finup,
- .digest = crc32be_vx_digest,
- .descsize = sizeof(struct crc_desc_ctx),
- .digestsize = CRC32_DIGEST_SIZE,
- .base = {
- .cra_name = "crc32be",
- .cra_driver_name = "crc32be-vx",
- .cra_priority = 200,
- .cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
- .cra_blocksize = CRC32_BLOCK_SIZE,
- .cra_ctxsize = sizeof(struct crc_ctx),
- .cra_module = THIS_MODULE,
- .cra_init = crc32_vx_cra_init_zero,
- },
- },
- /* CRC-32C LE */
- {
- .init = crc32_vx_init,
- .setkey = crc32_vx_setkey,
- .update = crc32c_vx_update,
- .final = crc32c_vx_final,
- .finup = crc32c_vx_finup,
- .digest = crc32c_vx_digest,
- .descsize = sizeof(struct crc_desc_ctx),
- .digestsize = CRC32_DIGEST_SIZE,
- .base = {
- .cra_name = "crc32c",
- .cra_driver_name = "crc32c-vx",
- .cra_priority = 200,
- .cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
- .cra_blocksize = CRC32_BLOCK_SIZE,
- .cra_ctxsize = sizeof(struct crc_ctx),
- .cra_module = THIS_MODULE,
- .cra_init = crc32_vx_cra_init_invert,
- },
- },
-};
-
-
-static int __init crc_vx_mod_init(void)
-{
- return crypto_register_shashes(crc32_vx_algs,
- ARRAY_SIZE(crc32_vx_algs));
-}
-
-static void __exit crc_vx_mod_exit(void)
-{
- crypto_unregister_shashes(crc32_vx_algs, ARRAY_SIZE(crc32_vx_algs));
-}
-
-module_cpu_feature_match(S390_CPU_FEATURE_VXRS, crc_vx_mod_init);
-module_exit(crc_vx_mod_exit);
-
-MODULE_AUTHOR("Hendrik Brueckner <brueckner@linux.vnet.ibm.com>");
-MODULE_LICENSE("GPL");
-
-MODULE_ALIAS_CRYPTO("crc32");
-MODULE_ALIAS_CRYPTO("crc32-vx");
-MODULE_ALIAS_CRYPTO("crc32c");
-MODULE_ALIAS_CRYPTO("crc32c-vx");
diff --git a/arch/s390/crypto/crc32-vx.h b/arch/s390/crypto/crc32-vx.h
deleted file mode 100644
index 652c96e1a822..000000000000
--- a/arch/s390/crypto/crc32-vx.h
+++ /dev/null
@@ -1,12 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-
-#ifndef _CRC32_VX_S390_H
-#define _CRC32_VX_S390_H
-
-#include <linux/types.h>
-
-u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
-u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
-u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
-
-#endif /* _CRC32_VX_S390_H */
diff --git a/arch/s390/crypto/crc32be-vx.c b/arch/s390/crypto/crc32be-vx.c
deleted file mode 100644
index fed7c9c70d05..000000000000
--- a/arch/s390/crypto/crc32be-vx.c
+++ /dev/null
@@ -1,174 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-/*
- * Hardware-accelerated CRC-32 variants for Linux on z Systems
- *
- * Use the z/Architecture Vector Extension Facility to accelerate the
- * computing of CRC-32 checksums.
- *
- * This CRC-32 implementation algorithm processes the most-significant
- * bit first (BE).
- *
- * Copyright IBM Corp. 2015
- * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
- */
-
-#include <linux/types.h>
-#include <asm/fpu.h>
-#include "crc32-vx.h"
-
-/* Vector register range containing CRC-32 constants */
-#define CONST_R1R2 9
-#define CONST_R3R4 10
-#define CONST_R5 11
-#define CONST_R6 12
-#define CONST_RU_POLY 13
-#define CONST_CRC_POLY 14
-
-/*
- * The CRC-32 constant block contains reduction constants to fold and
- * process particular chunks of the input data stream in parallel.
- *
- * For the CRC-32 variants, the constants are precomputed according to
- * these definitions:
- *
- * R1 = x4*128+64 mod P(x)
- * R2 = x4*128 mod P(x)
- * R3 = x128+64 mod P(x)
- * R4 = x128 mod P(x)
- * R5 = x96 mod P(x)
- * R6 = x64 mod P(x)
- *
- * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
- *
- * where P(x) is the polynomial in the normal domain and the P'(x) is the
- * polynomial in the reversed (bitreflected) domain.
- *
- * Note that the constant definitions below are extended in order to compute
- * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
- * The rightmost doubleword can be 0 to prevent contribution to the result or
- * can be multiplied by 1 to perform an XOR without the need for a separate
- * VECTOR EXCLUSIVE OR instruction.
- *
- * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
- *
- * P(x) = 0x04C11DB7
- * P'(x) = 0xEDB88320
- */
-
-static unsigned long constants_CRC_32_BE[] = {
- 0x08833794c, 0x0e6228b11, /* R1, R2 */
- 0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */
- 0x0f200aa66, 1UL << 32, /* R5, x32 */
- 0x0490d678d, 1, /* R6, 1 */
- 0x104d101df, 0, /* u */
- 0x104C11DB7, 0, /* P(x) */
-};
-
-/**
- * crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers
- * @crc: Initial CRC value, typically ~0.
- * @buf: Input buffer pointer, performance might be improved if the
- * buffer is on a doubleword boundary.
- * @size: Size of the buffer, must be 64 bytes or greater.
- *
- * Register usage:
- * V0: Initial CRC value and intermediate constants and results.
- * V1..V4: Data for CRC computation.
- * V5..V8: Next data chunks that are fetched from the input buffer.
- * V9..V14: CRC-32 constants.
- */
-u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
-{
- /* Load CRC-32 constants */
- fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE);
- fpu_vzero(0);
-
- /* Load the initial CRC value into the leftmost word of V0. */
- fpu_vlvgf(0, crc, 0);
-
- /* Load a 64-byte data chunk and XOR with CRC */
- fpu_vlm(1, 4, buf);
- fpu_vx(1, 0, 1);
- buf += 64;
- size -= 64;
-
- while (size >= 64) {
- /* Load the next 64-byte data chunk into V5 to V8 */
- fpu_vlm(5, 8, buf);
-
- /*
- * Perform a GF(2) multiplication of the doublewords in V1 with
- * the reduction constants in V0. The intermediate result is
- * then folded (accumulated) with the next data chunk in V5 and
- * stored in V1. Repeat this step for the register contents
- * in V2, V3, and V4 respectively.
- */
- fpu_vgfmag(1, CONST_R1R2, 1, 5);
- fpu_vgfmag(2, CONST_R1R2, 2, 6);
- fpu_vgfmag(3, CONST_R1R2, 3, 7);
- fpu_vgfmag(4, CONST_R1R2, 4, 8);
- buf += 64;
- size -= 64;
- }
-
- /* Fold V1 to V4 into a single 128-bit value in V1 */
- fpu_vgfmag(1, CONST_R3R4, 1, 2);
- fpu_vgfmag(1, CONST_R3R4, 1, 3);
- fpu_vgfmag(1, CONST_R3R4, 1, 4);
-
- while (size >= 16) {
- fpu_vl(2, buf);
- fpu_vgfmag(1, CONST_R3R4, 1, 2);
- buf += 16;
- size -= 16;
- }
-
- /*
- * The R5 constant is used to fold a 128-bit value into an 96-bit value
- * that is XORed with the next 96-bit input data chunk. To use a single
- * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
- * form an intermediate 96-bit value (with appended zeros) which is then
- * XORed with the intermediate reduction result.
- */
- fpu_vgfmg(1, CONST_R5, 1);
-
- /*
- * Further reduce the remaining 96-bit value to a 64-bit value using a
- * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
- * intermediate result is then XORed with the product of the leftmost
- * doubleword with R6. The result is a 64-bit value and is subject to
- * the Barret reduction.
- */
- fpu_vgfmg(1, CONST_R6, 1);
-
- /*
- * The input values to the Barret reduction are the degree-63 polynomial
- * in V1 (R(x)), degree-32 generator polynomial, and the reduction
- * constant u. The Barret reduction result is the CRC value of R(x) mod
- * P(x).
- *
- * The Barret reduction algorithm is defined as:
- *
- * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
- * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
- * 3. C(x) = R(x) XOR T2(x) mod x^32
- *
- * Note: To compensate the division by x^32, use the vector unpack
- * instruction to move the leftmost word into the leftmost doubleword
- * of the vector register. The rightmost doubleword is multiplied
- * with zero to not contribute to the intermediate results.
- */
-
- /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
- fpu_vupllf(2, 1);
- fpu_vgfmg(2, CONST_RU_POLY, 2);
-
- /*
- * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
- * V2 and XOR the intermediate result, T2(x), with the value in V1.
- * The final result is in the rightmost word of V2.
- */
- fpu_vupllf(2, 2);
- fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
- return fpu_vlgvf(2, 3);
-}
diff --git a/arch/s390/crypto/crc32le-vx.c b/arch/s390/crypto/crc32le-vx.c
deleted file mode 100644
index 2f629f394df7..000000000000
--- a/arch/s390/crypto/crc32le-vx.c
+++ /dev/null
@@ -1,240 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-/*
- * Hardware-accelerated CRC-32 variants for Linux on z Systems
- *
- * Use the z/Architecture Vector Extension Facility to accelerate the
- * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
- * and Castagnoli.
- *
- * This CRC-32 implementation algorithm is bitreflected and processes
- * the least-significant bit first (Little-Endian).
- *
- * Copyright IBM Corp. 2015
- * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
- */
-
-#include <linux/types.h>
-#include <asm/fpu.h>
-#include "crc32-vx.h"
-
-/* Vector register range containing CRC-32 constants */
-#define CONST_PERM_LE2BE 9
-#define CONST_R2R1 10
-#define CONST_R4R3 11
-#define CONST_R5 12
-#define CONST_RU_POLY 13
-#define CONST_CRC_POLY 14
-
-/*
- * The CRC-32 constant block contains reduction constants to fold and
- * process particular chunks of the input data stream in parallel.
- *
- * For the CRC-32 variants, the constants are precomputed according to
- * these definitions:
- *
- * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
- * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
- * R3 = [(x128+32 mod P'(x) << 32)]' << 1
- * R4 = [(x128-32 mod P'(x) << 32)]' << 1
- * R5 = [(x64 mod P'(x) << 32)]' << 1
- * R6 = [(x32 mod P'(x) << 32)]' << 1
- *
- * The bitreflected Barret reduction constant, u', is defined as
- * the bit reversal of floor(x**64 / P(x)).
- *
- * where P(x) is the polynomial in the normal domain and the P'(x) is the
- * polynomial in the reversed (bitreflected) domain.
- *
- * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
- *
- * P(x) = 0x04C11DB7
- * P'(x) = 0xEDB88320
- *
- * CRC-32C (Castagnoli) polynomials:
- *
- * P(x) = 0x1EDC6F41
- * P'(x) = 0x82F63B78
- */
-
-static unsigned long constants_CRC_32_LE[] = {
- 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
- 0x1c6e41596, 0x154442bd4, /* R2, R1 */
- 0x0ccaa009e, 0x1751997d0, /* R4, R3 */
- 0x0, 0x163cd6124, /* R5 */
- 0x0, 0x1f7011641, /* u' */
- 0x0, 0x1db710641 /* P'(x) << 1 */
-};
-
-static unsigned long constants_CRC_32C_LE[] = {
- 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
- 0x09e4addf8, 0x740eef02, /* R2, R1 */
- 0x14cd00bd6, 0xf20c0dfe, /* R4, R3 */
- 0x0, 0x0dd45aab8, /* R5 */
- 0x0, 0x0dea713f1, /* u' */
- 0x0, 0x105ec76f0 /* P'(x) << 1 */
-};
-
-/**
- * crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers
- * @crc: Initial CRC value, typically ~0.
- * @buf: Input buffer pointer, performance might be improved if the
- * buffer is on a doubleword boundary.
- * @size: Size of the buffer, must be 64 bytes or greater.
- * @constants: CRC-32 constant pool base pointer.
- *
- * Register usage:
- * V0: Initial CRC value and intermediate constants and results.
- * V1..V4: Data for CRC computation.
- * V5..V8: Next data chunks that are fetched from the input buffer.
- * V9: Constant for BE->LE conversion and shift operations
- * V10..V14: CRC-32 constants.
- */
-static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants)
-{
- /* Load CRC-32 constants */
- fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants);
-
- /*
- * Load the initial CRC value.
- *
- * The CRC value is loaded into the rightmost word of the
- * vector register and is later XORed with the LSB portion
- * of the loaded input data.
- */
- fpu_vzero(0); /* Clear V0 */
- fpu_vlvgf(0, crc, 3); /* Load CRC into rightmost word */
-
- /* Load a 64-byte data chunk and XOR with CRC */
- fpu_vlm(1, 4, buf);
- fpu_vperm(1, 1, 1, CONST_PERM_LE2BE);
- fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
- fpu_vperm(3, 3, 3, CONST_PERM_LE2BE);
- fpu_vperm(4, 4, 4, CONST_PERM_LE2BE);
-
- fpu_vx(1, 0, 1); /* V1 ^= CRC */
- buf += 64;
- size -= 64;
-
- while (size >= 64) {
- fpu_vlm(5, 8, buf);
- fpu_vperm(5, 5, 5, CONST_PERM_LE2BE);
- fpu_vperm(6, 6, 6, CONST_PERM_LE2BE);
- fpu_vperm(7, 7, 7, CONST_PERM_LE2BE);
- fpu_vperm(8, 8, 8, CONST_PERM_LE2BE);
- /*
- * Perform a GF(2) multiplication of the doublewords in V1 with
- * the R1 and R2 reduction constants in V0. The intermediate
- * result is then folded (accumulated) with the next data chunk
- * in V5 and stored in V1. Repeat this step for the register
- * contents in V2, V3, and V4 respectively.
- */
- fpu_vgfmag(1, CONST_R2R1, 1, 5);
- fpu_vgfmag(2, CONST_R2R1, 2, 6);
- fpu_vgfmag(3, CONST_R2R1, 3, 7);
- fpu_vgfmag(4, CONST_R2R1, 4, 8);
- buf += 64;
- size -= 64;
- }
-
- /*
- * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
- * and R4 and accumulating the next 128-bit chunk until a single 128-bit
- * value remains.
- */
- fpu_vgfmag(1, CONST_R4R3, 1, 2);
- fpu_vgfmag(1, CONST_R4R3, 1, 3);
- fpu_vgfmag(1, CONST_R4R3, 1, 4);
-
- while (size >= 16) {
- fpu_vl(2, buf);
- fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
- fpu_vgfmag(1, CONST_R4R3, 1, 2);
- buf += 16;
- size -= 16;
- }
-
- /*
- * Set up a vector register for byte shifts. The shift value must
- * be loaded in bits 1-4 in byte element 7 of a vector register.
- * Shift by 8 bytes: 0x40
- * Shift by 4 bytes: 0x20
- */
- fpu_vleib(9, 0x40, 7);
-
- /*
- * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
- * to move R4 into the rightmost doubleword and set the leftmost
- * doubleword to 0x1.
- */
- fpu_vsrlb(0, CONST_R4R3, 9);
- fpu_vleig(0, 1, 0);
-
- /*
- * Compute GF(2) product of V1 and V0. The rightmost doubleword
- * of V1 is multiplied with R4. The leftmost doubleword of V1 is
- * multiplied by 0x1 and is then XORed with rightmost product.
- * Implicitly, the intermediate leftmost product becomes padded
- */
- fpu_vgfmg(1, 0, 1);
-
- /*
- * Now do the final 32-bit fold by multiplying the rightmost word
- * in V1 with R5 and XOR the result with the remaining bits in V1.
- *
- * To achieve this by a single VGFMAG, right shift V1 by a word
- * and store the result in V2 which is then accumulated. Use the
- * vector unpack instruction to load the rightmost half of the
- * doubleword into the rightmost doubleword element of V1; the other
- * half is loaded in the leftmost doubleword.
- * The vector register with CONST_R5 contains the R5 constant in the
- * rightmost doubleword and the leftmost doubleword is zero to ignore
- * the leftmost product of V1.
- */
- fpu_vleib(9, 0x20, 7); /* Shift by words */
- fpu_vsrlb(2, 1, 9); /* Store remaining bits in V2 */
- fpu_vupllf(1, 1); /* Split rightmost doubleword */
- fpu_vgfmag(1, CONST_R5, 1, 2); /* V1 = (V1 * R5) XOR V2 */
-
- /*
- * Apply a Barret reduction to compute the final 32-bit CRC value.
- *
- * The input values to the Barret reduction are the degree-63 polynomial
- * in V1 (R(x)), degree-32 generator polynomial, and the reduction
- * constant u. The Barret reduction result is the CRC value of R(x) mod
- * P(x).
- *
- * The Barret reduction algorithm is defined as:
- *
- * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
- * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
- * 3. C(x) = R(x) XOR T2(x) mod x^32
- *
- * Note: The leftmost doubleword of vector register containing
- * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
- * is zero and does not contribute to the final result.
- */
-
- /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
- fpu_vupllf(2, 1);
- fpu_vgfmg(2, CONST_RU_POLY, 2);
-
- /*
- * Compute the GF(2) product of the CRC polynomial with T1(x) in
- * V2 and XOR the intermediate result, T2(x), with the value in V1.
- * The final result is stored in word element 2 of V2.
- */
- fpu_vupllf(2, 2);
- fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
-
- return fpu_vlgvf(2, 2);
-}
-
-u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
-{
- return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]);
-}
-
-u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
-{
- return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]);
-}
diff --git a/arch/s390/crypto/hmac_s390.c b/arch/s390/crypto/hmac_s390.c
new file mode 100644
index 000000000000..bba9a818dfdc
--- /dev/null
+++ b/arch/s390/crypto/hmac_s390.c
@@ -0,0 +1,359 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright IBM Corp. 2024
+ *
+ * s390 specific HMAC support.
+ */
+
+#define KMSG_COMPONENT "hmac_s390"
+#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
+
+#include <asm/cpacf.h>
+#include <crypto/sha2.h>
+#include <crypto/internal/hash.h>
+#include <linux/cpufeature.h>
+#include <linux/module.h>
+
+/*
+ * KMAC param block layout for sha2 function codes:
+ * The layout of the param block for the KMAC instruction depends on the
+ * blocksize of the used hashing sha2-algorithm function codes. The param block
+ * contains the hash chaining value (cv), the input message bit-length (imbl)
+ * and the hmac-secret (key). To prevent code duplication, the sizes of all
+ * these are calculated based on the blocksize.
+ *
+ * param-block:
+ * +-------+
+ * | cv |
+ * +-------+
+ * | imbl |
+ * +-------+
+ * | key |
+ * +-------+
+ *
+ * sizes:
+ * part | sh2-alg | calculation | size | type
+ * -----+---------+-------------+------+--------
+ * cv | 224/256 | blocksize/2 | 32 | u64[8]
+ * | 384/512 | | 64 | u128[8]
+ * imbl | 224/256 | blocksize/8 | 8 | u64
+ * | 384/512 | | 16 | u128
+ * key | 224/256 | blocksize | 64 | u8[64]
+ * | 384/512 | | 128 | u8[128]
+ */
+
+#define MAX_DIGEST_SIZE SHA512_DIGEST_SIZE
+#define MAX_IMBL_SIZE sizeof(u128)
+#define MAX_BLOCK_SIZE SHA512_BLOCK_SIZE
+
+#define SHA2_CV_SIZE(bs) ((bs) >> 1)
+#define SHA2_IMBL_SIZE(bs) ((bs) >> 3)
+
+#define SHA2_IMBL_OFFSET(bs) (SHA2_CV_SIZE(bs))
+#define SHA2_KEY_OFFSET(bs) (SHA2_CV_SIZE(bs) + SHA2_IMBL_SIZE(bs))
+
+struct s390_hmac_ctx {
+ u8 key[MAX_BLOCK_SIZE];
+};
+
+union s390_kmac_gr0 {
+ unsigned long reg;
+ struct {
+ unsigned long : 48;
+ unsigned long ikp : 1;
+ unsigned long iimp : 1;
+ unsigned long ccup : 1;
+ unsigned long : 6;
+ unsigned long fc : 7;
+ };
+};
+
+struct s390_kmac_sha2_ctx {
+ u8 param[MAX_DIGEST_SIZE + MAX_IMBL_SIZE + MAX_BLOCK_SIZE];
+ union s390_kmac_gr0 gr0;
+ u8 buf[MAX_BLOCK_SIZE];
+ unsigned int buflen;
+};
+
+/*
+ * kmac_sha2_set_imbl - sets the input message bit-length based on the blocksize
+ */
+static inline void kmac_sha2_set_imbl(u8 *param, unsigned int buflen,
+ unsigned int blocksize)
+{
+ u8 *imbl = param + SHA2_IMBL_OFFSET(blocksize);
+
+ switch (blocksize) {
+ case SHA256_BLOCK_SIZE:
+ *(u64 *)imbl = (u64)buflen * BITS_PER_BYTE;
+ break;
+ case SHA512_BLOCK_SIZE:
+ *(u128 *)imbl = (u128)buflen * BITS_PER_BYTE;
+ break;
+ default:
+ break;
+ }
+}
+
+static int hash_key(const u8 *in, unsigned int inlen,
+ u8 *digest, unsigned int digestsize)
+{
+ unsigned long func;
+ union {
+ struct sha256_paramblock {
+ u32 h[8];
+ u64 mbl;
+ } sha256;
+ struct sha512_paramblock {
+ u64 h[8];
+ u128 mbl;
+ } sha512;
+ } __packed param;
+
+#define PARAM_INIT(x, y, z) \
+ param.sha##x.h[0] = SHA##y ## _H0; \
+ param.sha##x.h[1] = SHA##y ## _H1; \
+ param.sha##x.h[2] = SHA##y ## _H2; \
+ param.sha##x.h[3] = SHA##y ## _H3; \
+ param.sha##x.h[4] = SHA##y ## _H4; \
+ param.sha##x.h[5] = SHA##y ## _H5; \
+ param.sha##x.h[6] = SHA##y ## _H6; \
+ param.sha##x.h[7] = SHA##y ## _H7; \
+ param.sha##x.mbl = (z)
+
+ switch (digestsize) {
+ case SHA224_DIGEST_SIZE:
+ func = CPACF_KLMD_SHA_256;
+ PARAM_INIT(256, 224, inlen * 8);
+ break;
+ case SHA256_DIGEST_SIZE:
+ func = CPACF_KLMD_SHA_256;
+ PARAM_INIT(256, 256, inlen * 8);
+ break;
+ case SHA384_DIGEST_SIZE:
+ func = CPACF_KLMD_SHA_512;
+ PARAM_INIT(512, 384, inlen * 8);
+ break;
+ case SHA512_DIGEST_SIZE:
+ func = CPACF_KLMD_SHA_512;
+ PARAM_INIT(512, 512, inlen * 8);
+ break;
+ default:
+ return -EINVAL;
+ }
+
+#undef PARAM_INIT
+
+ cpacf_klmd(func, &param, in, inlen);
+
+ memcpy(digest, &param, digestsize);
+
+ return 0;
+}
+
+static int s390_hmac_sha2_setkey(struct crypto_shash *tfm,
+ const u8 *key, unsigned int keylen)
+{
+ struct s390_hmac_ctx *tfm_ctx = crypto_shash_ctx(tfm);
+ unsigned int ds = crypto_shash_digestsize(tfm);
+ unsigned int bs = crypto_shash_blocksize(tfm);
+
+ memset(tfm_ctx, 0, sizeof(*tfm_ctx));
+
+ if (keylen > bs)
+ return hash_key(key, keylen, tfm_ctx->key, ds);
+
+ memcpy(tfm_ctx->key, key, keylen);
+ return 0;
+}
+
+static int s390_hmac_sha2_init(struct shash_desc *desc)
+{
+ struct s390_hmac_ctx *tfm_ctx = crypto_shash_ctx(desc->tfm);
+ struct s390_kmac_sha2_ctx *ctx = shash_desc_ctx(desc);
+ unsigned int bs = crypto_shash_blocksize(desc->tfm);
+
+ memcpy(ctx->param + SHA2_KEY_OFFSET(bs),
+ tfm_ctx->key, bs);
+
+ ctx->buflen = 0;
+ ctx->gr0.reg = 0;
+ switch (crypto_shash_digestsize(desc->tfm)) {
+ case SHA224_DIGEST_SIZE:
+ ctx->gr0.fc = CPACF_KMAC_HMAC_SHA_224;
+ break;
+ case SHA256_DIGEST_SIZE:
+ ctx->gr0.fc = CPACF_KMAC_HMAC_SHA_256;
+ break;
+ case SHA384_DIGEST_SIZE:
+ ctx->gr0.fc = CPACF_KMAC_HMAC_SHA_384;
+ break;
+ case SHA512_DIGEST_SIZE:
+ ctx->gr0.fc = CPACF_KMAC_HMAC_SHA_512;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int s390_hmac_sha2_update(struct shash_desc *desc,
+ const u8 *data, unsigned int len)
+{
+ struct s390_kmac_sha2_ctx *ctx = shash_desc_ctx(desc);
+ unsigned int bs = crypto_shash_blocksize(desc->tfm);
+ unsigned int offset, n;
+
+ /* check current buffer */
+ offset = ctx->buflen % bs;
+ ctx->buflen += len;
+ if (offset + len < bs)
+ goto store;
+
+ /* process one stored block */
+ if (offset) {
+ n = bs - offset;
+ memcpy(ctx->buf + offset, data, n);
+ ctx->gr0.iimp = 1;
+ _cpacf_kmac(&ctx->gr0.reg, ctx->param, ctx->buf, bs);
+ data += n;
+ len -= n;
+ offset = 0;
+ }
+ /* process as many blocks as possible */
+ if (len >= bs) {
+ n = (len / bs) * bs;
+ ctx->gr0.iimp = 1;
+ _cpacf_kmac(&ctx->gr0.reg, ctx->param, data, n);
+ data += n;
+ len -= n;
+ }
+store:
+ /* store incomplete block in buffer */
+ if (len)
+ memcpy(ctx->buf + offset, data, len);
+
+ return 0;
+}
+
+static int s390_hmac_sha2_final(struct shash_desc *desc, u8 *out)
+{
+ struct s390_kmac_sha2_ctx *ctx = shash_desc_ctx(desc);
+ unsigned int bs = crypto_shash_blocksize(desc->tfm);
+
+ ctx->gr0.iimp = 0;
+ kmac_sha2_set_imbl(ctx->param, ctx->buflen, bs);
+ _cpacf_kmac(&ctx->gr0.reg, ctx->param, ctx->buf, ctx->buflen % bs);
+ memcpy(out, ctx->param, crypto_shash_digestsize(desc->tfm));
+
+ return 0;
+}
+
+static int s390_hmac_sha2_digest(struct shash_desc *desc,
+ const u8 *data, unsigned int len, u8 *out)
+{
+ struct s390_kmac_sha2_ctx *ctx = shash_desc_ctx(desc);
+ unsigned int ds = crypto_shash_digestsize(desc->tfm);
+ int rc;
+
+ rc = s390_hmac_sha2_init(desc);
+ if (rc)
+ return rc;
+
+ ctx->gr0.iimp = 0;
+ kmac_sha2_set_imbl(ctx->param, len,
+ crypto_shash_blocksize(desc->tfm));
+ _cpacf_kmac(&ctx->gr0.reg, ctx->param, data, len);
+ memcpy(out, ctx->param, ds);
+
+ return 0;
+}
+
+#define S390_HMAC_SHA2_ALG(x) { \
+ .fc = CPACF_KMAC_HMAC_SHA_##x, \
+ .alg = { \
+ .init = s390_hmac_sha2_init, \
+ .update = s390_hmac_sha2_update, \
+ .final = s390_hmac_sha2_final, \
+ .digest = s390_hmac_sha2_digest, \
+ .setkey = s390_hmac_sha2_setkey, \
+ .descsize = sizeof(struct s390_kmac_sha2_ctx), \
+ .halg = { \
+ .digestsize = SHA##x##_DIGEST_SIZE, \
+ .base = { \
+ .cra_name = "hmac(sha" #x ")", \
+ .cra_driver_name = "hmac_s390_sha" #x, \
+ .cra_blocksize = SHA##x##_BLOCK_SIZE, \
+ .cra_priority = 400, \
+ .cra_ctxsize = sizeof(struct s390_hmac_ctx), \
+ .cra_module = THIS_MODULE, \
+ }, \
+ }, \
+ }, \
+}
+
+static struct s390_hmac_alg {
+ bool registered;
+ unsigned int fc;
+ struct shash_alg alg;
+} s390_hmac_algs[] = {
+ S390_HMAC_SHA2_ALG(224),
+ S390_HMAC_SHA2_ALG(256),
+ S390_HMAC_SHA2_ALG(384),
+ S390_HMAC_SHA2_ALG(512),
+};
+
+static __always_inline void _s390_hmac_algs_unregister(void)
+{
+ struct s390_hmac_alg *hmac;
+ int i;
+
+ for (i = ARRAY_SIZE(s390_hmac_algs) - 1; i >= 0; i--) {
+ hmac = &s390_hmac_algs[i];
+ if (!hmac->registered)
+ continue;
+ crypto_unregister_shash(&hmac->alg);
+ }
+}
+
+static int __init hmac_s390_init(void)
+{
+ struct s390_hmac_alg *hmac;
+ int i, rc = -ENODEV;
+
+ if (!cpacf_query_func(CPACF_KLMD, CPACF_KLMD_SHA_256))
+ return -ENODEV;
+ if (!cpacf_query_func(CPACF_KLMD, CPACF_KLMD_SHA_512))
+ return -ENODEV;
+
+ for (i = 0; i < ARRAY_SIZE(s390_hmac_algs); i++) {
+ hmac = &s390_hmac_algs[i];
+ if (!cpacf_query_func(CPACF_KMAC, hmac->fc))
+ continue;
+
+ rc = crypto_register_shash(&hmac->alg);
+ if (rc) {
+ pr_err("unable to register %s\n",
+ hmac->alg.halg.base.cra_name);
+ goto out;
+ }
+ hmac->registered = true;
+ pr_debug("registered %s\n", hmac->alg.halg.base.cra_name);
+ }
+ return rc;
+out:
+ _s390_hmac_algs_unregister();
+ return rc;
+}
+
+static void __exit hmac_s390_exit(void)
+{
+ _s390_hmac_algs_unregister();
+}
+
+module_cpu_feature_match(S390_CPU_FEATURE_MSA, hmac_s390_init);
+module_exit(hmac_s390_exit);
+
+MODULE_DESCRIPTION("S390 HMAC driver");
+MODULE_LICENSE("GPL");
diff --git a/arch/s390/crypto/paes_s390.c b/arch/s390/crypto/paes_s390.c
index 99f7e1f2b70a..511093713a6f 100644
--- a/arch/s390/crypto/paes_s390.c
+++ b/arch/s390/crypto/paes_s390.c
@@ -34,14 +34,22 @@
* is called. As paes can handle different kinds of key blobs
* and padding is also possible, the limits need to be generous.
*/
-#define PAES_MIN_KEYSIZE 16
-#define PAES_MAX_KEYSIZE MAXEP11AESKEYBLOBSIZE
+#define PAES_MIN_KEYSIZE 16
+#define PAES_MAX_KEYSIZE MAXEP11AESKEYBLOBSIZE
+#define PAES_256_PROTKEY_SIZE (32 + 32) /* key + verification pattern */
+#define PXTS_256_PROTKEY_SIZE (32 + 32 + 32) /* k1 + k2 + verification pattern */
static u8 *ctrblk;
static DEFINE_MUTEX(ctrblk_lock);
static cpacf_mask_t km_functions, kmc_functions, kmctr_functions;
+struct paes_protkey {
+ u32 type;
+ u32 len;
+ u8 protkey[PXTS_256_PROTKEY_SIZE];
+};
+
struct key_blob {
/*
* Small keys will be stored in the keybuf. Larger keys are
@@ -55,31 +63,43 @@ struct key_blob {
unsigned int keylen;
};
-static inline int _key_to_kb(struct key_blob *kb,
- const u8 *key,
- unsigned int keylen)
+/*
+ * make_clrkey_token() - wrap the raw key ck with pkey clearkey token
+ * information.
+ * @returns the size of the clearkey token
+ */
+static inline u32 make_clrkey_token(const u8 *ck, size_t cklen, u8 *dest)
{
- struct clearkey_header {
+ struct clrkey_token {
u8 type;
u8 res0[3];
u8 version;
u8 res1[3];
u32 keytype;
u32 len;
- } __packed * h;
+ u8 key[];
+ } __packed *token = (struct clrkey_token *)dest;
+
+ token->type = 0x00;
+ token->version = 0x02;
+ token->keytype = (cklen - 8) >> 3;
+ token->len = cklen;
+ memcpy(token->key, ck, cklen);
+
+ return sizeof(*token) + cklen;
+}
+static inline int _key_to_kb(struct key_blob *kb,
+ const u8 *key,
+ unsigned int keylen)
+{
switch (keylen) {
case 16:
case 24:
case 32:
/* clear key value, prepare pkey clear key token in keybuf */
memset(kb->keybuf, 0, sizeof(kb->keybuf));
- h = (struct clearkey_header *) kb->keybuf;
- h->version = 0x02; /* TOKVER_CLEAR_KEY */
- h->keytype = (keylen - 8) >> 3;
- h->len = keylen;
- memcpy(kb->keybuf + sizeof(*h), key, keylen);
- kb->keylen = sizeof(*h) + keylen;
+ kb->keylen = make_clrkey_token(key, keylen, kb->keybuf);
kb->key = kb->keybuf;
break;
default:
@@ -99,6 +119,40 @@ static inline int _key_to_kb(struct key_blob *kb,
return 0;
}
+static inline int _xts_key_to_kb(struct key_blob *kb,
+ const u8 *key,
+ unsigned int keylen)
+{
+ size_t cklen = keylen / 2;
+
+ memset(kb->keybuf, 0, sizeof(kb->keybuf));
+
+ switch (keylen) {
+ case 32:
+ case 64:
+ /* clear key value, prepare pkey clear key tokens in keybuf */
+ kb->key = kb->keybuf;
+ kb->keylen = make_clrkey_token(key, cklen, kb->key);
+ kb->keylen += make_clrkey_token(key + cklen, cklen,
+ kb->key + kb->keylen);
+ break;
+ default:
+ /* other key material, let pkey handle this */
+ if (keylen <= sizeof(kb->keybuf)) {
+ kb->key = kb->keybuf;
+ } else {
+ kb->key = kmalloc(keylen, GFP_KERNEL);
+ if (!kb->key)
+ return -ENOMEM;
+ }
+ memcpy(kb->key, key, keylen);
+ kb->keylen = keylen;
+ break;
+ }
+
+ return 0;
+}
+
static inline void _free_kb_keybuf(struct key_blob *kb)
{
if (kb->key && kb->key != kb->keybuf
@@ -106,41 +160,53 @@ static inline void _free_kb_keybuf(struct key_blob *kb)
kfree_sensitive(kb->key);
kb->key = NULL;
}
+ memzero_explicit(kb->keybuf, sizeof(kb->keybuf));
}
struct s390_paes_ctx {
struct key_blob kb;
- struct pkey_protkey pk;
+ struct paes_protkey pk;
spinlock_t pk_lock;
unsigned long fc;
};
struct s390_pxts_ctx {
- struct key_blob kb[2];
- struct pkey_protkey pk[2];
+ struct key_blob kb;
+ struct paes_protkey pk[2];
spinlock_t pk_lock;
unsigned long fc;
};
-static inline int __paes_keyblob2pkey(struct key_blob *kb,
- struct pkey_protkey *pk)
+static inline int __paes_keyblob2pkey(const u8 *key, unsigned int keylen,
+ struct paes_protkey *pk)
{
- return pkey_keyblob2pkey(kb->key, kb->keylen,
- pk->protkey, &pk->len, &pk->type);
+ int i, rc = -EIO;
+
+ /* try three times in case of busy card */
+ for (i = 0; rc && i < 3; i++) {
+ if (rc == -EBUSY && in_task()) {
+ if (msleep_interruptible(1000))
+ return -EINTR;
+ }
+ rc = pkey_key2protkey(key, keylen, pk->protkey, &pk->len,
+ &pk->type);
+ }
+
+ return rc;
}
static inline int __paes_convert_key(struct s390_paes_ctx *ctx)
{
- int ret;
- struct pkey_protkey pkey;
+ struct paes_protkey pk;
+ int rc;
- pkey.len = sizeof(pkey.protkey);
- ret = __paes_keyblob2pkey(&ctx->kb, &pkey);
- if (ret)
- return ret;
+ pk.len = sizeof(pk.protkey);
+ rc = __paes_keyblob2pkey(ctx->kb.key, ctx->kb.keylen, &pk);
+ if (rc)
+ return rc;
spin_lock_bh(&ctx->pk_lock);
- memcpy(&ctx->pk, &pkey, sizeof(pkey));
+ memcpy(&ctx->pk, &pk, sizeof(pk));
spin_unlock_bh(&ctx->pk_lock);
return 0;
@@ -165,8 +231,8 @@ static void ecb_paes_exit(struct crypto_skcipher *tfm)
static inline int __ecb_paes_set_key(struct s390_paes_ctx *ctx)
{
- int rc;
unsigned long fc;
+ int rc;
rc = __paes_convert_key(ctx);
if (rc)
@@ -186,8 +252,8 @@ static inline int __ecb_paes_set_key(struct s390_paes_ctx *ctx)
static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
- int rc;
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ int rc;
_free_kb_keybuf(&ctx->kb);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
@@ -201,19 +267,19 @@ static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
- struct skcipher_walk walk;
- unsigned int nbytes, n, k;
- int ret;
struct {
- u8 key[MAXPROTKEYSIZE];
+ u8 key[PAES_256_PROTKEY_SIZE];
} param;
+ struct skcipher_walk walk;
+ unsigned int nbytes, n, k;
+ int rc;
- ret = skcipher_walk_virt(&walk, req, false);
- if (ret)
- return ret;
+ rc = skcipher_walk_virt(&walk, req, false);
+ if (rc)
+ return rc;
spin_lock_bh(&ctx->pk_lock);
- memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
+ memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
while ((nbytes = walk.nbytes) != 0) {
@@ -222,16 +288,16 @@ static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier)
k = cpacf_km(ctx->fc | modifier, &param,
walk.dst.virt.addr, walk.src.virt.addr, n);
if (k)
- ret = skcipher_walk_done(&walk, nbytes - k);
+ rc = skcipher_walk_done(&walk, nbytes - k);
if (k < n) {
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
- memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
+ memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
- return ret;
+ return rc;
}
static int ecb_paes_encrypt(struct skcipher_request *req)
@@ -280,8 +346,8 @@ static void cbc_paes_exit(struct crypto_skcipher *tfm)
static inline int __cbc_paes_set_key(struct s390_paes_ctx *ctx)
{
- int rc;
unsigned long fc;
+ int rc;
rc = __paes_convert_key(ctx);
if (rc)
@@ -301,8 +367,8 @@ static inline int __cbc_paes_set_key(struct s390_paes_ctx *ctx)
static int cbc_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
- int rc;
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ int rc;
_free_kb_keybuf(&ctx->kb);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
@@ -316,21 +382,21 @@ static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
- struct skcipher_walk walk;
- unsigned int nbytes, n, k;
- int ret;
struct {
u8 iv[AES_BLOCK_SIZE];
- u8 key[MAXPROTKEYSIZE];
+ u8 key[PAES_256_PROTKEY_SIZE];
} param;
+ struct skcipher_walk walk;
+ unsigned int nbytes, n, k;
+ int rc;
- ret = skcipher_walk_virt(&walk, req, false);
- if (ret)
- return ret;
+ rc = skcipher_walk_virt(&walk, req, false);
+ if (rc)
+ return rc;
memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
spin_lock_bh(&ctx->pk_lock);
- memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
+ memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
while ((nbytes = walk.nbytes) != 0) {
@@ -340,17 +406,17 @@ static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier)
walk.dst.virt.addr, walk.src.virt.addr, n);
if (k) {
memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
- ret = skcipher_walk_done(&walk, nbytes - k);
+ rc = skcipher_walk_done(&walk, nbytes - k);
}
if (k < n) {
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
- memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
+ memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
- return ret;
+ return rc;
}
static int cbc_paes_encrypt(struct skcipher_request *req)
@@ -385,8 +451,7 @@ static int xts_paes_init(struct crypto_skcipher *tfm)
{
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
- ctx->kb[0].key = NULL;
- ctx->kb[1].key = NULL;
+ ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
@@ -396,24 +461,51 @@ static void xts_paes_exit(struct crypto_skcipher *tfm)
{
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
- _free_kb_keybuf(&ctx->kb[0]);
- _free_kb_keybuf(&ctx->kb[1]);
+ _free_kb_keybuf(&ctx->kb);
}
static inline int __xts_paes_convert_key(struct s390_pxts_ctx *ctx)
{
- struct pkey_protkey pkey0, pkey1;
+ struct paes_protkey pk0, pk1;
+ size_t split_keylen;
+ int rc;
+
+ pk0.len = sizeof(pk0.protkey);
+ pk1.len = sizeof(pk1.protkey);
- pkey0.len = sizeof(pkey0.protkey);
- pkey1.len = sizeof(pkey1.protkey);
+ rc = __paes_keyblob2pkey(ctx->kb.key, ctx->kb.keylen, &pk0);
+ if (rc)
+ return rc;
- if (__paes_keyblob2pkey(&ctx->kb[0], &pkey0) ||
- __paes_keyblob2pkey(&ctx->kb[1], &pkey1))
+ switch (pk0.type) {
+ case PKEY_KEYTYPE_AES_128:
+ case PKEY_KEYTYPE_AES_256:
+ /* second keytoken required */
+ if (ctx->kb.keylen % 2)
+ return -EINVAL;
+ split_keylen = ctx->kb.keylen / 2;
+
+ rc = __paes_keyblob2pkey(ctx->kb.key + split_keylen,
+ split_keylen, &pk1);
+ if (rc)
+ return rc;
+
+ if (pk0.type != pk1.type)
+ return -EINVAL;
+ break;
+ case PKEY_KEYTYPE_AES_XTS_128:
+ case PKEY_KEYTYPE_AES_XTS_256:
+ /* single key */
+ pk1.type = 0;
+ break;
+ default:
+ /* unsupported protected keytype */
return -EINVAL;
+ }
spin_lock_bh(&ctx->pk_lock);
- memcpy(&ctx->pk[0], &pkey0, sizeof(pkey0));
- memcpy(&ctx->pk[1], &pkey1, sizeof(pkey1));
+ ctx->pk[0] = pk0;
+ ctx->pk[1] = pk1;
spin_unlock_bh(&ctx->pk_lock);
return 0;
@@ -422,17 +514,30 @@ static inline int __xts_paes_convert_key(struct s390_pxts_ctx *ctx)
static inline int __xts_paes_set_key(struct s390_pxts_ctx *ctx)
{
unsigned long fc;
+ int rc;
- if (__xts_paes_convert_key(ctx))
- return -EINVAL;
-
- if (ctx->pk[0].type != ctx->pk[1].type)
- return -EINVAL;
+ rc = __xts_paes_convert_key(ctx);
+ if (rc)
+ return rc;
/* Pick the correct function code based on the protected key type */
- fc = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? CPACF_KM_PXTS_128 :
- (ctx->pk[0].type == PKEY_KEYTYPE_AES_256) ?
- CPACF_KM_PXTS_256 : 0;
+ switch (ctx->pk[0].type) {
+ case PKEY_KEYTYPE_AES_128:
+ fc = CPACF_KM_PXTS_128;
+ break;
+ case PKEY_KEYTYPE_AES_256:
+ fc = CPACF_KM_PXTS_256;
+ break;
+ case PKEY_KEYTYPE_AES_XTS_128:
+ fc = CPACF_KM_PXTS_128_FULL;
+ break;
+ case PKEY_KEYTYPE_AES_XTS_256:
+ fc = CPACF_KM_PXTS_256_FULL;
+ break;
+ default:
+ fc = 0;
+ break;
+ }
/* Check if the function code is available */
ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
@@ -441,24 +546,19 @@ static inline int __xts_paes_set_key(struct s390_pxts_ctx *ctx)
}
static int xts_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
- unsigned int xts_key_len)
+ unsigned int in_keylen)
{
- int rc;
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
u8 ckey[2 * AES_MAX_KEY_SIZE];
- unsigned int ckey_len, key_len;
+ unsigned int ckey_len;
+ int rc;
- if (xts_key_len % 2)
+ if ((in_keylen == 32 || in_keylen == 64) &&
+ xts_verify_key(tfm, in_key, in_keylen))
return -EINVAL;
- key_len = xts_key_len / 2;
-
- _free_kb_keybuf(&ctx->kb[0]);
- _free_kb_keybuf(&ctx->kb[1]);
- rc = _key_to_kb(&ctx->kb[0], in_key, key_len);
- if (rc)
- return rc;
- rc = _key_to_kb(&ctx->kb[1], in_key + key_len, key_len);
+ _free_kb_keybuf(&ctx->kb);
+ rc = _xts_key_to_kb(&ctx->kb, in_key, in_keylen);
if (rc)
return rc;
@@ -467,6 +567,13 @@ static int xts_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
return rc;
/*
+ * It is not possible on a single protected key (e.g. full AES-XTS) to
+ * check, if k1 and k2 are the same.
+ */
+ if (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128 ||
+ ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_256)
+ return 0;
+ /*
* xts_verify_key verifies the key length is not odd and makes
* sure that the two keys are not the same. This can be done
* on the two protected keys as well
@@ -478,28 +585,82 @@ static int xts_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
return xts_verify_key(tfm, ckey, 2*ckey_len);
}
-static int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
+static int paes_xts_crypt_full(struct skcipher_request *req,
+ unsigned long modifier)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
+ unsigned int keylen, offset, nbytes, n, k;
+ struct {
+ u8 key[64];
+ u8 tweak[16];
+ u8 nap[16];
+ u8 wkvp[32];
+ } fxts_param = {
+ .nap = {0},
+ };
struct skcipher_walk walk;
+ int rc;
+
+ rc = skcipher_walk_virt(&walk, req, false);
+ if (rc)
+ return rc;
+
+ keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128) ? 32 : 64;
+ offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128) ? 32 : 0;
+
+ spin_lock_bh(&ctx->pk_lock);
+ memcpy(fxts_param.key + offset, ctx->pk[0].protkey, keylen);
+ memcpy(fxts_param.wkvp, ctx->pk[0].protkey + keylen,
+ sizeof(fxts_param.wkvp));
+ spin_unlock_bh(&ctx->pk_lock);
+ memcpy(fxts_param.tweak, walk.iv, sizeof(fxts_param.tweak));
+ fxts_param.nap[0] = 0x01; /* initial alpha power (1, little-endian) */
+
+ while ((nbytes = walk.nbytes) != 0) {
+ /* only use complete blocks */
+ n = nbytes & ~(AES_BLOCK_SIZE - 1);
+ k = cpacf_km(ctx->fc | modifier, fxts_param.key + offset,
+ walk.dst.virt.addr, walk.src.virt.addr, n);
+ if (k)
+ rc = skcipher_walk_done(&walk, nbytes - k);
+ if (k < n) {
+ if (__xts_paes_convert_key(ctx))
+ return skcipher_walk_done(&walk, -EIO);
+ spin_lock_bh(&ctx->pk_lock);
+ memcpy(fxts_param.key + offset, ctx->pk[0].protkey,
+ keylen);
+ memcpy(fxts_param.wkvp, ctx->pk[0].protkey + keylen,
+ sizeof(fxts_param.wkvp));
+ spin_unlock_bh(&ctx->pk_lock);
+ }
+ }
+
+ return rc;
+}
+
+static int paes_xts_crypt(struct skcipher_request *req, unsigned long modifier)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
unsigned int keylen, offset, nbytes, n, k;
- int ret;
struct {
- u8 key[MAXPROTKEYSIZE]; /* key + verification pattern */
+ u8 key[PAES_256_PROTKEY_SIZE];
u8 tweak[16];
u8 block[16];
u8 bit[16];
u8 xts[16];
} pcc_param;
struct {
- u8 key[MAXPROTKEYSIZE]; /* key + verification pattern */
+ u8 key[PAES_256_PROTKEY_SIZE];
u8 init[16];
} xts_param;
+ struct skcipher_walk walk;
+ int rc;
- ret = skcipher_walk_virt(&walk, req, false);
- if (ret)
- return ret;
+ rc = skcipher_walk_virt(&walk, req, false);
+ if (rc)
+ return rc;
keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 48 : 64;
offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 16 : 0;
@@ -519,7 +680,7 @@ static int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
k = cpacf_km(ctx->fc | modifier, xts_param.key + offset,
walk.dst.virt.addr, walk.src.virt.addr, n);
if (k)
- ret = skcipher_walk_done(&walk, nbytes - k);
+ rc = skcipher_walk_done(&walk, nbytes - k);
if (k < n) {
if (__xts_paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
@@ -530,7 +691,24 @@ static int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
}
}
- return ret;
+ return rc;
+}
+
+static inline int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
+
+ switch (ctx->fc) {
+ case CPACF_KM_PXTS_128:
+ case CPACF_KM_PXTS_256:
+ return paes_xts_crypt(req, modifier);
+ case CPACF_KM_PXTS_128_FULL:
+ case CPACF_KM_PXTS_256_FULL:
+ return paes_xts_crypt_full(req, modifier);
+ default:
+ return -EINVAL;
+ }
}
static int xts_paes_encrypt(struct skcipher_request *req)
@@ -580,8 +758,8 @@ static void ctr_paes_exit(struct crypto_skcipher *tfm)
static inline int __ctr_paes_set_key(struct s390_paes_ctx *ctx)
{
- int rc;
unsigned long fc;
+ int rc;
rc = __paes_convert_key(ctx);
if (rc)
@@ -602,8 +780,8 @@ static inline int __ctr_paes_set_key(struct s390_paes_ctx *ctx)
static int ctr_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
- int rc;
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ int rc;
_free_kb_keybuf(&ctx->kb);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
@@ -633,19 +811,19 @@ static int ctr_paes_crypt(struct skcipher_request *req)
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
u8 buf[AES_BLOCK_SIZE], *ctrptr;
- struct skcipher_walk walk;
- unsigned int nbytes, n, k;
- int ret, locked;
struct {
- u8 key[MAXPROTKEYSIZE];
+ u8 key[PAES_256_PROTKEY_SIZE];
} param;
+ struct skcipher_walk walk;
+ unsigned int nbytes, n, k;
+ int rc, locked;
- ret = skcipher_walk_virt(&walk, req, false);
- if (ret)
- return ret;
+ rc = skcipher_walk_virt(&walk, req, false);
+ if (rc)
+ return rc;
spin_lock_bh(&ctx->pk_lock);
- memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
+ memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
locked = mutex_trylock(&ctrblk_lock);
@@ -662,7 +840,7 @@ static int ctr_paes_crypt(struct skcipher_request *req)
memcpy(walk.iv, ctrptr + k - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
crypto_inc(walk.iv, AES_BLOCK_SIZE);
- ret = skcipher_walk_done(&walk, nbytes - k);
+ rc = skcipher_walk_done(&walk, nbytes - k);
}
if (k < n) {
if (__paes_convert_key(ctx)) {
@@ -671,7 +849,7 @@ static int ctr_paes_crypt(struct skcipher_request *req)
return skcipher_walk_done(&walk, -EIO);
}
spin_lock_bh(&ctx->pk_lock);
- memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
+ memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
@@ -691,15 +869,15 @@ static int ctr_paes_crypt(struct skcipher_request *req)
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
- memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
+ memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
}
memcpy(walk.dst.virt.addr, buf, nbytes);
crypto_inc(walk.iv, AES_BLOCK_SIZE);
- ret = skcipher_walk_done(&walk, nbytes);
+ rc = skcipher_walk_done(&walk, nbytes);
}
- return ret;
+ return rc;
}
static struct skcipher_alg ctr_paes_alg = {
@@ -739,7 +917,7 @@ static void paes_s390_fini(void)
static int __init paes_s390_init(void)
{
- int ret;
+ int rc;
/* Query available functions for KM, KMC and KMCTR */
cpacf_query(CPACF_KM, &km_functions);
@@ -749,23 +927,23 @@ static int __init paes_s390_init(void)
if (cpacf_test_func(&km_functions, CPACF_KM_PAES_128) ||
cpacf_test_func(&km_functions, CPACF_KM_PAES_192) ||
cpacf_test_func(&km_functions, CPACF_KM_PAES_256)) {
- ret = crypto_register_skcipher(&ecb_paes_alg);
- if (ret)
+ rc = crypto_register_skcipher(&ecb_paes_alg);
+ if (rc)
goto out_err;
}
if (cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_128) ||
cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_192) ||
cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_256)) {
- ret = crypto_register_skcipher(&cbc_paes_alg);
- if (ret)
+ rc = crypto_register_skcipher(&cbc_paes_alg);
+ if (rc)
goto out_err;
}
if (cpacf_test_func(&km_functions, CPACF_KM_PXTS_128) ||
cpacf_test_func(&km_functions, CPACF_KM_PXTS_256)) {
- ret = crypto_register_skcipher(&xts_paes_alg);
- if (ret)
+ rc = crypto_register_skcipher(&xts_paes_alg);
+ if (rc)
goto out_err;
}
@@ -774,24 +952,27 @@ static int __init paes_s390_init(void)
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_256)) {
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) {
- ret = -ENOMEM;
+ rc = -ENOMEM;
goto out_err;
}
- ret = crypto_register_skcipher(&ctr_paes_alg);
- if (ret)
+ rc = crypto_register_skcipher(&ctr_paes_alg);
+ if (rc)
goto out_err;
}
return 0;
out_err:
paes_s390_fini();
- return ret;
+ return rc;
}
module_init(paes_s390_init);
module_exit(paes_s390_fini);
-MODULE_ALIAS_CRYPTO("paes");
+MODULE_ALIAS_CRYPTO("ecb(paes)");
+MODULE_ALIAS_CRYPTO("cbc(paes)");
+MODULE_ALIAS_CRYPTO("ctr(paes)");
+MODULE_ALIAS_CRYPTO("xts(paes)");
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm with protected keys");
MODULE_LICENSE("GPL");
diff --git a/arch/s390/crypto/prng.c b/arch/s390/crypto/prng.c
index a077087bc6cc..2becd77df741 100644
--- a/arch/s390/crypto/prng.c
+++ b/arch/s390/crypto/prng.c
@@ -679,7 +679,7 @@ static ssize_t prng_chunksize_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
- return scnprintf(buf, PAGE_SIZE, "%u\n", prng_chunk_size);
+ return sysfs_emit(buf, "%u\n", prng_chunk_size);
}
static DEVICE_ATTR(chunksize, 0444, prng_chunksize_show, NULL);
@@ -698,7 +698,7 @@ static ssize_t prng_counter_show(struct device *dev,
counter = prng_data->prngws.byte_counter;
mutex_unlock(&prng_data->mutex);
- return scnprintf(buf, PAGE_SIZE, "%llu\n", counter);
+ return sysfs_emit(buf, "%llu\n", counter);
}
static DEVICE_ATTR(byte_counter, 0444, prng_counter_show, NULL);
@@ -707,7 +707,7 @@ static ssize_t prng_errorflag_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
- return scnprintf(buf, PAGE_SIZE, "%d\n", prng_errorflag);
+ return sysfs_emit(buf, "%d\n", prng_errorflag);
}
static DEVICE_ATTR(errorflag, 0444, prng_errorflag_show, NULL);
@@ -717,9 +717,9 @@ static ssize_t prng_mode_show(struct device *dev,
char *buf)
{
if (prng_mode == PRNG_MODE_TDES)
- return scnprintf(buf, PAGE_SIZE, "TDES\n");
+ return sysfs_emit(buf, "TDES\n");
else
- return scnprintf(buf, PAGE_SIZE, "SHA512\n");
+ return sysfs_emit(buf, "SHA512\n");
}
static DEVICE_ATTR(mode, 0444, prng_mode_show, NULL);
@@ -742,7 +742,7 @@ static ssize_t prng_reseed_limit_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
- return scnprintf(buf, PAGE_SIZE, "%u\n", prng_reseed_limit);
+ return sysfs_emit(buf, "%u\n", prng_reseed_limit);
}
static ssize_t prng_reseed_limit_store(struct device *dev,
struct device_attribute *attr,
@@ -773,7 +773,7 @@ static ssize_t prng_strength_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
- return scnprintf(buf, PAGE_SIZE, "256\n");
+ return sysfs_emit(buf, "256\n");
}
static DEVICE_ATTR(strength, 0444, prng_strength_show, NULL);
diff --git a/arch/s390/crypto/sha.h b/arch/s390/crypto/sha.h
index 65ea12fc87a1..2bb22db54c31 100644
--- a/arch/s390/crypto/sha.h
+++ b/arch/s390/crypto/sha.h
@@ -25,6 +25,7 @@ struct s390_sha_ctx {
u32 state[CPACF_MAX_PARMBLOCK_SIZE / sizeof(u32)];
u8 buf[SHA_MAX_BLOCK_SIZE];
int func; /* KIMD function to use */
+ int first_message_part;
};
struct shash_desc;
diff --git a/arch/s390/crypto/sha3_256_s390.c b/arch/s390/crypto/sha3_256_s390.c
index e1350e033a32..a84ef692f572 100644
--- a/arch/s390/crypto/sha3_256_s390.c
+++ b/arch/s390/crypto/sha3_256_s390.c
@@ -21,9 +21,11 @@ static int sha3_256_init(struct shash_desc *desc)
{
struct s390_sha_ctx *sctx = shash_desc_ctx(desc);
- memset(sctx->state, 0, sizeof(sctx->state));
+ if (!test_facility(86)) /* msa 12 */
+ memset(sctx->state, 0, sizeof(sctx->state));
sctx->count = 0;
sctx->func = CPACF_KIMD_SHA3_256;
+ sctx->first_message_part = 1;
return 0;
}
@@ -36,6 +38,7 @@ static int sha3_256_export(struct shash_desc *desc, void *out)
octx->rsiz = sctx->count;
memcpy(octx->st, sctx->state, sizeof(octx->st));
memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
+ octx->partial = sctx->first_message_part;
return 0;
}
@@ -48,6 +51,7 @@ static int sha3_256_import(struct shash_desc *desc, const void *in)
sctx->count = ictx->rsiz;
memcpy(sctx->state, ictx->st, sizeof(ictx->st));
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
+ sctx->first_message_part = ictx->partial;
sctx->func = CPACF_KIMD_SHA3_256;
return 0;
@@ -61,6 +65,7 @@ static int sha3_224_import(struct shash_desc *desc, const void *in)
sctx->count = ictx->rsiz;
memcpy(sctx->state, ictx->st, sizeof(ictx->st));
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
+ sctx->first_message_part = ictx->partial;
sctx->func = CPACF_KIMD_SHA3_224;
return 0;
@@ -88,9 +93,11 @@ static int sha3_224_init(struct shash_desc *desc)
{
struct s390_sha_ctx *sctx = shash_desc_ctx(desc);
- memset(sctx->state, 0, sizeof(sctx->state));
+ if (!test_facility(86)) /* msa 12 */
+ memset(sctx->state, 0, sizeof(sctx->state));
sctx->count = 0;
sctx->func = CPACF_KIMD_SHA3_224;
+ sctx->first_message_part = 1;
return 0;
}
diff --git a/arch/s390/crypto/sha3_512_s390.c b/arch/s390/crypto/sha3_512_s390.c
index 06c142ed9bb1..07528fc98ff7 100644
--- a/arch/s390/crypto/sha3_512_s390.c
+++ b/arch/s390/crypto/sha3_512_s390.c
@@ -20,9 +20,11 @@ static int sha3_512_init(struct shash_desc *desc)
{
struct s390_sha_ctx *sctx = shash_desc_ctx(desc);
- memset(sctx->state, 0, sizeof(sctx->state));
+ if (!test_facility(86)) /* msa 12 */
+ memset(sctx->state, 0, sizeof(sctx->state));
sctx->count = 0;
sctx->func = CPACF_KIMD_SHA3_512;
+ sctx->first_message_part = 1;
return 0;
}
@@ -37,6 +39,7 @@ static int sha3_512_export(struct shash_desc *desc, void *out)
memcpy(octx->st, sctx->state, sizeof(octx->st));
memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
+ octx->partial = sctx->first_message_part;
return 0;
}
@@ -52,6 +55,7 @@ static int sha3_512_import(struct shash_desc *desc, const void *in)
memcpy(sctx->state, ictx->st, sizeof(ictx->st));
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
+ sctx->first_message_part = ictx->partial;
sctx->func = CPACF_KIMD_SHA3_512;
return 0;
@@ -68,6 +72,7 @@ static int sha3_384_import(struct shash_desc *desc, const void *in)
memcpy(sctx->state, ictx->st, sizeof(ictx->st));
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
+ sctx->first_message_part = ictx->partial;
sctx->func = CPACF_KIMD_SHA3_384;
return 0;
@@ -97,9 +102,11 @@ static int sha3_384_init(struct shash_desc *desc)
{
struct s390_sha_ctx *sctx = shash_desc_ctx(desc);
- memset(sctx->state, 0, sizeof(sctx->state));
+ if (!test_facility(86)) /* msa 12 */
+ memset(sctx->state, 0, sizeof(sctx->state));
sctx->count = 0;
sctx->func = CPACF_KIMD_SHA3_384;
+ sctx->first_message_part = 1;
return 0;
}
diff --git a/arch/s390/crypto/sha_common.c b/arch/s390/crypto/sha_common.c
index 686fe7aa192f..961d7d522af1 100644
--- a/arch/s390/crypto/sha_common.c
+++ b/arch/s390/crypto/sha_common.c
@@ -18,6 +18,7 @@ int s390_sha_update(struct shash_desc *desc, const u8 *data, unsigned int len)
struct s390_sha_ctx *ctx = shash_desc_ctx(desc);
unsigned int bsize = crypto_shash_blocksize(desc->tfm);
unsigned int index, n;
+ int fc;
/* how much is already in the buffer? */
index = ctx->count % bsize;
@@ -26,10 +27,16 @@ int s390_sha_update(struct shash_desc *desc, const u8 *data, unsigned int len)
if ((index + len) < bsize)
goto store;
+ fc = ctx->func;
+ if (ctx->first_message_part)
+ fc |= test_facility(86) ? CPACF_KIMD_NIP : 0;
+
/* process one stored block */
if (index) {
memcpy(ctx->buf + index, data, bsize - index);
- cpacf_kimd(ctx->func, ctx->state, ctx->buf, bsize);
+ cpacf_kimd(fc, ctx->state, ctx->buf, bsize);
+ ctx->first_message_part = 0;
+ fc &= ~CPACF_KIMD_NIP;
data += bsize - index;
len -= bsize - index;
index = 0;
@@ -38,7 +45,8 @@ int s390_sha_update(struct shash_desc *desc, const u8 *data, unsigned int len)
/* process as many blocks as possible */
if (len >= bsize) {
n = (len / bsize) * bsize;
- cpacf_kimd(ctx->func, ctx->state, data, n);
+ cpacf_kimd(fc, ctx->state, data, n);
+ ctx->first_message_part = 0;
data += n;
len -= n;
}
@@ -75,7 +83,7 @@ int s390_sha_final(struct shash_desc *desc, u8 *out)
unsigned int bsize = crypto_shash_blocksize(desc->tfm);
u64 bits;
unsigned int n;
- int mbl_offset;
+ int mbl_offset, fc;
n = ctx->count % bsize;
bits = ctx->count * 8;
@@ -109,7 +117,11 @@ int s390_sha_final(struct shash_desc *desc, u8 *out)
return -EINVAL;
}
- cpacf_klmd(ctx->func, ctx->state, ctx->buf, n);
+ fc = ctx->func;
+ fc |= test_facility(86) ? CPACF_KLMD_DUFOP : 0;
+ if (ctx->first_message_part)
+ fc |= CPACF_KLMD_NIP;
+ cpacf_klmd(fc, ctx->state, ctx->buf, n);
/* copy digest to out */
memcpy(out, ctx->state, crypto_shash_digestsize(desc->tfm));