diff options
Diffstat (limited to 'arch/x86/crypto/crct10dif-pcl-asm_64.S')
-rw-r--r-- | arch/x86/crypto/crct10dif-pcl-asm_64.S | 332 |
1 files changed, 0 insertions, 332 deletions
diff --git a/arch/x86/crypto/crct10dif-pcl-asm_64.S b/arch/x86/crypto/crct10dif-pcl-asm_64.S deleted file mode 100644 index 5286db5b8165..000000000000 --- a/arch/x86/crypto/crct10dif-pcl-asm_64.S +++ /dev/null @@ -1,332 +0,0 @@ -######################################################################## -# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions -# -# Copyright (c) 2013, Intel Corporation -# -# Authors: -# Erdinc Ozturk <erdinc.ozturk@intel.com> -# Vinodh Gopal <vinodh.gopal@intel.com> -# James Guilford <james.guilford@intel.com> -# Tim Chen <tim.c.chen@linux.intel.com> -# -# This software is available to you under a choice of one of two -# licenses. You may choose to be licensed under the terms of the GNU -# General Public License (GPL) Version 2, available from the file -# COPYING in the main directory of this source tree, or the -# OpenIB.org BSD license below: -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions are -# met: -# -# * Redistributions of source code must retain the above copyright -# notice, this list of conditions and the following disclaimer. -# -# * Redistributions in binary form must reproduce the above copyright -# notice, this list of conditions and the following disclaimer in the -# documentation and/or other materials provided with the -# distribution. -# -# * Neither the name of the Intel Corporation nor the names of its -# contributors may be used to endorse or promote products derived from -# this software without specific prior written permission. -# -# -# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY -# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR -# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -# -# Reference paper titled "Fast CRC Computation for Generic -# Polynomials Using PCLMULQDQ Instruction" -# URL: http://www.intel.com/content/dam/www/public/us/en/documents -# /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf -# - -#include <linux/linkage.h> - -.text - -#define init_crc %edi -#define buf %rsi -#define len %rdx - -#define FOLD_CONSTS %xmm10 -#define BSWAP_MASK %xmm11 - -# Fold reg1, reg2 into the next 32 data bytes, storing the result back into -# reg1, reg2. -.macro fold_32_bytes offset, reg1, reg2 - movdqu \offset(buf), %xmm9 - movdqu \offset+16(buf), %xmm12 - pshufb BSWAP_MASK, %xmm9 - pshufb BSWAP_MASK, %xmm12 - movdqa \reg1, %xmm8 - movdqa \reg2, %xmm13 - pclmulqdq $0x00, FOLD_CONSTS, \reg1 - pclmulqdq $0x11, FOLD_CONSTS, %xmm8 - pclmulqdq $0x00, FOLD_CONSTS, \reg2 - pclmulqdq $0x11, FOLD_CONSTS, %xmm13 - pxor %xmm9 , \reg1 - xorps %xmm8 , \reg1 - pxor %xmm12, \reg2 - xorps %xmm13, \reg2 -.endm - -# Fold src_reg into dst_reg. -.macro fold_16_bytes src_reg, dst_reg - movdqa \src_reg, %xmm8 - pclmulqdq $0x11, FOLD_CONSTS, \src_reg - pclmulqdq $0x00, FOLD_CONSTS, %xmm8 - pxor %xmm8, \dst_reg - xorps \src_reg, \dst_reg -.endm - -# -# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len); -# -# Assumes len >= 16. -# -SYM_FUNC_START(crc_t10dif_pcl) - - movdqa .Lbswap_mask(%rip), BSWAP_MASK - - # For sizes less than 256 bytes, we can't fold 128 bytes at a time. - cmp $256, len - jl .Lless_than_256_bytes - - # Load the first 128 data bytes. Byte swapping is necessary to make the - # bit order match the polynomial coefficient order. - movdqu 16*0(buf), %xmm0 - movdqu 16*1(buf), %xmm1 - movdqu 16*2(buf), %xmm2 - movdqu 16*3(buf), %xmm3 - movdqu 16*4(buf), %xmm4 - movdqu 16*5(buf), %xmm5 - movdqu 16*6(buf), %xmm6 - movdqu 16*7(buf), %xmm7 - add $128, buf - pshufb BSWAP_MASK, %xmm0 - pshufb BSWAP_MASK, %xmm1 - pshufb BSWAP_MASK, %xmm2 - pshufb BSWAP_MASK, %xmm3 - pshufb BSWAP_MASK, %xmm4 - pshufb BSWAP_MASK, %xmm5 - pshufb BSWAP_MASK, %xmm6 - pshufb BSWAP_MASK, %xmm7 - - # XOR the first 16 data *bits* with the initial CRC value. - pxor %xmm8, %xmm8 - pinsrw $7, init_crc, %xmm8 - pxor %xmm8, %xmm0 - - movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS - - # Subtract 128 for the 128 data bytes just consumed. Subtract another - # 128 to simplify the termination condition of the following loop. - sub $256, len - - # While >= 128 data bytes remain (not counting xmm0-7), fold the 128 - # bytes xmm0-7 into them, storing the result back into xmm0-7. -.Lfold_128_bytes_loop: - fold_32_bytes 0, %xmm0, %xmm1 - fold_32_bytes 32, %xmm2, %xmm3 - fold_32_bytes 64, %xmm4, %xmm5 - fold_32_bytes 96, %xmm6, %xmm7 - add $128, buf - sub $128, len - jge .Lfold_128_bytes_loop - - # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7. - - # Fold across 64 bytes. - movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS - fold_16_bytes %xmm0, %xmm4 - fold_16_bytes %xmm1, %xmm5 - fold_16_bytes %xmm2, %xmm6 - fold_16_bytes %xmm3, %xmm7 - # Fold across 32 bytes. - movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS - fold_16_bytes %xmm4, %xmm6 - fold_16_bytes %xmm5, %xmm7 - # Fold across 16 bytes. - movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS - fold_16_bytes %xmm6, %xmm7 - - # Add 128 to get the correct number of data bytes remaining in 0...127 - # (not counting xmm7), following the previous extra subtraction by 128. - # Then subtract 16 to simplify the termination condition of the - # following loop. - add $128-16, len - - # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes - # xmm7 into them, storing the result back into xmm7. - jl .Lfold_16_bytes_loop_done -.Lfold_16_bytes_loop: - movdqa %xmm7, %xmm8 - pclmulqdq $0x11, FOLD_CONSTS, %xmm7 - pclmulqdq $0x00, FOLD_CONSTS, %xmm8 - pxor %xmm8, %xmm7 - movdqu (buf), %xmm0 - pshufb BSWAP_MASK, %xmm0 - pxor %xmm0 , %xmm7 - add $16, buf - sub $16, len - jge .Lfold_16_bytes_loop - -.Lfold_16_bytes_loop_done: - # Add 16 to get the correct number of data bytes remaining in 0...15 - # (not counting xmm7), following the previous extra subtraction by 16. - add $16, len - je .Lreduce_final_16_bytes - -.Lhandle_partial_segment: - # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16 - # bytes are in xmm7 and the rest are the remaining data in 'buf'. To do - # this without needing a fold constant for each possible 'len', redivide - # the bytes into a first chunk of 'len' bytes and a second chunk of 16 - # bytes, then fold the first chunk into the second. - - movdqa %xmm7, %xmm2 - - # xmm1 = last 16 original data bytes - movdqu -16(buf, len), %xmm1 - pshufb BSWAP_MASK, %xmm1 - - # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes. - lea .Lbyteshift_table+16(%rip), %rax - sub len, %rax - movdqu (%rax), %xmm0 - pshufb %xmm0, %xmm2 - - # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes. - pxor .Lmask1(%rip), %xmm0 - pshufb %xmm0, %xmm7 - - # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes), - # then '16-len' bytes from xmm2 (high-order bytes). - pblendvb %xmm2, %xmm1 #xmm0 is implicit - - # Fold the first chunk into the second chunk, storing the result in xmm7. - movdqa %xmm7, %xmm8 - pclmulqdq $0x11, FOLD_CONSTS, %xmm7 - pclmulqdq $0x00, FOLD_CONSTS, %xmm8 - pxor %xmm8, %xmm7 - pxor %xmm1, %xmm7 - -.Lreduce_final_16_bytes: - # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC - - # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. - movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS - - # Fold the high 64 bits into the low 64 bits, while also multiplying by - # x^64. This produces a 128-bit value congruent to x^64 * M(x) and - # whose low 48 bits are 0. - movdqa %xmm7, %xmm0 - pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x)) - pslldq $8, %xmm0 - pxor %xmm0, %xmm7 # + low bits * x^64 - - # Fold the high 32 bits into the low 96 bits. This produces a 96-bit - # value congruent to x^64 * M(x) and whose low 48 bits are 0. - movdqa %xmm7, %xmm0 - pand .Lmask2(%rip), %xmm0 # zero high 32 bits - psrldq $12, %xmm7 # extract high 32 bits - pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x)) - pxor %xmm0, %xmm7 # + low bits - - # Load G(x) and floor(x^48 / G(x)). - movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS - - # Use Barrett reduction to compute the final CRC value. - movdqa %xmm7, %xmm0 - pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x)) - psrlq $32, %xmm7 # /= x^32 - pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x) - psrlq $48, %xmm0 - pxor %xmm7, %xmm0 # + low 16 nonzero bits - # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0. - - pextrw $0, %xmm0, %eax - RET - -.align 16 -.Lless_than_256_bytes: - # Checksumming a buffer of length 16...255 bytes - - # Load the first 16 data bytes. - movdqu (buf), %xmm7 - pshufb BSWAP_MASK, %xmm7 - add $16, buf - - # XOR the first 16 data *bits* with the initial CRC value. - pxor %xmm0, %xmm0 - pinsrw $7, init_crc, %xmm0 - pxor %xmm0, %xmm7 - - movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS - cmp $16, len - je .Lreduce_final_16_bytes # len == 16 - sub $32, len - jge .Lfold_16_bytes_loop # 32 <= len <= 255 - add $16, len - jmp .Lhandle_partial_segment # 17 <= len <= 31 -SYM_FUNC_END(crc_t10dif_pcl) - -.section .rodata, "a", @progbits -.align 16 - -# Fold constants precomputed from the polynomial 0x18bb7 -# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 -.Lfold_across_128_bytes_consts: - .quad 0x0000000000006123 # x^(8*128) mod G(x) - .quad 0x0000000000002295 # x^(8*128+64) mod G(x) -.Lfold_across_64_bytes_consts: - .quad 0x0000000000001069 # x^(4*128) mod G(x) - .quad 0x000000000000dd31 # x^(4*128+64) mod G(x) -.Lfold_across_32_bytes_consts: - .quad 0x000000000000857d # x^(2*128) mod G(x) - .quad 0x0000000000007acc # x^(2*128+64) mod G(x) -.Lfold_across_16_bytes_consts: - .quad 0x000000000000a010 # x^(1*128) mod G(x) - .quad 0x0000000000001faa # x^(1*128+64) mod G(x) -.Lfinal_fold_consts: - .quad 0x1368000000000000 # x^48 * (x^48 mod G(x)) - .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x)) -.Lbarrett_reduction_consts: - .quad 0x0000000000018bb7 # G(x) - .quad 0x00000001f65a57f8 # floor(x^48 / G(x)) - -.section .rodata.cst16.mask1, "aM", @progbits, 16 -.align 16 -.Lmask1: - .octa 0x80808080808080808080808080808080 - -.section .rodata.cst16.mask2, "aM", @progbits, 16 -.align 16 -.Lmask2: - .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF - -.section .rodata.cst16.bswap_mask, "aM", @progbits, 16 -.align 16 -.Lbswap_mask: - .octa 0x000102030405060708090A0B0C0D0E0F - -.section .rodata.cst32.byteshift_table, "aM", @progbits, 32 -.align 16 -# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len] -# is the index vector to shift left by 'len' bytes, and is also {0x80, ..., -# 0x80} XOR the index vector to shift right by '16 - len' bytes. -.Lbyteshift_table: - .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 - .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f - .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 - .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0 |