summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu')
-rw-r--r--arch/x86/kvm/mmu/mmu.c974
-rw-r--r--arch/x86/kvm/mmu/mmu_internal.h88
-rw-r--r--arch/x86/kvm/mmu/mmutrace.h21
-rw-r--r--arch/x86/kvm/mmu/page_track.c6
-rw-r--r--arch/x86/kvm/mmu/paging_tmpl.h50
-rw-r--r--arch/x86/kvm/mmu/spte.c318
-rw-r--r--arch/x86/kvm/mmu/spte.h252
-rw-r--r--arch/x86/kvm/mmu/tdp_iter.c182
-rw-r--r--arch/x86/kvm/mmu/tdp_iter.h60
-rw-r--r--arch/x86/kvm/mmu/tdp_mmu.c1157
-rw-r--r--arch/x86/kvm/mmu/tdp_mmu.h48
11 files changed, 2447 insertions, 709 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 71aa3da2a0b7..17587f496ec7 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -19,10 +19,12 @@
#include "ioapic.h"
#include "mmu.h"
#include "mmu_internal.h"
+#include "tdp_mmu.h"
#include "x86.h"
#include "kvm_cache_regs.h"
#include "kvm_emulate.h"
#include "cpuid.h"
+#include "spte.h"
#include <linux/kvm_host.h>
#include <linux/types.h>
@@ -45,7 +47,6 @@
#include <asm/page.h>
#include <asm/memtype.h>
#include <asm/cmpxchg.h>
-#include <asm/e820/api.h>
#include <asm/io.h>
#include <asm/vmx.h>
#include <asm/kvm_page_track.h>
@@ -64,12 +65,12 @@ static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
-static struct kernel_param_ops nx_huge_pages_ops = {
+static const struct kernel_param_ops nx_huge_pages_ops = {
.set = set_nx_huge_pages,
.get = param_get_bool,
};
-static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
+static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
.set = set_nx_huge_pages_recovery_ratio,
.get = param_get_uint,
};
@@ -104,45 +105,13 @@ enum {
AUDIT_POST_SYNC
};
-#undef MMU_DEBUG
-
#ifdef MMU_DEBUG
-static bool dbg = 0;
+bool dbg = 0;
module_param(dbg, bool, 0644);
-
-#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
-#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
-#define MMU_WARN_ON(x) WARN_ON(x)
-#else
-#define pgprintk(x...) do { } while (0)
-#define rmap_printk(x...) do { } while (0)
-#define MMU_WARN_ON(x) do { } while (0)
#endif
#define PTE_PREFETCH_NUM 8
-#define PT_FIRST_AVAIL_BITS_SHIFT 10
-#define PT64_SECOND_AVAIL_BITS_SHIFT 54
-
-/*
- * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
- * Access Tracking SPTEs.
- */
-#define SPTE_SPECIAL_MASK (3ULL << 52)
-#define SPTE_AD_ENABLED_MASK (0ULL << 52)
-#define SPTE_AD_DISABLED_MASK (1ULL << 52)
-#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
-#define SPTE_MMIO_MASK (3ULL << 52)
-
-#define PT64_LEVEL_BITS 9
-
-#define PT64_LEVEL_SHIFT(level) \
- (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
-
-#define PT64_INDEX(address, level)\
- (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
-
-
#define PT32_LEVEL_BITS 10
#define PT32_LEVEL_SHIFT(level) \
@@ -156,18 +125,6 @@ module_param(dbg, bool, 0644);
(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
-#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
-#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
-#else
-#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
-#endif
-#define PT64_LVL_ADDR_MASK(level) \
- (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
-#define PT64_LVL_OFFSET_MASK(level) \
- (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
-
#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
@@ -175,42 +132,11 @@ module_param(dbg, bool, 0644);
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
* PT32_LEVEL_BITS))) - 1))
-#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
- | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
-
-#define ACC_EXEC_MASK 1
-#define ACC_WRITE_MASK PT_WRITABLE_MASK
-#define ACC_USER_MASK PT_USER_MASK
-#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
-
-/* The mask for the R/X bits in EPT PTEs */
-#define PT64_EPT_READABLE_MASK 0x1ull
-#define PT64_EPT_EXECUTABLE_MASK 0x4ull
-
#include <trace/events/kvm.h>
-#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
-#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
-
-#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
-
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3
-/*
- * Return values of handle_mmio_page_fault and mmu.page_fault:
- * RET_PF_RETRY: let CPU fault again on the address.
- * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
- *
- * For handle_mmio_page_fault only:
- * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
- */
-enum {
- RET_PF_RETRY = 0,
- RET_PF_EMULATE = 1,
- RET_PF_INVALID = 2,
-};
-
struct pte_list_desc {
u64 *sptes[PTE_LIST_EXT];
struct pte_list_desc *more;
@@ -242,65 +168,10 @@ struct kvm_shadow_walk_iterator {
__shadow_walk_next(&(_walker), spte))
static struct kmem_cache *pte_list_desc_cache;
-static struct kmem_cache *mmu_page_header_cache;
+struct kmem_cache *mmu_page_header_cache;
static struct percpu_counter kvm_total_used_mmu_pages;
-static u64 __read_mostly shadow_nx_mask;
-static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
-static u64 __read_mostly shadow_user_mask;
-static u64 __read_mostly shadow_accessed_mask;
-static u64 __read_mostly shadow_dirty_mask;
-static u64 __read_mostly shadow_mmio_value;
-static u64 __read_mostly shadow_mmio_access_mask;
-static u64 __read_mostly shadow_present_mask;
-static u64 __read_mostly shadow_me_mask;
-
-/*
- * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
- * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
- * pages.
- */
-static u64 __read_mostly shadow_acc_track_mask;
-
-/*
- * The mask/shift to use for saving the original R/X bits when marking the PTE
- * as not-present for access tracking purposes. We do not save the W bit as the
- * PTEs being access tracked also need to be dirty tracked, so the W bit will be
- * restored only when a write is attempted to the page.
- */
-static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
- PT64_EPT_EXECUTABLE_MASK;
-static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
-
-/*
- * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
- * to guard against L1TF attacks.
- */
-static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
-
-/*
- * The number of high-order 1 bits to use in the mask above.
- */
-static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
-
-/*
- * In some cases, we need to preserve the GFN of a non-present or reserved
- * SPTE when we usurp the upper five bits of the physical address space to
- * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
- * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
- * left into the reserved bits, i.e. the GFN in the SPTE will be split into
- * high and low parts. This mask covers the lower bits of the GFN.
- */
-static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
-
-/*
- * The number of non-reserved physical address bits irrespective of features
- * that repurpose legal bits, e.g. MKTME.
- */
-static u8 __read_mostly shadow_phys_bits;
-
static void mmu_spte_set(u64 *sptep, u64 spte);
-static bool is_executable_pte(u64 spte);
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
@@ -325,7 +196,7 @@ static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
kvm_flush_remote_tlbs(kvm);
}
-static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
+void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
u64 start_gfn, u64 pages)
{
struct kvm_tlb_range range;
@@ -336,143 +207,17 @@ static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
kvm_flush_remote_tlbs_with_range(kvm, &range);
}
-void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
-{
- BUG_ON((u64)(unsigned)access_mask != access_mask);
- WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
- WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
- shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
- shadow_mmio_access_mask = access_mask;
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
-
-static bool is_mmio_spte(u64 spte)
-{
- return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
-}
-
-static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
-{
- return sp->role.ad_disabled;
-}
-
-static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
-{
- /*
- * When using the EPT page-modification log, the GPAs in the log
- * would come from L2 rather than L1. Therefore, we need to rely
- * on write protection to record dirty pages. This also bypasses
- * PML, since writes now result in a vmexit.
- */
- return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
-}
-
-static inline bool spte_ad_enabled(u64 spte)
-{
- MMU_WARN_ON(is_mmio_spte(spte));
- return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
-}
-
-static inline bool spte_ad_need_write_protect(u64 spte)
-{
- MMU_WARN_ON(is_mmio_spte(spte));
- return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
-}
-
-static bool is_nx_huge_page_enabled(void)
+bool is_nx_huge_page_enabled(void)
{
return READ_ONCE(nx_huge_pages);
}
-static inline u64 spte_shadow_accessed_mask(u64 spte)
-{
- MMU_WARN_ON(is_mmio_spte(spte));
- return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
-}
-
-static inline u64 spte_shadow_dirty_mask(u64 spte)
-{
- MMU_WARN_ON(is_mmio_spte(spte));
- return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
-}
-
-static inline bool is_access_track_spte(u64 spte)
-{
- return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
-}
-
-/*
- * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
- * the memslots generation and is derived as follows:
- *
- * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
- * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
- *
- * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
- * the MMIO generation number, as doing so would require stealing a bit from
- * the "real" generation number and thus effectively halve the maximum number
- * of MMIO generations that can be handled before encountering a wrap (which
- * requires a full MMU zap). The flag is instead explicitly queried when
- * checking for MMIO spte cache hits.
- */
-#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
-
-#define MMIO_SPTE_GEN_LOW_START 3
-#define MMIO_SPTE_GEN_LOW_END 11
-#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
- MMIO_SPTE_GEN_LOW_START)
-
-#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
-#define MMIO_SPTE_GEN_HIGH_END 62
-#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
- MMIO_SPTE_GEN_HIGH_START)
-
-static u64 generation_mmio_spte_mask(u64 gen)
-{
- u64 mask;
-
- WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
- BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
-
- mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
- mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
- return mask;
-}
-
-static u64 get_mmio_spte_generation(u64 spte)
-{
- u64 gen;
-
- gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
- gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
- return gen;
-}
-
-static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
-{
-
- u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
- u64 mask = generation_mmio_spte_mask(gen);
- u64 gpa = gfn << PAGE_SHIFT;
-
- access &= shadow_mmio_access_mask;
- mask |= shadow_mmio_value | access;
- mask |= gpa | shadow_nonpresent_or_rsvd_mask;
- mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
- << shadow_nonpresent_or_rsvd_mask_len;
-
- return mask;
-}
-
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
unsigned int access)
{
u64 mask = make_mmio_spte(vcpu, gfn, access);
- unsigned int gen = get_mmio_spte_generation(mask);
-
- access = mask & ACC_ALL;
- trace_mark_mmio_spte(sptep, gfn, access, gen);
+ trace_mark_mmio_spte(sptep, gfn, mask);
mmu_spte_set(sptep, mask);
}
@@ -521,7 +266,7 @@ static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
struct x86_exception *exception)
{
/* Check if guest physical address doesn't exceed guest maximum */
- if (kvm_mmu_is_illegal_gpa(vcpu, gpa)) {
+ if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
exception->error_code |= PFERR_RSVD_MASK;
return UNMAPPED_GVA;
}
@@ -529,90 +274,6 @@ static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
return gpa;
}
-/*
- * Sets the shadow PTE masks used by the MMU.
- *
- * Assumptions:
- * - Setting either @accessed_mask or @dirty_mask requires setting both
- * - At least one of @accessed_mask or @acc_track_mask must be set
- */
-void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
- u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
- u64 acc_track_mask, u64 me_mask)
-{
- BUG_ON(!dirty_mask != !accessed_mask);
- BUG_ON(!accessed_mask && !acc_track_mask);
- BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
-
- shadow_user_mask = user_mask;
- shadow_accessed_mask = accessed_mask;
- shadow_dirty_mask = dirty_mask;
- shadow_nx_mask = nx_mask;
- shadow_x_mask = x_mask;
- shadow_present_mask = p_mask;
- shadow_acc_track_mask = acc_track_mask;
- shadow_me_mask = me_mask;
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
-
-static u8 kvm_get_shadow_phys_bits(void)
-{
- /*
- * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
- * in CPU detection code, but the processor treats those reduced bits as
- * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
- * the physical address bits reported by CPUID.
- */
- if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
- return cpuid_eax(0x80000008) & 0xff;
-
- /*
- * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
- * custom CPUID. Proceed with whatever the kernel found since these features
- * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
- */
- return boot_cpu_data.x86_phys_bits;
-}
-
-static void kvm_mmu_reset_all_pte_masks(void)
-{
- u8 low_phys_bits;
-
- shadow_user_mask = 0;
- shadow_accessed_mask = 0;
- shadow_dirty_mask = 0;
- shadow_nx_mask = 0;
- shadow_x_mask = 0;
- shadow_present_mask = 0;
- shadow_acc_track_mask = 0;
-
- shadow_phys_bits = kvm_get_shadow_phys_bits();
-
- /*
- * If the CPU has 46 or less physical address bits, then set an
- * appropriate mask to guard against L1TF attacks. Otherwise, it is
- * assumed that the CPU is not vulnerable to L1TF.
- *
- * Some Intel CPUs address the L1 cache using more PA bits than are
- * reported by CPUID. Use the PA width of the L1 cache when possible
- * to achieve more effective mitigation, e.g. if system RAM overlaps
- * the most significant bits of legal physical address space.
- */
- shadow_nonpresent_or_rsvd_mask = 0;
- low_phys_bits = boot_cpu_data.x86_phys_bits;
- if (boot_cpu_has_bug(X86_BUG_L1TF) &&
- !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
- 52 - shadow_nonpresent_or_rsvd_mask_len)) {
- low_phys_bits = boot_cpu_data.x86_cache_bits
- - shadow_nonpresent_or_rsvd_mask_len;
- shadow_nonpresent_or_rsvd_mask =
- rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
- }
-
- shadow_nonpresent_or_rsvd_lower_gfn_mask =
- GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
-}
-
static int is_cpuid_PSE36(void)
{
return 1;
@@ -623,35 +284,6 @@ static int is_nx(struct kvm_vcpu *vcpu)
return vcpu->arch.efer & EFER_NX;
}
-static int is_shadow_present_pte(u64 pte)
-{
- return (pte != 0) && !is_mmio_spte(pte);
-}
-
-static int is_large_pte(u64 pte)
-{
- return pte & PT_PAGE_SIZE_MASK;
-}
-
-static int is_last_spte(u64 pte, int level)
-{
- if (level == PG_LEVEL_4K)
- return 1;
- if (is_large_pte(pte))
- return 1;
- return 0;
-}
-
-static bool is_executable_pte(u64 spte)
-{
- return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
-}
-
-static kvm_pfn_t spte_to_pfn(u64 pte)
-{
- return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
-}
-
static gfn_t pse36_gfn_delta(u32 gpte)
{
int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
@@ -796,12 +428,6 @@ retry:
}
#endif
-static bool spte_can_locklessly_be_made_writable(u64 spte)
-{
- return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
- (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
-}
-
static bool spte_has_volatile_bits(u64 spte)
{
if (!is_shadow_present_pte(spte))
@@ -826,21 +452,6 @@ static bool spte_has_volatile_bits(u64 spte)
return false;
}
-static bool is_accessed_spte(u64 spte)
-{
- u64 accessed_mask = spte_shadow_accessed_mask(spte);
-
- return accessed_mask ? spte & accessed_mask
- : !is_access_track_spte(spte);
-}
-
-static bool is_dirty_spte(u64 spte)
-{
- u64 dirty_mask = spte_shadow_dirty_mask(spte);
-
- return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
-}
-
/* Rules for using mmu_spte_set:
* Set the sptep from nonpresent to present.
* Note: the sptep being assigned *must* be either not present
@@ -976,34 +587,6 @@ static u64 mmu_spte_get_lockless(u64 *sptep)
return __get_spte_lockless(sptep);
}
-static u64 mark_spte_for_access_track(u64 spte)
-{
- if (spte_ad_enabled(spte))
- return spte & ~shadow_accessed_mask;
-
- if (is_access_track_spte(spte))
- return spte;
-
- /*
- * Making an Access Tracking PTE will result in removal of write access
- * from the PTE. So, verify that we will be able to restore the write
- * access in the fast page fault path later on.
- */
- WARN_ONCE((spte & PT_WRITABLE_MASK) &&
- !spte_can_locklessly_be_made_writable(spte),
- "kvm: Writable SPTE is not locklessly dirty-trackable\n");
-
- WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
- shadow_acc_track_saved_bits_shift),
- "kvm: Access Tracking saved bit locations are not zero\n");
-
- spte |= (spte & shadow_acc_track_saved_bits_mask) <<
- shadow_acc_track_saved_bits_shift;
- spte &= ~shadow_acc_track_mask;
-
- return spte;
-}
-
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
@@ -1193,7 +776,7 @@ static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
kvm_mmu_gfn_disallow_lpage(slot, gfn);
}
-static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
if (sp->lpage_disallowed)
return;
@@ -1221,7 +804,7 @@ static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
kvm_mmu_gfn_allow_lpage(slot, gfn);
}
-static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
--kvm->stat.nx_lpage_splits;
sp->lpage_disallowed = false;
@@ -1640,6 +1223,9 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
{
struct kvm_rmap_head *rmap_head;
+ if (kvm->arch.tdp_mmu_enabled)
+ kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
+ slot->base_gfn + gfn_offset, mask, true);
while (mask) {
rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
PG_LEVEL_4K, slot);
@@ -1666,6 +1252,9 @@ void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
{
struct kvm_rmap_head *rmap_head;
+ if (kvm->arch.tdp_mmu_enabled)
+ kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
+ slot->base_gfn + gfn_offset, mask, false);
while (mask) {
rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
PG_LEVEL_4K, slot);
@@ -1710,6 +1299,10 @@ bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
write_protected |= __rmap_write_protect(kvm, rmap_head, true);
}
+ if (kvm->arch.tdp_mmu_enabled)
+ write_protected |=
+ kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
+
return write_protected;
}
@@ -1769,13 +1362,8 @@ restart:
pte_list_remove(rmap_head, sptep);
goto restart;
} else {
- new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
- new_spte |= (u64)new_pfn << PAGE_SHIFT;
-
- new_spte &= ~PT_WRITABLE_MASK;
- new_spte &= ~SPTE_HOST_WRITEABLE;
-
- new_spte = mark_spte_for_access_track(new_spte);
+ new_spte = kvm_mmu_changed_pte_notifier_make_spte(
+ *sptep, new_pfn);
mmu_spte_clear_track_bits(sptep);
mmu_spte_set(sptep, new_spte);
@@ -1919,12 +1507,26 @@ static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
unsigned flags)
{
- return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
+ int r;
+
+ r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
+
+ if (kvm->arch.tdp_mmu_enabled)
+ r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
+
+ return r;
}
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
- return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
+ int r;
+
+ r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
+
+ if (kvm->arch.tdp_mmu_enabled)
+ r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
+
+ return r;
}
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
@@ -1973,12 +1575,24 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
- return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
+ int young = false;
+
+ young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
+ if (kvm->arch.tdp_mmu_enabled)
+ young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
+
+ return young;
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
- return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
+ int young = false;
+
+ young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
+ if (kvm->arch.tdp_mmu_enabled)
+ young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
+
+ return young;
}
#ifdef MMU_DEBUG
@@ -2577,13 +2191,7 @@ static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
- spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
- shadow_user_mask | shadow_x_mask | shadow_me_mask;
-
- if (sp_ad_disabled(sp))
- spte |= SPTE_AD_DISABLED_MASK;
- else
- spte |= shadow_accessed_mask;
+ spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
mmu_spte_set(sptep, spte);
@@ -2615,8 +2223,9 @@ static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
}
}
-static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
- u64 *spte)
+/* Returns the number of zapped non-leaf child shadow pages. */
+static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
+ u64 *spte, struct list_head *invalid_list)
{
u64 pte;
struct kvm_mmu_page *child;
@@ -2630,23 +2239,34 @@ static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
} else {
child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
drop_parent_pte(child, spte);
- }
- return true;
- }
- if (is_mmio_spte(pte))
+ /*
+ * Recursively zap nested TDP SPs, parentless SPs are
+ * unlikely to be used again in the near future. This
+ * avoids retaining a large number of stale nested SPs.
+ */
+ if (tdp_enabled && invalid_list &&
+ child->role.guest_mode && !child->parent_ptes.val)
+ return kvm_mmu_prepare_zap_page(kvm, child,
+ invalid_list);
+ }
+ } else if (is_mmio_spte(pte)) {
mmu_spte_clear_no_track(spte);
-
- return false;
+ }
+ return 0;
}
-static void kvm_mmu_page_unlink_children(struct kvm *kvm,
- struct kvm_mmu_page *sp)
+static int kvm_mmu_page_unlink_children(struct kvm *kvm,
+ struct kvm_mmu_page *sp,
+ struct list_head *invalid_list)
{
+ int zapped = 0;
unsigned i;
for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
- mmu_page_zap_pte(kvm, sp, sp->spt + i);
+ zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
+
+ return zapped;
}
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
@@ -2692,7 +2312,7 @@ static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
trace_kvm_mmu_prepare_zap_page(sp);
++kvm->stat.mmu_shadow_zapped;
*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
- kvm_mmu_page_unlink_children(kvm, sp);
+ *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
kvm_mmu_unlink_parents(kvm, sp);
/* Zapping children means active_mmu_pages has become unstable. */
@@ -2885,8 +2505,8 @@ static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
kvm_mmu_mark_parents_unsync(sp);
}
-static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
- bool can_unsync)
+bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
+ bool can_unsync)
{
struct kvm_mmu_page *sp;
@@ -2946,132 +2566,42 @@ static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
return false;
}
-static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
-{
- if (pfn_valid(pfn))
- return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
- /*
- * Some reserved pages, such as those from NVDIMM
- * DAX devices, are not for MMIO, and can be mapped
- * with cached memory type for better performance.
- * However, the above check misconceives those pages
- * as MMIO, and results in KVM mapping them with UC
- * memory type, which would hurt the performance.
- * Therefore, we check the host memory type in addition
- * and only treat UC/UC-/WC pages as MMIO.
- */
- (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
-
- return !e820__mapped_raw_any(pfn_to_hpa(pfn),
- pfn_to_hpa(pfn + 1) - 1,
- E820_TYPE_RAM);
-}
-
-/* Bits which may be returned by set_spte() */
-#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
-#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
-
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
unsigned int pte_access, int level,
gfn_t gfn, kvm_pfn_t pfn, bool speculative,
bool can_unsync, bool host_writable)
{
- u64 spte = 0;
- int ret = 0;
+ u64 spte;
struct kvm_mmu_page *sp;
+ int ret;
if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
return 0;
sp = sptep_to_sp(sptep);
- if (sp_ad_disabled(sp))
- spte |= SPTE_AD_DISABLED_MASK;
- else if (kvm_vcpu_ad_need_write_protect(vcpu))
- spte |= SPTE_AD_WRPROT_ONLY_MASK;
-
- /*
- * For the EPT case, shadow_present_mask is 0 if hardware
- * supports exec-only page table entries. In that case,
- * ACC_USER_MASK and shadow_user_mask are used to represent
- * read access. See FNAME(gpte_access) in paging_tmpl.h.
- */
- spte |= shadow_present_mask;
- if (!speculative)
- spte |= spte_shadow_accessed_mask(spte);
- if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
- is_nx_huge_page_enabled()) {
- pte_access &= ~ACC_EXEC_MASK;
- }
+ ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
+ can_unsync, host_writable, sp_ad_disabled(sp), &spte);
- if (pte_access & ACC_EXEC_MASK)
- spte |= shadow_x_mask;
- else
- spte |= shadow_nx_mask;
-
- if (pte_access & ACC_USER_MASK)
- spte |= shadow_user_mask;
-
- if (level > PG_LEVEL_4K)
- spte |= PT_PAGE_SIZE_MASK;
- if (tdp_enabled)
- spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
- kvm_is_mmio_pfn(pfn));
-
- if (host_writable)
- spte |= SPTE_HOST_WRITEABLE;
- else
- pte_access &= ~ACC_WRITE_MASK;
-
- if (!kvm_is_mmio_pfn(pfn))
- spte |= shadow_me_mask;
-
- spte |= (u64)pfn << PAGE_SHIFT;
-
- if (pte_access & ACC_WRITE_MASK) {
- spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
-
- /*
- * Optimization: for pte sync, if spte was writable the hash
- * lookup is unnecessary (and expensive). Write protection
- * is responsibility of mmu_get_page / kvm_sync_page.
- * Same reasoning can be applied to dirty page accounting.
- */
- if (!can_unsync && is_writable_pte(*sptep))
- goto set_pte;
-
- if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
- pgprintk("%s: found shadow page for %llx, marking ro\n",
- __func__, gfn);
- ret |= SET_SPTE_WRITE_PROTECTED_PT;
- pte_access &= ~ACC_WRITE_MASK;
- spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
- }
- }
-
- if (pte_access & ACC_WRITE_MASK) {
+ if (spte & PT_WRITABLE_MASK)
kvm_vcpu_mark_page_dirty(vcpu, gfn);
- spte |= spte_shadow_dirty_mask(spte);
- }
- if (speculative)
- spte = mark_spte_for_access_track(spte);
-
-set_pte:
- if (mmu_spte_update(sptep, spte))
+ if (*sptep == spte)
+ ret |= SET_SPTE_SPURIOUS;
+ else if (mmu_spte_update(sptep, spte))
ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
return ret;
}
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
- unsigned int pte_access, int write_fault, int level,
+ unsigned int pte_access, bool write_fault, int level,
gfn_t gfn, kvm_pfn_t pfn, bool speculative,
bool host_writable)
{
int was_rmapped = 0;
int rmap_count;
int set_spte_ret;
- int ret = RET_PF_RETRY;
+ int ret = RET_PF_FIXED;
bool flush = false;
pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
@@ -3113,6 +2643,15 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
if (unlikely(is_mmio_spte(*sptep)))
ret = RET_PF_EMULATE;
+ /*
+ * The fault is fully spurious if and only if the new SPTE and old SPTE
+ * are identical, and emulation is not required.
+ */
+ if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
+ WARN_ON_ONCE(!was_rmapped);
+ return RET_PF_SPURIOUS;
+ }
+
pgprintk("%s: setting spte %llx\n", __func__, *sptep);
trace_kvm_mmu_set_spte(level, gfn, sptep);
if (!was_rmapped && is_large_pte(*sptep))
@@ -3161,7 +2700,7 @@ static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
return -1;
for (i = 0; i < ret; i++, gfn++, start++) {
- mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
+ mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
page_to_pfn(pages[i]), true, true);
put_page(pages[i]);
}
@@ -3239,8 +2778,9 @@ static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
return level;
}
-static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
- int max_level, kvm_pfn_t *pfnp)
+int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
+ int max_level, kvm_pfn_t *pfnp,
+ bool huge_page_disallowed, int *req_level)
{
struct kvm_memory_slot *slot;
struct kvm_lpage_info *linfo;
@@ -3248,6 +2788,8 @@ static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
kvm_pfn_t mask;
int level;
+ *req_level = PG_LEVEL_4K;
+
if (unlikely(max_level == PG_LEVEL_4K))
return PG_LEVEL_4K;
@@ -3272,7 +2814,14 @@ static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
if (level == PG_LEVEL_4K)
return level;
- level = min(level, max_level);
+ *req_level = level = min(level, max_level);
+
+ /*
+ * Enforce the iTLB multihit workaround after capturing the requested
+ * level, which will be used to do precise, accurate accounting.
+ */
+ if (huge_page_disallowed)
+ return PG_LEVEL_4K;
/*
* mmu_notifier_retry() was successful and mmu_lock is held, so
@@ -3285,14 +2834,12 @@ static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
return level;
}
-static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
- gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
+void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
+ kvm_pfn_t *pfnp, int *goal_levelp)
{
- int level = *levelp;
- u64 spte = *it.sptep;
+ int level = *goal_levelp;
- if (it.level == level && level > PG_LEVEL_4K &&
- is_nx_huge_page_enabled() &&
+ if (cur_level == level && level > PG_LEVEL_4K &&
is_shadow_present_pte(spte) &&
!is_large_pte(spte)) {
/*
@@ -3302,26 +2849,32 @@ static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
* patching back for them into pfn the next 9 bits of
* the address.
*/
- u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
+ u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
+ KVM_PAGES_PER_HPAGE(level - 1);
*pfnp |= gfn & page_mask;
- (*levelp)--;
+ (*goal_levelp)--;
}
}
-static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
+static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
int map_writable, int max_level, kvm_pfn_t pfn,
- bool prefault, bool account_disallowed_nx_lpage)
+ bool prefault, bool is_tdp)
{
+ bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
+ bool write = error_code & PFERR_WRITE_MASK;
+ bool exec = error_code & PFERR_FETCH_MASK;
+ bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
struct kvm_shadow_walk_iterator it;
struct kvm_mmu_page *sp;
- int level, ret;
+ int level, req_level, ret;
gfn_t gfn = gpa >> PAGE_SHIFT;
gfn_t base_gfn = gfn;
if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
return RET_PF_RETRY;
- level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
+ level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
+ huge_page_disallowed, &req_level);
trace_kvm_mmu_spte_requested(gpa, level, pfn);
for_each_shadow_entry(vcpu, gpa, it) {
@@ -3329,7 +2882,9 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
* We cannot overwrite existing page tables with an NX
* large page, as the leaf could be executable.
*/
- disallowed_hugepage_adjust(it, gfn, &pfn, &level);
+ if (nx_huge_page_workaround_enabled)
+ disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
+ &pfn, &level);
base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
if (it.level == level)
@@ -3341,7 +2896,8 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
it.level - 1, true, ACC_ALL);
link_shadow_page(vcpu, it.sptep, sp);
- if (account_disallowed_nx_lpage)
+ if (is_tdp && huge_page_disallowed &&
+ req_level >= it.level)
account_huge_nx_page(vcpu->kvm, sp);
}
}
@@ -3349,6 +2905,9 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
write, level, base_gfn, pfn, prefault,
map_writable);
+ if (ret == RET_PF_SPURIOUS)
+ return ret;
+
direct_pte_prefetch(vcpu, it.sptep);
++vcpu->stat.pf_fixed;
return ret;
@@ -3479,21 +3038,19 @@ static bool is_access_allowed(u32 fault_err_code, u64 spte)
}
/*
- * Return value:
- * - true: let the vcpu to access on the same address again.
- * - false: let the real page fault path to fix it.
+ * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
*/
-static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
- u32 error_code)
+static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+ u32 error_code)
{
struct kvm_shadow_walk_iterator iterator;
struct kvm_mmu_page *sp;
- bool fault_handled = false;
+ int ret = RET_PF_INVALID;
u64 spte = 0ull;
uint retry_count = 0;
if (!page_fault_can_be_fast(error_code))
- return false;
+ return ret;
walk_shadow_page_lockless_begin(vcpu);
@@ -3519,7 +3076,7 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
* they are always ACC_ALL.
*/
if (is_access_allowed(error_code, spte)) {
- fault_handled = true;
+ ret = RET_PF_SPURIOUS;
break;
}
@@ -3562,11 +3119,11 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
* since the gfn is not stable for indirect shadow page. See
* Documentation/virt/kvm/locking.rst to get more detail.
*/
- fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
- iterator.sptep, spte,
- new_spte);
- if (fault_handled)
+ if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
+ new_spte)) {
+ ret = RET_PF_FIXED;
break;
+ }
if (++retry_count > 4) {
printk_once(KERN_WARNING
@@ -3577,10 +3134,10 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
} while (true);
trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
- spte, fault_handled);
+ spte, ret);
walk_shadow_page_lockless_end(vcpu);
- return fault_handled;
+ return ret;
}
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
@@ -3592,9 +3149,13 @@ static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
return;
sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
- --sp->root_count;
- if (!sp->root_count && sp->role.invalid)
- kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+
+ if (kvm_mmu_put_root(kvm, sp)) {
+ if (sp->tdp_mmu_page)
+ kvm_tdp_mmu_free_root(kvm, sp);
+ else if (sp->role.invalid)
+ kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+ }
*root_hpa = INVALID_PAGE;
}
@@ -3603,6 +3164,7 @@ static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
ulong roots_to_free)
{
+ struct kvm *kvm = vcpu->kvm;
int i;
LIST_HEAD(invalid_list);
bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
@@ -3620,22 +3182,21 @@ void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
return;
}
- spin_lock(&vcpu->kvm->mmu_lock);
+ spin_lock(&kvm->mmu_lock);
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
- mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
+ mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
&invalid_list);
if (free_active_root) {
if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
(mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
- mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
- &invalid_list);
+ mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
} else {
for (i = 0; i < 4; ++i)
if (mmu->pae_root[i] != 0)
- mmu_free_root_page(vcpu->kvm,
+ mmu_free_root_page(kvm,
&mmu->pae_root[i],
&invalid_list);
mmu->root_hpa = INVALID_PAGE;
@@ -3643,8 +3204,8 @@ void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
mmu->root_pgd = 0;
}
- kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
- spin_unlock(&vcpu->kvm->mmu_lock);
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+ spin_unlock(&kvm->mmu_lock);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
@@ -3684,8 +3245,16 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
hpa_t root;
unsigned i;
- if (shadow_root_level >= PT64_ROOT_4LEVEL) {
- root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
+ if (vcpu->kvm->arch.tdp_mmu_enabled) {
+ root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
+
+ if (!VALID_PAGE(root))
+ return -ENOSPC;
+ vcpu->arch.mmu->root_hpa = root;
+ } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
+ root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
+ true);
+
if (!VALID_PAGE(root))
return -ENOSPC;
vcpu->arch.mmu->root_hpa = root;
@@ -3910,54 +3479,82 @@ static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
return vcpu_match_mmio_gva(vcpu, addr);
}
-/* return true if reserved bit is detected on spte. */
-static bool
-walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
+/*
+ * Return the level of the lowest level SPTE added to sptes.
+ * That SPTE may be non-present.
+ */
+static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
{
struct kvm_shadow_walk_iterator iterator;
- u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
- struct rsvd_bits_validate *rsvd_check;
- int root, leaf;
- bool reserved = false;
+ int leaf = vcpu->arch.mmu->root_level;
+ u64 spte;
- rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
walk_shadow_page_lockless_begin(vcpu);
- for (shadow_walk_init(&iterator, vcpu, addr),
- leaf = root = iterator.level;
+ for (shadow_walk_init(&iterator, vcpu, addr);
shadow_walk_okay(&iterator);
__shadow_walk_next(&iterator, spte)) {
+ leaf = iterator.level;
spte = mmu_spte_get_lockless(iterator.sptep);
sptes[leaf - 1] = spte;
- leaf--;
if (!is_shadow_present_pte(spte))
break;
+ }
+
+ walk_shadow_page_lockless_end(vcpu);
+
+ return leaf;
+}
+
+/* return true if reserved bit is detected on spte. */
+static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
+{
+ u64 sptes[PT64_ROOT_MAX_LEVEL];
+ struct rsvd_bits_validate *rsvd_check;
+ int root = vcpu->arch.mmu->root_level;
+ int leaf;
+ int level;
+ bool reserved = false;
+
+ if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
+ *sptep = 0ull;
+ return reserved;
+ }
+
+ if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
+ leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
+ else
+ leaf = get_walk(vcpu, addr, sptes);
+
+ rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
+
+ for (level = root; level >= leaf; level--) {
+ if (!is_shadow_present_pte(sptes[level - 1]))
+ break;
/*
* Use a bitwise-OR instead of a logical-OR to aggregate the
* reserved bit and EPT's invalid memtype/XWR checks to avoid
* adding a Jcc in the loop.
*/
- reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
- __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
+ reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
+ __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
+ level);
}
- walk_shadow_page_lockless_end(vcpu);
-
if (reserved) {
pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
__func__, addr);
- while (root > leaf) {
+ for (level = root; level >= leaf; level--)
pr_err("------ spte 0x%llx level %d.\n",
- sptes[root - 1], root);
- root--;
- }
+ sptes[level - 1], level);
}
- *sptep = spte;
+ *sptep = sptes[leaf - 1];
+
return reserved;
}
@@ -3969,7 +3566,7 @@ static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
if (mmio_info_in_cache(vcpu, addr, direct))
return RET_PF_EMULATE;
- reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
+ reserved = get_mmio_spte(vcpu, addr, &spte);
if (WARN_ON(reserved))
return -EINVAL;
@@ -4080,8 +3677,6 @@ static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
bool prefault, int max_level, bool is_tdp)
{
bool write = error_code & PFERR_WRITE_MASK;
- bool exec = error_code & PFERR_FETCH_MASK;
- bool lpage_disallowed = exec && is_nx_huge_page_enabled();
bool map_writable;
gfn_t gfn = gpa >> PAGE_SHIFT;
@@ -4092,16 +3687,16 @@ static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
if (page_fault_handle_page_track(vcpu, error_code, gfn))
return RET_PF_EMULATE;
- if (fast_page_fault(vcpu, gpa, error_code))
- return RET_PF_RETRY;
+ if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
+ r = fast_page_fault(vcpu, gpa, error_code);
+ if (r != RET_PF_INVALID)
+ return r;
+ }
r = mmu_topup_memory_caches(vcpu, false);
if (r)
return r;
- if (lpage_disallowed)
- max_level = PG_LEVEL_4K;
-
mmu_seq = vcpu->kvm->mmu_notifier_seq;
smp_rmb();
@@ -4118,8 +3713,13 @@ static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
r = make_mmu_pages_available(vcpu);
if (r)
goto out_unlock;
- r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
- prefault, is_tdp && lpage_disallowed);
+
+ if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
+ r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
+ pfn, prefault);
+ else
+ r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
+ prefault, is_tdp);
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
@@ -4292,7 +3892,13 @@ static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
*/
vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
- __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
+ /*
+ * If this is a direct root page, it doesn't have a write flooding
+ * count. Otherwise, clear the write flooding count.
+ */
+ if (!new_role.direct)
+ __clear_sp_write_flooding_count(
+ to_shadow_page(vcpu->arch.mmu->root_hpa));
}
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
@@ -5400,7 +5006,7 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
entry = *spte;
- mmu_page_zap_pte(vcpu->kvm, sp, spte);
+ mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
if (gentry &&
!((sp->role.word ^ base_role) & ~role_ign.word) &&
rmap_can_add(vcpu))
@@ -5450,13 +5056,14 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
if (r == RET_PF_INVALID) {
r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
lower_32_bits(error_code), false);
- WARN_ON(r == RET_PF_INVALID);
+ if (WARN_ON_ONCE(r == RET_PF_INVALID))
+ return -EIO;
}
- if (r == RET_PF_RETRY)
- return 1;
if (r < 0)
return r;
+ if (r != RET_PF_EMULATE)
+ return 1;
/*
* Before emulating the instruction, check if the error code
@@ -5485,18 +5092,6 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
emulate:
- /*
- * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
- * This can happen if a guest gets a page-fault on data access but the HW
- * table walker is not able to read the instruction page (e.g instruction
- * page is not present in memory). In those cases we simply restart the
- * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
- */
- if (unlikely(insn && !insn_len)) {
- if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
- return 1;
- }
-
return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
insn_len);
}
@@ -5682,11 +5277,17 @@ static void free_mmu_pages(struct kvm_mmu *mmu)
free_page((unsigned long)mmu->lm_root);
}
-static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
+static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
struct page *page;
int i;
+ mmu->root_hpa = INVALID_PAGE;
+ mmu->root_pgd = 0;
+ mmu->translate_gpa = translate_gpa;
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+ mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
+
/*
* When using PAE paging, the four PDPTEs are treated as 'root' pages,
* while the PDP table is a per-vCPU construct that's allocated at MMU
@@ -5712,7 +5313,6 @@ static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
int kvm_mmu_create(struct kvm_vcpu *vcpu)
{
- uint i;
int ret;
vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
@@ -5726,25 +5326,13 @@ int kvm_mmu_create(struct kvm_vcpu *vcpu)
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
- vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
- vcpu->arch.root_mmu.root_pgd = 0;
- vcpu->arch.root_mmu.translate_gpa = translate_gpa;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
-
- vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
- vcpu->arch.guest_mmu.root_pgd = 0;
- vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
-
vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
- ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
+ ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
if (ret)
return ret;
- ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
+ ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
if (ret)
goto fail_allocate_root;
@@ -5841,6 +5429,10 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm)
kvm_reload_remote_mmus(kvm);
kvm_zap_obsolete_pages(kvm);
+
+ if (kvm->arch.tdp_mmu_enabled)
+ kvm_tdp_mmu_zap_all(kvm);
+
spin_unlock(&kvm->mmu_lock);
}
@@ -5860,6 +5452,8 @@ void kvm_mmu_init_vm(struct kvm *kvm)
{
struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
+ kvm_mmu_init_tdp_mmu(kvm);
+
node->track_write = kvm_mmu_pte_write;
node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
kvm_page_track_register_notifier(kvm, node);
@@ -5870,6 +5464,8 @@ void kvm_mmu_uninit_vm(struct kvm *kvm)
struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
kvm_page_track_unregister_notifier(kvm, node);
+
+ kvm_mmu_uninit_tdp_mmu(kvm);
}
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
@@ -5877,6 +5473,7 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int i;
+ bool flush;
spin_lock(&kvm->mmu_lock);
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
@@ -5896,6 +5493,12 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
}
}
+ if (kvm->arch.tdp_mmu_enabled) {
+ flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+ }
+
spin_unlock(&kvm->mmu_lock);
}
@@ -5914,6 +5517,8 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
spin_lock(&kvm->mmu_lock);
flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
+ if (kvm->arch.tdp_mmu_enabled)
+ flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
spin_unlock(&kvm->mmu_lock);
/*
@@ -5977,6 +5582,9 @@ void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
spin_lock(&kvm->mmu_lock);
slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
kvm_mmu_zap_collapsible_spte, true);
+
+ if (kvm->arch.tdp_mmu_enabled)
+ kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
spin_unlock(&kvm->mmu_lock);
}
@@ -6002,6 +5610,8 @@ void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
spin_lock(&kvm->mmu_lock);
flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
+ if (kvm->arch.tdp_mmu_enabled)
+ flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
spin_unlock(&kvm->mmu_lock);
/*
@@ -6023,6 +5633,8 @@ void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
spin_lock(&kvm->mmu_lock);
flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
false);
+ if (kvm->arch.tdp_mmu_enabled)
+ flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
spin_unlock(&kvm->mmu_lock);
if (flush)
@@ -6037,6 +5649,8 @@ void kvm_mmu_slot_set_dirty(struct kvm *kvm,
spin_lock(&kvm->mmu_lock);
flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
+ if (kvm->arch.tdp_mmu_enabled)
+ flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
spin_unlock(&kvm->mmu_lock);
if (flush)
@@ -6062,6 +5676,10 @@ restart:
}
kvm_mmu_commit_zap_page(kvm, &invalid_list);
+
+ if (kvm->arch.tdp_mmu_enabled)
+ kvm_tdp_mmu_zap_all(kvm);
+
spin_unlock(&kvm->mmu_lock);
}
@@ -6357,7 +5975,10 @@ static void kvm_recover_nx_lpages(struct kvm *kvm)
ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
- while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
+ for ( ; to_zap; --to_zap) {
+ if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
+ break;
+
/*
* We use a separate list instead of just using active_mmu_pages
* because the number of lpage_disallowed pages is expected to
@@ -6367,15 +5988,20 @@ static void kvm_recover_nx_lpages(struct kvm *kvm)
struct kvm_mmu_page,
lpage_disallowed_link);
WARN_ON_ONCE(!sp->lpage_disallowed);
- kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
- WARN_ON_ONCE(sp->lpage_disallowed);
+ if (sp->tdp_mmu_page)
+ kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
+ sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
+ else {
+ kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
+ WARN_ON_ONCE(sp->lpage_disallowed);
+ }
- if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
kvm_mmu_commit_zap_page(kvm, &invalid_list);
- if (to_zap)
- cond_resched_lock(&kvm->mmu_lock);
+ cond_resched_lock(&kvm->mmu_lock);
}
}
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, rcu_idx);
diff --git a/arch/x86/kvm/mmu/mmu_internal.h b/arch/x86/kvm/mmu/mmu_internal.h
index 3acf3b8eb469..bfc6389edc28 100644
--- a/arch/x86/kvm/mmu/mmu_internal.h
+++ b/arch/x86/kvm/mmu/mmu_internal.h
@@ -3,9 +3,23 @@
#define __KVM_X86_MMU_INTERNAL_H
#include <linux/types.h>
-
+#include <linux/kvm_host.h>
#include <asm/kvm_host.h>
+#undef MMU_DEBUG
+
+#ifdef MMU_DEBUG
+extern bool dbg;
+
+#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
+#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
+#define MMU_WARN_ON(x) WARN_ON(x)
+#else
+#define pgprintk(x...) do { } while (0)
+#define rmap_printk(x...) do { } while (0)
+#define MMU_WARN_ON(x) do { } while (0)
+#endif
+
struct kvm_mmu_page {
struct list_head link;
struct hlist_node hash_link;
@@ -41,8 +55,12 @@ struct kvm_mmu_page {
/* Number of writes since the last time traversal visited this page. */
atomic_t write_flooding_count;
+
+ bool tdp_mmu_page;
};
+extern struct kmem_cache *mmu_page_header_cache;
+
static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page)
{
struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
@@ -55,9 +73,77 @@ static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep)
return to_shadow_page(__pa(sptep));
}
+static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
+{
+ /*
+ * When using the EPT page-modification log, the GPAs in the log
+ * would come from L2 rather than L1. Therefore, we need to rely
+ * on write protection to record dirty pages. This also bypasses
+ * PML, since writes now result in a vmexit.
+ */
+ return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
+}
+
+bool is_nx_huge_page_enabled(void);
+bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
+ bool can_unsync);
+
void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
struct kvm_memory_slot *slot, u64 gfn);
+void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
+ u64 start_gfn, u64 pages);
+
+static inline void kvm_mmu_get_root(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ BUG_ON(!sp->root_count);
+ lockdep_assert_held(&kvm->mmu_lock);
+
+ ++sp->root_count;
+}
+
+static inline bool kvm_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ lockdep_assert_held(&kvm->mmu_lock);
+ --sp->root_count;
+
+ return !sp->root_count;
+}
+
+/*
+ * Return values of handle_mmio_page_fault, mmu.page_fault, and fast_page_fault().
+ *
+ * RET_PF_RETRY: let CPU fault again on the address.
+ * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
+ * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
+ * RET_PF_FIXED: The faulting entry has been fixed.
+ * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
+ */
+enum {
+ RET_PF_RETRY = 0,
+ RET_PF_EMULATE,
+ RET_PF_INVALID,
+ RET_PF_FIXED,
+ RET_PF_SPURIOUS,
+};
+
+/* Bits which may be returned by set_spte() */
+#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
+#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
+#define SET_SPTE_SPURIOUS BIT(2)
+
+int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
+ int max_level, kvm_pfn_t *pfnp,
+ bool huge_page_disallowed, int *req_level);
+void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
+ kvm_pfn_t *pfnp, int *goal_levelp);
+
+bool is_nx_huge_page_enabled(void);
+
+void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
+
+void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp);
+void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp);
#endif /* __KVM_X86_MMU_INTERNAL_H */
diff --git a/arch/x86/kvm/mmu/mmutrace.h b/arch/x86/kvm/mmu/mmutrace.h
index 9d15bc0c535b..213699b27b44 100644
--- a/arch/x86/kvm/mmu/mmutrace.h
+++ b/arch/x86/kvm/mmu/mmutrace.h
@@ -202,8 +202,8 @@ DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_prepare_zap_page,
TRACE_EVENT(
mark_mmio_spte,
- TP_PROTO(u64 *sptep, gfn_t gfn, unsigned access, unsigned int gen),
- TP_ARGS(sptep, gfn, access, gen),
+ TP_PROTO(u64 *sptep, gfn_t gfn, u64 spte),
+ TP_ARGS(sptep, gfn, spte),
TP_STRUCT__entry(
__field(void *, sptep)
@@ -215,8 +215,8 @@ TRACE_EVENT(
TP_fast_assign(
__entry->sptep = sptep;
__entry->gfn = gfn;
- __entry->access = access;
- __entry->gen = gen;
+ __entry->access = spte & ACC_ALL;
+ __entry->gen = get_mmio_spte_generation(spte);
),
TP_printk("sptep:%p gfn %llx access %x gen %x", __entry->sptep,
@@ -244,14 +244,11 @@ TRACE_EVENT(
__entry->access)
);
-#define __spte_satisfied(__spte) \
- (__entry->retry && is_writable_pte(__entry->__spte))
-
TRACE_EVENT(
fast_page_fault,
TP_PROTO(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 error_code,
- u64 *sptep, u64 old_spte, bool retry),
- TP_ARGS(vcpu, cr2_or_gpa, error_code, sptep, old_spte, retry),
+ u64 *sptep, u64 old_spte, int ret),
+ TP_ARGS(vcpu, cr2_or_gpa, error_code, sptep, old_spte, ret),
TP_STRUCT__entry(
__field(int, vcpu_id)
@@ -260,7 +257,7 @@ TRACE_EVENT(
__field(u64 *, sptep)
__field(u64, old_spte)
__field(u64, new_spte)
- __field(bool, retry)
+ __field(int, ret)
),
TP_fast_assign(
@@ -270,7 +267,7 @@ TRACE_EVENT(
__entry->sptep = sptep;
__entry->old_spte = old_spte;
__entry->new_spte = *sptep;
- __entry->retry = retry;
+ __entry->ret = ret;
),
TP_printk("vcpu %d gva %llx error_code %s sptep %p old %#llx"
@@ -278,7 +275,7 @@ TRACE_EVENT(
__entry->cr2_or_gpa, __print_flags(__entry->error_code, "|",
kvm_mmu_trace_pferr_flags), __entry->sptep,
__entry->old_spte, __entry->new_spte,
- __spte_satisfied(old_spte), __spte_satisfied(new_spte)
+ __entry->ret == RET_PF_SPURIOUS, __entry->ret == RET_PF_FIXED
)
);
diff --git a/arch/x86/kvm/mmu/page_track.c b/arch/x86/kvm/mmu/page_track.c
index a84a141a2ad2..8443a675715b 100644
--- a/arch/x86/kvm/mmu/page_track.c
+++ b/arch/x86/kvm/mmu/page_track.c
@@ -229,7 +229,8 @@ void kvm_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
return;
idx = srcu_read_lock(&head->track_srcu);
- hlist_for_each_entry_rcu(n, &head->track_notifier_list, node)
+ hlist_for_each_entry_srcu(n, &head->track_notifier_list, node,
+ srcu_read_lock_held(&head->track_srcu))
if (n->track_write)
n->track_write(vcpu, gpa, new, bytes, n);
srcu_read_unlock(&head->track_srcu, idx);
@@ -254,7 +255,8 @@ void kvm_page_track_flush_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
return;
idx = srcu_read_lock(&head->track_srcu);
- hlist_for_each_entry_rcu(n, &head->track_notifier_list, node)
+ hlist_for_each_entry_srcu(n, &head->track_notifier_list, node,
+ srcu_read_lock_held(&head->track_srcu))
if (n->track_flush_slot)
n->track_flush_slot(kvm, slot, n);
srcu_read_unlock(&head->track_srcu, idx);
diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h
index 4dd6b1e5b8cf..50e268eb8e1a 100644
--- a/arch/x86/kvm/mmu/paging_tmpl.h
+++ b/arch/x86/kvm/mmu/paging_tmpl.h
@@ -550,7 +550,7 @@ FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
* we call mmu_set_spte() with host_writable = true because
* pte_prefetch_gfn_to_pfn always gets a writable pfn.
*/
- mmu_set_spte(vcpu, spte, pte_access, 0, PG_LEVEL_4K, gfn, pfn,
+ mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn,
true, true);
kvm_release_pfn_clean(pfn);
@@ -625,15 +625,18 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
* emulate this operation, return 1 to indicate this case.
*/
static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
- struct guest_walker *gw,
- int write_fault, int max_level,
- kvm_pfn_t pfn, bool map_writable, bool prefault,
- bool lpage_disallowed)
+ struct guest_walker *gw, u32 error_code,
+ int max_level, kvm_pfn_t pfn, bool map_writable,
+ bool prefault)
{
+ bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
+ bool write_fault = error_code & PFERR_WRITE_MASK;
+ bool exec = error_code & PFERR_FETCH_MASK;
+ bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
struct kvm_mmu_page *sp = NULL;
struct kvm_shadow_walk_iterator it;
unsigned direct_access, access = gw->pt_access;
- int top_level, hlevel, ret;
+ int top_level, level, req_level, ret;
gfn_t base_gfn = gw->gfn;
direct_access = gw->pte_access;
@@ -679,7 +682,8 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
link_shadow_page(vcpu, it.sptep, sp);
}
- hlevel = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn);
+ level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn,
+ huge_page_disallowed, &req_level);
trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
@@ -690,10 +694,12 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
* We cannot overwrite existing page tables with an NX
* large page, as the leaf could be executable.
*/
- disallowed_hugepage_adjust(it, gw->gfn, &pfn, &hlevel);
+ if (nx_huge_page_workaround_enabled)
+ disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level,
+ &pfn, &level);
base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
- if (it.level == hlevel)
+ if (it.level == level)
break;
validate_direct_spte(vcpu, it.sptep, direct_access);
@@ -704,13 +710,16 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
it.level - 1, true, direct_access);
link_shadow_page(vcpu, it.sptep, sp);
- if (lpage_disallowed)
+ if (huge_page_disallowed && req_level >= it.level)
account_huge_nx_page(vcpu->kvm, sp);
}
}
ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
it.level, base_gfn, pfn, prefault, map_writable);
+ if (ret == RET_PF_SPURIOUS)
+ return ret;
+
FNAME(pte_prefetch)(vcpu, gw, it.sptep);
++vcpu->stat.pf_fixed;
return ret;
@@ -738,7 +747,7 @@ out_gpte_changed:
*/
static bool
FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
- struct guest_walker *walker, int user_fault,
+ struct guest_walker *walker, bool user_fault,
bool *write_fault_to_shadow_pgtable)
{
int level;
@@ -776,15 +785,13 @@ FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
bool prefault)
{
- int write_fault = error_code & PFERR_WRITE_MASK;
- int user_fault = error_code & PFERR_USER_MASK;
+ bool write_fault = error_code & PFERR_WRITE_MASK;
+ bool user_fault = error_code & PFERR_USER_MASK;
struct guest_walker walker;
int r;
kvm_pfn_t pfn;
unsigned long mmu_seq;
bool map_writable, is_self_change_mapping;
- bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
- is_nx_huge_page_enabled();
int max_level;
pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
@@ -825,7 +832,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
&walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
- if (lpage_disallowed || is_self_change_mapping)
+ if (is_self_change_mapping)
max_level = PG_LEVEL_4K;
else
max_level = walker.level;
@@ -869,8 +876,8 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
r = make_mmu_pages_available(vcpu);
if (r)
goto out_unlock;
- r = FNAME(fetch)(vcpu, addr, &walker, write_fault, max_level, pfn,
- map_writable, prefault, lpage_disallowed);
+ r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn,
+ map_writable, prefault);
kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
out_unlock:
@@ -895,6 +902,7 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
{
struct kvm_shadow_walk_iterator iterator;
struct kvm_mmu_page *sp;
+ u64 old_spte;
int level;
u64 *sptep;
@@ -917,7 +925,8 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
sptep = iterator.sptep;
sp = sptep_to_sp(sptep);
- if (is_last_spte(*sptep, level)) {
+ old_spte = *sptep;
+ if (is_last_spte(old_spte, level)) {
pt_element_t gpte;
gpa_t pte_gpa;
@@ -927,7 +936,8 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
pte_gpa = FNAME(get_level1_sp_gpa)(sp);
pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
- if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
+ mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
+ if (is_shadow_present_pte(old_spte))
kvm_flush_remote_tlbs_with_address(vcpu->kvm,
sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c
new file mode 100644
index 000000000000..d9c5665a55e9
--- /dev/null
+++ b/arch/x86/kvm/mmu/spte.c
@@ -0,0 +1,318 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * Macros and functions to access KVM PTEs (also known as SPTEs)
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2020 Red Hat, Inc. and/or its affiliates.
+ */
+
+
+#include <linux/kvm_host.h>
+#include "mmu.h"
+#include "mmu_internal.h"
+#include "x86.h"
+#include "spte.h"
+
+#include <asm/e820/api.h>
+
+u64 __read_mostly shadow_nx_mask;
+u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
+u64 __read_mostly shadow_user_mask;
+u64 __read_mostly shadow_accessed_mask;
+u64 __read_mostly shadow_dirty_mask;
+u64 __read_mostly shadow_mmio_value;
+u64 __read_mostly shadow_mmio_access_mask;
+u64 __read_mostly shadow_present_mask;
+u64 __read_mostly shadow_me_mask;
+u64 __read_mostly shadow_acc_track_mask;
+
+u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
+u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
+
+u8 __read_mostly shadow_phys_bits;
+
+static u64 generation_mmio_spte_mask(u64 gen)
+{
+ u64 mask;
+
+ WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
+ BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
+
+ mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
+ mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
+ return mask;
+}
+
+u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
+{
+ u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
+ u64 mask = generation_mmio_spte_mask(gen);
+ u64 gpa = gfn << PAGE_SHIFT;
+
+ access &= shadow_mmio_access_mask;
+ mask |= shadow_mmio_value | access;
+ mask |= gpa | shadow_nonpresent_or_rsvd_mask;
+ mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
+ << shadow_nonpresent_or_rsvd_mask_len;
+
+ return mask;
+}
+
+static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
+{
+ if (pfn_valid(pfn))
+ return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
+ /*
+ * Some reserved pages, such as those from NVDIMM
+ * DAX devices, are not for MMIO, and can be mapped
+ * with cached memory type for better performance.
+ * However, the above check misconceives those pages
+ * as MMIO, and results in KVM mapping them with UC
+ * memory type, which would hurt the performance.
+ * Therefore, we check the host memory type in addition
+ * and only treat UC/UC-/WC pages as MMIO.
+ */
+ (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
+
+ return !e820__mapped_raw_any(pfn_to_hpa(pfn),
+ pfn_to_hpa(pfn + 1) - 1,
+ E820_TYPE_RAM);
+}
+
+int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
+ gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
+ bool can_unsync, bool host_writable, bool ad_disabled,
+ u64 *new_spte)
+{
+ u64 spte = 0;
+ int ret = 0;
+
+ if (ad_disabled)
+ spte |= SPTE_AD_DISABLED_MASK;
+ else if (kvm_vcpu_ad_need_write_protect(vcpu))
+ spte |= SPTE_AD_WRPROT_ONLY_MASK;
+
+ /*
+ * For the EPT case, shadow_present_mask is 0 if hardware
+ * supports exec-only page table entries. In that case,
+ * ACC_USER_MASK and shadow_user_mask are used to represent
+ * read access. See FNAME(gpte_access) in paging_tmpl.h.
+ */
+ spte |= shadow_present_mask;
+ if (!speculative)
+ spte |= spte_shadow_accessed_mask(spte);
+
+ if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
+ is_nx_huge_page_enabled()) {
+ pte_access &= ~ACC_EXEC_MASK;
+ }
+
+ if (pte_access & ACC_EXEC_MASK)
+ spte |= shadow_x_mask;
+ else
+ spte |= shadow_nx_mask;
+
+ if (pte_access & ACC_USER_MASK)
+ spte |= shadow_user_mask;
+
+ if (level > PG_LEVEL_4K)
+ spte |= PT_PAGE_SIZE_MASK;
+ if (tdp_enabled)
+ spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
+ kvm_is_mmio_pfn(pfn));
+
+ if (host_writable)
+ spte |= SPTE_HOST_WRITEABLE;
+ else
+ pte_access &= ~ACC_WRITE_MASK;
+
+ if (!kvm_is_mmio_pfn(pfn))
+ spte |= shadow_me_mask;
+
+ spte |= (u64)pfn << PAGE_SHIFT;
+
+ if (pte_access & ACC_WRITE_MASK) {
+ spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
+
+ /*
+ * Optimization: for pte sync, if spte was writable the hash
+ * lookup is unnecessary (and expensive). Write protection
+ * is responsibility of mmu_get_page / kvm_sync_page.
+ * Same reasoning can be applied to dirty page accounting.
+ */
+ if (!can_unsync && is_writable_pte(old_spte))
+ goto out;
+
+ if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
+ pgprintk("%s: found shadow page for %llx, marking ro\n",
+ __func__, gfn);
+ ret |= SET_SPTE_WRITE_PROTECTED_PT;
+ pte_access &= ~ACC_WRITE_MASK;
+ spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
+ }
+ }
+
+ if (pte_access & ACC_WRITE_MASK)
+ spte |= spte_shadow_dirty_mask(spte);
+
+ if (speculative)
+ spte = mark_spte_for_access_track(spte);
+
+out:
+ *new_spte = spte;
+ return ret;
+}
+
+u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
+{
+ u64 spte;
+
+ spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
+ shadow_user_mask | shadow_x_mask | shadow_me_mask;
+
+ if (ad_disabled)
+ spte |= SPTE_AD_DISABLED_MASK;
+ else
+ spte |= shadow_accessed_mask;
+
+ return spte;
+}
+
+u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
+{
+ u64 new_spte;
+
+ new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
+ new_spte |= (u64)new_pfn << PAGE_SHIFT;
+
+ new_spte &= ~PT_WRITABLE_MASK;
+ new_spte &= ~SPTE_HOST_WRITEABLE;
+
+ new_spte = mark_spte_for_access_track(new_spte);
+
+ return new_spte;
+}
+
+static u8 kvm_get_shadow_phys_bits(void)
+{
+ /*
+ * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
+ * in CPU detection code, but the processor treats those reduced bits as
+ * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
+ * the physical address bits reported by CPUID.
+ */
+ if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
+ return cpuid_eax(0x80000008) & 0xff;
+
+ /*
+ * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
+ * custom CPUID. Proceed with whatever the kernel found since these features
+ * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
+ */
+ return boot_cpu_data.x86_phys_bits;
+}
+
+u64 mark_spte_for_access_track(u64 spte)
+{
+ if (spte_ad_enabled(spte))
+ return spte & ~shadow_accessed_mask;
+
+ if (is_access_track_spte(spte))
+ return spte;
+
+ /*
+ * Making an Access Tracking PTE will result in removal of write access
+ * from the PTE. So, verify that we will be able to restore the write
+ * access in the fast page fault path later on.
+ */
+ WARN_ONCE((spte & PT_WRITABLE_MASK) &&
+ !spte_can_locklessly_be_made_writable(spte),
+ "kvm: Writable SPTE is not locklessly dirty-trackable\n");
+
+ WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
+ shadow_acc_track_saved_bits_shift),
+ "kvm: Access Tracking saved bit locations are not zero\n");
+
+ spte |= (spte & shadow_acc_track_saved_bits_mask) <<
+ shadow_acc_track_saved_bits_shift;
+ spte &= ~shadow_acc_track_mask;
+
+ return spte;
+}
+
+void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
+{
+ BUG_ON((u64)(unsigned)access_mask != access_mask);
+ WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
+ WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
+ shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
+ shadow_mmio_access_mask = access_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
+
+/*
+ * Sets the shadow PTE masks used by the MMU.
+ *
+ * Assumptions:
+ * - Setting either @accessed_mask or @dirty_mask requires setting both
+ * - At least one of @accessed_mask or @acc_track_mask must be set
+ */
+void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
+ u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
+ u64 acc_track_mask, u64 me_mask)
+{
+ BUG_ON(!dirty_mask != !accessed_mask);
+ BUG_ON(!accessed_mask && !acc_track_mask);
+ BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
+
+ shadow_user_mask = user_mask;
+ shadow_accessed_mask = accessed_mask;
+ shadow_dirty_mask = dirty_mask;
+ shadow_nx_mask = nx_mask;
+ shadow_x_mask = x_mask;
+ shadow_present_mask = p_mask;
+ shadow_acc_track_mask = acc_track_mask;
+ shadow_me_mask = me_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
+
+void kvm_mmu_reset_all_pte_masks(void)
+{
+ u8 low_phys_bits;
+
+ shadow_user_mask = 0;
+ shadow_accessed_mask = 0;
+ shadow_dirty_mask = 0;
+ shadow_nx_mask = 0;
+ shadow_x_mask = 0;
+ shadow_present_mask = 0;
+ shadow_acc_track_mask = 0;
+
+ shadow_phys_bits = kvm_get_shadow_phys_bits();
+
+ /*
+ * If the CPU has 46 or less physical address bits, then set an
+ * appropriate mask to guard against L1TF attacks. Otherwise, it is
+ * assumed that the CPU is not vulnerable to L1TF.
+ *
+ * Some Intel CPUs address the L1 cache using more PA bits than are
+ * reported by CPUID. Use the PA width of the L1 cache when possible
+ * to achieve more effective mitigation, e.g. if system RAM overlaps
+ * the most significant bits of legal physical address space.
+ */
+ shadow_nonpresent_or_rsvd_mask = 0;
+ low_phys_bits = boot_cpu_data.x86_phys_bits;
+ if (boot_cpu_has_bug(X86_BUG_L1TF) &&
+ !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
+ 52 - shadow_nonpresent_or_rsvd_mask_len)) {
+ low_phys_bits = boot_cpu_data.x86_cache_bits
+ - shadow_nonpresent_or_rsvd_mask_len;
+ shadow_nonpresent_or_rsvd_mask =
+ rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
+ }
+
+ shadow_nonpresent_or_rsvd_lower_gfn_mask =
+ GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
+}
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
new file mode 100644
index 000000000000..4ecf40e0b8fe
--- /dev/null
+++ b/arch/x86/kvm/mmu/spte.h
@@ -0,0 +1,252 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#ifndef KVM_X86_MMU_SPTE_H
+#define KVM_X86_MMU_SPTE_H
+
+#include "mmu_internal.h"
+
+#define PT_FIRST_AVAIL_BITS_SHIFT 10
+#define PT64_SECOND_AVAIL_BITS_SHIFT 54
+
+/*
+ * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
+ * Access Tracking SPTEs.
+ */
+#define SPTE_SPECIAL_MASK (3ULL << 52)
+#define SPTE_AD_ENABLED_MASK (0ULL << 52)
+#define SPTE_AD_DISABLED_MASK (1ULL << 52)
+#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
+#define SPTE_MMIO_MASK (3ULL << 52)
+
+#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
+#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
+#else
+#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
+#endif
+#define PT64_LVL_ADDR_MASK(level) \
+ (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#define PT64_LVL_OFFSET_MASK(level) \
+ (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+
+#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
+ | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
+
+#define ACC_EXEC_MASK 1
+#define ACC_WRITE_MASK PT_WRITABLE_MASK
+#define ACC_USER_MASK PT_USER_MASK
+#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
+
+/* The mask for the R/X bits in EPT PTEs */
+#define PT64_EPT_READABLE_MASK 0x1ull
+#define PT64_EPT_EXECUTABLE_MASK 0x4ull
+
+#define PT64_LEVEL_BITS 9
+
+#define PT64_LEVEL_SHIFT(level) \
+ (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
+
+#define PT64_INDEX(address, level)\
+ (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
+#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
+
+
+#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
+#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
+
+/*
+ * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
+ * the memslots generation and is derived as follows:
+ *
+ * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
+ * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
+ *
+ * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
+ * the MMIO generation number, as doing so would require stealing a bit from
+ * the "real" generation number and thus effectively halve the maximum number
+ * of MMIO generations that can be handled before encountering a wrap (which
+ * requires a full MMU zap). The flag is instead explicitly queried when
+ * checking for MMIO spte cache hits.
+ */
+#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
+
+#define MMIO_SPTE_GEN_LOW_START 3
+#define MMIO_SPTE_GEN_LOW_END 11
+#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
+ MMIO_SPTE_GEN_LOW_START)
+
+#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
+#define MMIO_SPTE_GEN_HIGH_END 62
+#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
+ MMIO_SPTE_GEN_HIGH_START)
+
+extern u64 __read_mostly shadow_nx_mask;
+extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
+extern u64 __read_mostly shadow_user_mask;
+extern u64 __read_mostly shadow_accessed_mask;
+extern u64 __read_mostly shadow_dirty_mask;
+extern u64 __read_mostly shadow_mmio_value;
+extern u64 __read_mostly shadow_mmio_access_mask;
+extern u64 __read_mostly shadow_present_mask;
+extern u64 __read_mostly shadow_me_mask;
+
+/*
+ * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
+ * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
+ * pages.
+ */
+extern u64 __read_mostly shadow_acc_track_mask;
+
+/*
+ * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
+ * to guard against L1TF attacks.
+ */
+extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
+
+/*
+ * The mask/shift to use for saving the original R/X bits when marking the PTE
+ * as not-present for access tracking purposes. We do not save the W bit as the
+ * PTEs being access tracked also need to be dirty tracked, so the W bit will be
+ * restored only when a write is attempted to the page.
+ */
+static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
+ PT64_EPT_EXECUTABLE_MASK;
+static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
+
+/*
+ * The number of high-order 1 bits to use in the mask above.
+ */
+static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
+
+/*
+ * In some cases, we need to preserve the GFN of a non-present or reserved
+ * SPTE when we usurp the upper five bits of the physical address space to
+ * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
+ * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
+ * left into the reserved bits, i.e. the GFN in the SPTE will be split into
+ * high and low parts. This mask covers the lower bits of the GFN.
+ */
+extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
+
+/*
+ * The number of non-reserved physical address bits irrespective of features
+ * that repurpose legal bits, e.g. MKTME.
+ */
+extern u8 __read_mostly shadow_phys_bits;
+
+static inline bool is_mmio_spte(u64 spte)
+{
+ return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
+}
+
+static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
+{
+ return sp->role.ad_disabled;
+}
+
+static inline bool spte_ad_enabled(u64 spte)
+{
+ MMU_WARN_ON(is_mmio_spte(spte));
+ return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
+}
+
+static inline bool spte_ad_need_write_protect(u64 spte)
+{
+ MMU_WARN_ON(is_mmio_spte(spte));
+ return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
+}
+
+static inline u64 spte_shadow_accessed_mask(u64 spte)
+{
+ MMU_WARN_ON(is_mmio_spte(spte));
+ return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
+}
+
+static inline u64 spte_shadow_dirty_mask(u64 spte)
+{
+ MMU_WARN_ON(is_mmio_spte(spte));
+ return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
+}
+
+static inline bool is_access_track_spte(u64 spte)
+{
+ return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
+}
+
+static inline int is_shadow_present_pte(u64 pte)
+{
+ return (pte != 0) && !is_mmio_spte(pte);
+}
+
+static inline int is_large_pte(u64 pte)
+{
+ return pte & PT_PAGE_SIZE_MASK;
+}
+
+static inline int is_last_spte(u64 pte, int level)
+{
+ if (level == PG_LEVEL_4K)
+ return 1;
+ if (is_large_pte(pte))
+ return 1;
+ return 0;
+}
+
+static inline bool is_executable_pte(u64 spte)
+{
+ return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
+}
+
+static inline kvm_pfn_t spte_to_pfn(u64 pte)
+{
+ return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
+}
+
+static inline bool is_accessed_spte(u64 spte)
+{
+ u64 accessed_mask = spte_shadow_accessed_mask(spte);
+
+ return accessed_mask ? spte & accessed_mask
+ : !is_access_track_spte(spte);
+}
+
+static inline bool is_dirty_spte(u64 spte)
+{
+ u64 dirty_mask = spte_shadow_dirty_mask(spte);
+
+ return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
+}
+
+static inline bool spte_can_locklessly_be_made_writable(u64 spte)
+{
+ return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
+ (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
+}
+
+static inline u64 get_mmio_spte_generation(u64 spte)
+{
+ u64 gen;
+
+ gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
+ gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
+ return gen;
+}
+
+/* Bits which may be returned by set_spte() */
+#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
+#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
+#define SET_SPTE_SPURIOUS BIT(2)
+
+int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
+ gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
+ bool can_unsync, bool host_writable, bool ad_disabled,
+ u64 *new_spte);
+u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
+u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
+u64 mark_spte_for_access_track(u64 spte);
+u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn);
+
+void kvm_mmu_reset_all_pte_masks(void);
+
+#endif
diff --git a/arch/x86/kvm/mmu/tdp_iter.c b/arch/x86/kvm/mmu/tdp_iter.c
new file mode 100644
index 000000000000..87b7e16911db
--- /dev/null
+++ b/arch/x86/kvm/mmu/tdp_iter.c
@@ -0,0 +1,182 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "mmu_internal.h"
+#include "tdp_iter.h"
+#include "spte.h"
+
+/*
+ * Recalculates the pointer to the SPTE for the current GFN and level and
+ * reread the SPTE.
+ */
+static void tdp_iter_refresh_sptep(struct tdp_iter *iter)
+{
+ iter->sptep = iter->pt_path[iter->level - 1] +
+ SHADOW_PT_INDEX(iter->gfn << PAGE_SHIFT, iter->level);
+ iter->old_spte = READ_ONCE(*iter->sptep);
+}
+
+static gfn_t round_gfn_for_level(gfn_t gfn, int level)
+{
+ return gfn & -KVM_PAGES_PER_HPAGE(level);
+}
+
+/*
+ * Sets a TDP iterator to walk a pre-order traversal of the paging structure
+ * rooted at root_pt, starting with the walk to translate goal_gfn.
+ */
+void tdp_iter_start(struct tdp_iter *iter, u64 *root_pt, int root_level,
+ int min_level, gfn_t goal_gfn)
+{
+ WARN_ON(root_level < 1);
+ WARN_ON(root_level > PT64_ROOT_MAX_LEVEL);
+
+ iter->goal_gfn = goal_gfn;
+ iter->root_level = root_level;
+ iter->min_level = min_level;
+ iter->level = root_level;
+ iter->pt_path[iter->level - 1] = root_pt;
+
+ iter->gfn = round_gfn_for_level(iter->goal_gfn, iter->level);
+ tdp_iter_refresh_sptep(iter);
+
+ iter->valid = true;
+}
+
+/*
+ * Given an SPTE and its level, returns a pointer containing the host virtual
+ * address of the child page table referenced by the SPTE. Returns null if
+ * there is no such entry.
+ */
+u64 *spte_to_child_pt(u64 spte, int level)
+{
+ /*
+ * There's no child entry if this entry isn't present or is a
+ * last-level entry.
+ */
+ if (!is_shadow_present_pte(spte) || is_last_spte(spte, level))
+ return NULL;
+
+ return __va(spte_to_pfn(spte) << PAGE_SHIFT);
+}
+
+/*
+ * Steps down one level in the paging structure towards the goal GFN. Returns
+ * true if the iterator was able to step down a level, false otherwise.
+ */
+static bool try_step_down(struct tdp_iter *iter)
+{
+ u64 *child_pt;
+
+ if (iter->level == iter->min_level)
+ return false;
+
+ /*
+ * Reread the SPTE before stepping down to avoid traversing into page
+ * tables that are no longer linked from this entry.
+ */
+ iter->old_spte = READ_ONCE(*iter->sptep);
+
+ child_pt = spte_to_child_pt(iter->old_spte, iter->level);
+ if (!child_pt)
+ return false;
+
+ iter->level--;
+ iter->pt_path[iter->level - 1] = child_pt;
+ iter->gfn = round_gfn_for_level(iter->goal_gfn, iter->level);
+ tdp_iter_refresh_sptep(iter);
+
+ return true;
+}
+
+/*
+ * Steps to the next entry in the current page table, at the current page table
+ * level. The next entry could point to a page backing guest memory or another
+ * page table, or it could be non-present. Returns true if the iterator was
+ * able to step to the next entry in the page table, false if the iterator was
+ * already at the end of the current page table.
+ */
+static bool try_step_side(struct tdp_iter *iter)
+{
+ /*
+ * Check if the iterator is already at the end of the current page
+ * table.
+ */
+ if (SHADOW_PT_INDEX(iter->gfn << PAGE_SHIFT, iter->level) ==
+ (PT64_ENT_PER_PAGE - 1))
+ return false;
+
+ iter->gfn += KVM_PAGES_PER_HPAGE(iter->level);
+ iter->goal_gfn = iter->gfn;
+ iter->sptep++;
+ iter->old_spte = READ_ONCE(*iter->sptep);
+
+ return true;
+}
+
+/*
+ * Tries to traverse back up a level in the paging structure so that the walk
+ * can continue from the next entry in the parent page table. Returns true on a
+ * successful step up, false if already in the root page.
+ */
+static bool try_step_up(struct tdp_iter *iter)
+{
+ if (iter->level == iter->root_level)
+ return false;
+
+ iter->level++;
+ iter->gfn = round_gfn_for_level(iter->gfn, iter->level);
+ tdp_iter_refresh_sptep(iter);
+
+ return true;
+}
+
+/*
+ * Step to the next SPTE in a pre-order traversal of the paging structure.
+ * To get to the next SPTE, the iterator either steps down towards the goal
+ * GFN, if at a present, non-last-level SPTE, or over to a SPTE mapping a
+ * highter GFN.
+ *
+ * The basic algorithm is as follows:
+ * 1. If the current SPTE is a non-last-level SPTE, step down into the page
+ * table it points to.
+ * 2. If the iterator cannot step down, it will try to step to the next SPTE
+ * in the current page of the paging structure.
+ * 3. If the iterator cannot step to the next entry in the current page, it will
+ * try to step up to the parent paging structure page. In this case, that
+ * SPTE will have already been visited, and so the iterator must also step
+ * to the side again.
+ */
+void tdp_iter_next(struct tdp_iter *iter)
+{
+ if (try_step_down(iter))
+ return;
+
+ do {
+ if (try_step_side(iter))
+ return;
+ } while (try_step_up(iter));
+ iter->valid = false;
+}
+
+/*
+ * Restart the walk over the paging structure from the root, starting from the
+ * highest gfn the iterator had previously reached. Assumes that the entire
+ * paging structure, except the root page, may have been completely torn down
+ * and rebuilt.
+ */
+void tdp_iter_refresh_walk(struct tdp_iter *iter)
+{
+ gfn_t goal_gfn = iter->goal_gfn;
+
+ if (iter->gfn > goal_gfn)
+ goal_gfn = iter->gfn;
+
+ tdp_iter_start(iter, iter->pt_path[iter->root_level - 1],
+ iter->root_level, iter->min_level, goal_gfn);
+}
+
+u64 *tdp_iter_root_pt(struct tdp_iter *iter)
+{
+ return iter->pt_path[iter->root_level - 1];
+}
+
diff --git a/arch/x86/kvm/mmu/tdp_iter.h b/arch/x86/kvm/mmu/tdp_iter.h
new file mode 100644
index 000000000000..47170d0dc98e
--- /dev/null
+++ b/arch/x86/kvm/mmu/tdp_iter.h
@@ -0,0 +1,60 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#ifndef __KVM_X86_MMU_TDP_ITER_H
+#define __KVM_X86_MMU_TDP_ITER_H
+
+#include <linux/kvm_host.h>
+
+#include "mmu.h"
+
+/*
+ * A TDP iterator performs a pre-order walk over a TDP paging structure.
+ */
+struct tdp_iter {
+ /*
+ * The iterator will traverse the paging structure towards the mapping
+ * for this GFN.
+ */
+ gfn_t goal_gfn;
+ /* Pointers to the page tables traversed to reach the current SPTE */
+ u64 *pt_path[PT64_ROOT_MAX_LEVEL];
+ /* A pointer to the current SPTE */
+ u64 *sptep;
+ /* The lowest GFN mapped by the current SPTE */
+ gfn_t gfn;
+ /* The level of the root page given to the iterator */
+ int root_level;
+ /* The lowest level the iterator should traverse to */
+ int min_level;
+ /* The iterator's current level within the paging structure */
+ int level;
+ /* A snapshot of the value at sptep */
+ u64 old_spte;
+ /*
+ * Whether the iterator has a valid state. This will be false if the
+ * iterator walks off the end of the paging structure.
+ */
+ bool valid;
+};
+
+/*
+ * Iterates over every SPTE mapping the GFN range [start, end) in a
+ * preorder traversal.
+ */
+#define for_each_tdp_pte_min_level(iter, root, root_level, min_level, start, end) \
+ for (tdp_iter_start(&iter, root, root_level, min_level, start); \
+ iter.valid && iter.gfn < end; \
+ tdp_iter_next(&iter))
+
+#define for_each_tdp_pte(iter, root, root_level, start, end) \
+ for_each_tdp_pte_min_level(iter, root, root_level, PG_LEVEL_4K, start, end)
+
+u64 *spte_to_child_pt(u64 pte, int level);
+
+void tdp_iter_start(struct tdp_iter *iter, u64 *root_pt, int root_level,
+ int min_level, gfn_t goal_gfn);
+void tdp_iter_next(struct tdp_iter *iter);
+void tdp_iter_refresh_walk(struct tdp_iter *iter);
+u64 *tdp_iter_root_pt(struct tdp_iter *iter);
+
+#endif /* __KVM_X86_MMU_TDP_ITER_H */
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
new file mode 100644
index 000000000000..27e381c9da6c
--- /dev/null
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -0,0 +1,1157 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "mmu.h"
+#include "mmu_internal.h"
+#include "mmutrace.h"
+#include "tdp_iter.h"
+#include "tdp_mmu.h"
+#include "spte.h"
+
+#ifdef CONFIG_X86_64
+static bool __read_mostly tdp_mmu_enabled = false;
+module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
+#endif
+
+static bool is_tdp_mmu_enabled(void)
+{
+#ifdef CONFIG_X86_64
+ return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
+#else
+ return false;
+#endif /* CONFIG_X86_64 */
+}
+
+/* Initializes the TDP MMU for the VM, if enabled. */
+void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
+{
+ if (!is_tdp_mmu_enabled())
+ return;
+
+ /* This should not be changed for the lifetime of the VM. */
+ kvm->arch.tdp_mmu_enabled = true;
+
+ INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
+ INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
+}
+
+void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
+{
+ if (!kvm->arch.tdp_mmu_enabled)
+ return;
+
+ WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
+}
+
+#define for_each_tdp_mmu_root(_kvm, _root) \
+ list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
+
+bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = to_shadow_page(hpa);
+
+ return sp->tdp_mmu_page && sp->root_count;
+}
+
+static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end, bool can_yield);
+
+void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
+{
+ gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
+
+ lockdep_assert_held(&kvm->mmu_lock);
+
+ WARN_ON(root->root_count);
+ WARN_ON(!root->tdp_mmu_page);
+
+ list_del(&root->link);
+
+ zap_gfn_range(kvm, root, 0, max_gfn, false);
+
+ free_page((unsigned long)root->spt);
+ kmem_cache_free(mmu_page_header_cache, root);
+}
+
+static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
+ int level)
+{
+ union kvm_mmu_page_role role;
+
+ role = vcpu->arch.mmu->mmu_role.base;
+ role.level = level;
+ role.direct = true;
+ role.gpte_is_8_bytes = true;
+ role.access = ACC_ALL;
+
+ return role;
+}
+
+static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
+ int level)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
+ sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
+ set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
+
+ sp->role.word = page_role_for_level(vcpu, level).word;
+ sp->gfn = gfn;
+ sp->tdp_mmu_page = true;
+
+ return sp;
+}
+
+static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
+{
+ union kvm_mmu_page_role role;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_mmu_page *root;
+
+ role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
+
+ spin_lock(&kvm->mmu_lock);
+
+ /* Check for an existing root before allocating a new one. */
+ for_each_tdp_mmu_root(kvm, root) {
+ if (root->role.word == role.word) {
+ kvm_mmu_get_root(kvm, root);
+ spin_unlock(&kvm->mmu_lock);
+ return root;
+ }
+ }
+
+ root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
+ root->root_count = 1;
+
+ list_add(&root->link, &kvm->arch.tdp_mmu_roots);
+
+ spin_unlock(&kvm->mmu_lock);
+
+ return root;
+}
+
+hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_page *root;
+
+ root = get_tdp_mmu_vcpu_root(vcpu);
+ if (!root)
+ return INVALID_PAGE;
+
+ return __pa(root->spt);
+}
+
+static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
+ u64 old_spte, u64 new_spte, int level);
+
+static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
+{
+ return sp->role.smm ? 1 : 0;
+}
+
+static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
+{
+ bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
+
+ if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
+ return;
+
+ if (is_accessed_spte(old_spte) &&
+ (!is_accessed_spte(new_spte) || pfn_changed))
+ kvm_set_pfn_accessed(spte_to_pfn(old_spte));
+}
+
+static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
+ u64 old_spte, u64 new_spte, int level)
+{
+ bool pfn_changed;
+ struct kvm_memory_slot *slot;
+
+ if (level > PG_LEVEL_4K)
+ return;
+
+ pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
+
+ if ((!is_writable_pte(old_spte) || pfn_changed) &&
+ is_writable_pte(new_spte)) {
+ slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
+ mark_page_dirty_in_slot(slot, gfn);
+ }
+}
+
+/**
+ * handle_changed_spte - handle bookkeeping associated with an SPTE change
+ * @kvm: kvm instance
+ * @as_id: the address space of the paging structure the SPTE was a part of
+ * @gfn: the base GFN that was mapped by the SPTE
+ * @old_spte: The value of the SPTE before the change
+ * @new_spte: The value of the SPTE after the change
+ * @level: the level of the PT the SPTE is part of in the paging structure
+ *
+ * Handle bookkeeping that might result from the modification of a SPTE.
+ * This function must be called for all TDP SPTE modifications.
+ */
+static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
+ u64 old_spte, u64 new_spte, int level)
+{
+ bool was_present = is_shadow_present_pte(old_spte);
+ bool is_present = is_shadow_present_pte(new_spte);
+ bool was_leaf = was_present && is_last_spte(old_spte, level);
+ bool is_leaf = is_present && is_last_spte(new_spte, level);
+ bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
+ u64 *pt;
+ struct kvm_mmu_page *sp;
+ u64 old_child_spte;
+ int i;
+
+ WARN_ON(level > PT64_ROOT_MAX_LEVEL);
+ WARN_ON(level < PG_LEVEL_4K);
+ WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
+
+ /*
+ * If this warning were to trigger it would indicate that there was a
+ * missing MMU notifier or a race with some notifier handler.
+ * A present, leaf SPTE should never be directly replaced with another
+ * present leaf SPTE pointing to a differnt PFN. A notifier handler
+ * should be zapping the SPTE before the main MM's page table is
+ * changed, or the SPTE should be zeroed, and the TLBs flushed by the
+ * thread before replacement.
+ */
+ if (was_leaf && is_leaf && pfn_changed) {
+ pr_err("Invalid SPTE change: cannot replace a present leaf\n"
+ "SPTE with another present leaf SPTE mapping a\n"
+ "different PFN!\n"
+ "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
+ as_id, gfn, old_spte, new_spte, level);
+
+ /*
+ * Crash the host to prevent error propagation and guest data
+ * courruption.
+ */
+ BUG();
+ }
+
+ if (old_spte == new_spte)
+ return;
+
+ /*
+ * The only times a SPTE should be changed from a non-present to
+ * non-present state is when an MMIO entry is installed/modified/
+ * removed. In that case, there is nothing to do here.
+ */
+ if (!was_present && !is_present) {
+ /*
+ * If this change does not involve a MMIO SPTE, it is
+ * unexpected. Log the change, though it should not impact the
+ * guest since both the former and current SPTEs are nonpresent.
+ */
+ if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
+ pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
+ "should not be replaced with another,\n"
+ "different nonpresent SPTE, unless one or both\n"
+ "are MMIO SPTEs.\n"
+ "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
+ as_id, gfn, old_spte, new_spte, level);
+ return;
+ }
+
+
+ if (was_leaf && is_dirty_spte(old_spte) &&
+ (!is_dirty_spte(new_spte) || pfn_changed))
+ kvm_set_pfn_dirty(spte_to_pfn(old_spte));
+
+ /*
+ * Recursively handle child PTs if the change removed a subtree from
+ * the paging structure.
+ */
+ if (was_present && !was_leaf && (pfn_changed || !is_present)) {
+ pt = spte_to_child_pt(old_spte, level);
+ sp = sptep_to_sp(pt);
+
+ list_del(&sp->link);
+
+ if (sp->lpage_disallowed)
+ unaccount_huge_nx_page(kvm, sp);
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
+ old_child_spte = READ_ONCE(*(pt + i));
+ WRITE_ONCE(*(pt + i), 0);
+ handle_changed_spte(kvm, as_id,
+ gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
+ old_child_spte, 0, level - 1);
+ }
+
+ kvm_flush_remote_tlbs_with_address(kvm, gfn,
+ KVM_PAGES_PER_HPAGE(level));
+
+ free_page((unsigned long)pt);
+ kmem_cache_free(mmu_page_header_cache, sp);
+ }
+}
+
+static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
+ u64 old_spte, u64 new_spte, int level)
+{
+ __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
+ handle_changed_spte_acc_track(old_spte, new_spte, level);
+ handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
+ new_spte, level);
+}
+
+static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
+ u64 new_spte, bool record_acc_track,
+ bool record_dirty_log)
+{
+ u64 *root_pt = tdp_iter_root_pt(iter);
+ struct kvm_mmu_page *root = sptep_to_sp(root_pt);
+ int as_id = kvm_mmu_page_as_id(root);
+
+ WRITE_ONCE(*iter->sptep, new_spte);
+
+ __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
+ iter->level);
+ if (record_acc_track)
+ handle_changed_spte_acc_track(iter->old_spte, new_spte,
+ iter->level);
+ if (record_dirty_log)
+ handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
+ iter->old_spte, new_spte,
+ iter->level);
+}
+
+static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
+ u64 new_spte)
+{
+ __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
+}
+
+static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
+ struct tdp_iter *iter,
+ u64 new_spte)
+{
+ __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
+}
+
+static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
+ struct tdp_iter *iter,
+ u64 new_spte)
+{
+ __tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
+}
+
+#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
+ for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
+
+#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \
+ tdp_root_for_each_pte(_iter, _root, _start, _end) \
+ if (!is_shadow_present_pte(_iter.old_spte) || \
+ !is_last_spte(_iter.old_spte, _iter.level)) \
+ continue; \
+ else
+
+#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \
+ for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \
+ _mmu->shadow_root_level, _start, _end)
+
+/*
+ * Flush the TLB if the process should drop kvm->mmu_lock.
+ * Return whether the caller still needs to flush the tlb.
+ */
+static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
+{
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
+ kvm_flush_remote_tlbs(kvm);
+ cond_resched_lock(&kvm->mmu_lock);
+ tdp_iter_refresh_walk(iter);
+ return false;
+ } else {
+ return true;
+ }
+}
+
+static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
+{
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
+ cond_resched_lock(&kvm->mmu_lock);
+ tdp_iter_refresh_walk(iter);
+ }
+}
+
+/*
+ * Tears down the mappings for the range of gfns, [start, end), and frees the
+ * non-root pages mapping GFNs strictly within that range. Returns true if
+ * SPTEs have been cleared and a TLB flush is needed before releasing the
+ * MMU lock.
+ * If can_yield is true, will release the MMU lock and reschedule if the
+ * scheduler needs the CPU or there is contention on the MMU lock. If this
+ * function cannot yield, it will not release the MMU lock or reschedule and
+ * the caller must ensure it does not supply too large a GFN range, or the
+ * operation can cause a soft lockup.
+ */
+static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end, bool can_yield)
+{
+ struct tdp_iter iter;
+ bool flush_needed = false;
+
+ tdp_root_for_each_pte(iter, root, start, end) {
+ if (!is_shadow_present_pte(iter.old_spte))
+ continue;
+
+ /*
+ * If this is a non-last-level SPTE that covers a larger range
+ * than should be zapped, continue, and zap the mappings at a
+ * lower level.
+ */
+ if ((iter.gfn < start ||
+ iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
+ !is_last_spte(iter.old_spte, iter.level))
+ continue;
+
+ tdp_mmu_set_spte(kvm, &iter, 0);
+
+ if (can_yield)
+ flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
+ else
+ flush_needed = true;
+ }
+ return flush_needed;
+}
+
+/*
+ * Tears down the mappings for the range of gfns, [start, end), and frees the
+ * non-root pages mapping GFNs strictly within that range. Returns true if
+ * SPTEs have been cleared and a TLB flush is needed before releasing the
+ * MMU lock.
+ */
+bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
+{
+ struct kvm_mmu_page *root;
+ bool flush = false;
+
+ for_each_tdp_mmu_root(kvm, root) {
+ /*
+ * Take a reference on the root so that it cannot be freed if
+ * this thread releases the MMU lock and yields in this loop.
+ */
+ kvm_mmu_get_root(kvm, root);
+
+ flush |= zap_gfn_range(kvm, root, start, end, true);
+
+ kvm_mmu_put_root(kvm, root);
+ }
+
+ return flush;
+}
+
+void kvm_tdp_mmu_zap_all(struct kvm *kvm)
+{
+ gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
+ bool flush;
+
+ flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+}
+
+/*
+ * Installs a last-level SPTE to handle a TDP page fault.
+ * (NPT/EPT violation/misconfiguration)
+ */
+static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
+ int map_writable,
+ struct tdp_iter *iter,
+ kvm_pfn_t pfn, bool prefault)
+{
+ u64 new_spte;
+ int ret = 0;
+ int make_spte_ret = 0;
+
+ if (unlikely(is_noslot_pfn(pfn))) {
+ new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
+ trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
+ } else
+ make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
+ pfn, iter->old_spte, prefault, true,
+ map_writable, !shadow_accessed_mask,
+ &new_spte);
+
+ if (new_spte == iter->old_spte)
+ ret = RET_PF_SPURIOUS;
+ else
+ tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
+
+ /*
+ * If the page fault was caused by a write but the page is write
+ * protected, emulation is needed. If the emulation was skipped,
+ * the vCPU would have the same fault again.
+ */
+ if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
+ if (write)
+ ret = RET_PF_EMULATE;
+ kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
+ }
+
+ /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
+ if (unlikely(is_mmio_spte(new_spte)))
+ ret = RET_PF_EMULATE;
+
+ trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
+ if (!prefault)
+ vcpu->stat.pf_fixed++;
+
+ return ret;
+}
+
+/*
+ * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
+ * page tables and SPTEs to translate the faulting guest physical address.
+ */
+int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
+ int map_writable, int max_level, kvm_pfn_t pfn,
+ bool prefault)
+{
+ bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
+ bool write = error_code & PFERR_WRITE_MASK;
+ bool exec = error_code & PFERR_FETCH_MASK;
+ bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ struct tdp_iter iter;
+ struct kvm_mmu_page *sp;
+ u64 *child_pt;
+ u64 new_spte;
+ int ret;
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ int level;
+ int req_level;
+
+ if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
+ return RET_PF_RETRY;
+ if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
+ return RET_PF_RETRY;
+
+ level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
+ huge_page_disallowed, &req_level);
+
+ trace_kvm_mmu_spte_requested(gpa, level, pfn);
+ tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
+ if (nx_huge_page_workaround_enabled)
+ disallowed_hugepage_adjust(iter.old_spte, gfn,
+ iter.level, &pfn, &level);
+
+ if (iter.level == level)
+ break;
+
+ /*
+ * If there is an SPTE mapping a large page at a higher level
+ * than the target, that SPTE must be cleared and replaced
+ * with a non-leaf SPTE.
+ */
+ if (is_shadow_present_pte(iter.old_spte) &&
+ is_large_pte(iter.old_spte)) {
+ tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
+
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
+ KVM_PAGES_PER_HPAGE(iter.level));
+
+ /*
+ * The iter must explicitly re-read the spte here
+ * because the new value informs the !present
+ * path below.
+ */
+ iter.old_spte = READ_ONCE(*iter.sptep);
+ }
+
+ if (!is_shadow_present_pte(iter.old_spte)) {
+ sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
+ list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
+ child_pt = sp->spt;
+ clear_page(child_pt);
+ new_spte = make_nonleaf_spte(child_pt,
+ !shadow_accessed_mask);
+
+ trace_kvm_mmu_get_page(sp, true);
+ if (huge_page_disallowed && req_level >= iter.level)
+ account_huge_nx_page(vcpu->kvm, sp);
+
+ tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
+ }
+ }
+
+ if (WARN_ON(iter.level != level))
+ return RET_PF_RETRY;
+
+ ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
+ pfn, prefault);
+
+ return ret;
+}
+
+static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
+ unsigned long end, unsigned long data,
+ int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
+ struct kvm_mmu_page *root, gfn_t start,
+ gfn_t end, unsigned long data))
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ struct kvm_mmu_page *root;
+ int ret = 0;
+ int as_id;
+
+ for_each_tdp_mmu_root(kvm, root) {
+ /*
+ * Take a reference on the root so that it cannot be freed if
+ * this thread releases the MMU lock and yields in this loop.
+ */
+ kvm_mmu_get_root(kvm, root);
+
+ as_id = kvm_mmu_page_as_id(root);
+ slots = __kvm_memslots(kvm, as_id);
+ kvm_for_each_memslot(memslot, slots) {
+ unsigned long hva_start, hva_end;
+ gfn_t gfn_start, gfn_end;
+
+ hva_start = max(start, memslot->userspace_addr);
+ hva_end = min(end, memslot->userspace_addr +
+ (memslot->npages << PAGE_SHIFT));
+ if (hva_start >= hva_end)
+ continue;
+ /*
+ * {gfn(page) | page intersects with [hva_start, hva_end)} =
+ * {gfn_start, gfn_start+1, ..., gfn_end-1}.
+ */
+ gfn_start = hva_to_gfn_memslot(hva_start, memslot);
+ gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
+
+ ret |= handler(kvm, memslot, root, gfn_start,
+ gfn_end, data);
+ }
+
+ kvm_mmu_put_root(kvm, root);
+ }
+
+ return ret;
+}
+
+static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ struct kvm_mmu_page *root, gfn_t start,
+ gfn_t end, unsigned long unused)
+{
+ return zap_gfn_range(kvm, root, start, end, false);
+}
+
+int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
+ unsigned long end)
+{
+ return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
+ zap_gfn_range_hva_wrapper);
+}
+
+/*
+ * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
+ * if any of the GFNs in the range have been accessed.
+ */
+static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
+ struct kvm_mmu_page *root, gfn_t start, gfn_t end,
+ unsigned long unused)
+{
+ struct tdp_iter iter;
+ int young = 0;
+ u64 new_spte = 0;
+
+ tdp_root_for_each_leaf_pte(iter, root, start, end) {
+ /*
+ * If we have a non-accessed entry we don't need to change the
+ * pte.
+ */
+ if (!is_accessed_spte(iter.old_spte))
+ continue;
+
+ new_spte = iter.old_spte;
+
+ if (spte_ad_enabled(new_spte)) {
+ clear_bit((ffs(shadow_accessed_mask) - 1),
+ (unsigned long *)&new_spte);
+ } else {
+ /*
+ * Capture the dirty status of the page, so that it doesn't get
+ * lost when the SPTE is marked for access tracking.
+ */
+ if (is_writable_pte(new_spte))
+ kvm_set_pfn_dirty(spte_to_pfn(new_spte));
+
+ new_spte = mark_spte_for_access_track(new_spte);
+ }
+ new_spte &= ~shadow_dirty_mask;
+
+ tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
+ young = 1;
+ }
+
+ return young;
+}
+
+int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
+ unsigned long end)
+{
+ return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
+ age_gfn_range);
+}
+
+static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
+ struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
+ unsigned long unused2)
+{
+ struct tdp_iter iter;
+
+ tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
+ if (is_accessed_spte(iter.old_spte))
+ return 1;
+
+ return 0;
+}
+
+int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
+ test_age_gfn);
+}
+
+/*
+ * Handle the changed_pte MMU notifier for the TDP MMU.
+ * data is a pointer to the new pte_t mapping the HVA specified by the MMU
+ * notifier.
+ * Returns non-zero if a flush is needed before releasing the MMU lock.
+ */
+static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
+ struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
+ unsigned long data)
+{
+ struct tdp_iter iter;
+ pte_t *ptep = (pte_t *)data;
+ kvm_pfn_t new_pfn;
+ u64 new_spte;
+ int need_flush = 0;
+
+ WARN_ON(pte_huge(*ptep));
+
+ new_pfn = pte_pfn(*ptep);
+
+ tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
+ if (iter.level != PG_LEVEL_4K)
+ continue;
+
+ if (!is_shadow_present_pte(iter.old_spte))
+ break;
+
+ tdp_mmu_set_spte(kvm, &iter, 0);
+
+ kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
+
+ if (!pte_write(*ptep)) {
+ new_spte = kvm_mmu_changed_pte_notifier_make_spte(
+ iter.old_spte, new_pfn);
+
+ tdp_mmu_set_spte(kvm, &iter, new_spte);
+ }
+
+ need_flush = 1;
+ }
+
+ if (need_flush)
+ kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
+
+ return 0;
+}
+
+int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
+ pte_t *host_ptep)
+{
+ return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
+ (unsigned long)host_ptep,
+ set_tdp_spte);
+}
+
+/*
+ * Remove write access from all the SPTEs mapping GFNs [start, end). If
+ * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
+ * Returns true if an SPTE has been changed and the TLBs need to be flushed.
+ */
+static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end, int min_level)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+ bool spte_set = false;
+
+ BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
+
+ for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
+ min_level, start, end) {
+ if (!is_shadow_present_pte(iter.old_spte) ||
+ !is_last_spte(iter.old_spte, iter.level))
+ continue;
+
+ new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
+
+ tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
+ spte_set = true;
+
+ tdp_mmu_iter_cond_resched(kvm, &iter);
+ }
+ return spte_set;
+}
+
+/*
+ * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
+ * only affect leaf SPTEs down to min_level.
+ * Returns true if an SPTE has been changed and the TLBs need to be flushed.
+ */
+bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
+ int min_level)
+{
+ struct kvm_mmu_page *root;
+ int root_as_id;
+ bool spte_set = false;
+
+ for_each_tdp_mmu_root(kvm, root) {
+ root_as_id = kvm_mmu_page_as_id(root);
+ if (root_as_id != slot->as_id)
+ continue;
+
+ /*
+ * Take a reference on the root so that it cannot be freed if
+ * this thread releases the MMU lock and yields in this loop.
+ */
+ kvm_mmu_get_root(kvm, root);
+
+ spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
+ slot->base_gfn + slot->npages, min_level);
+
+ kvm_mmu_put_root(kvm, root);
+ }
+
+ return spte_set;
+}
+
+/*
+ * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
+ * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
+ * If AD bits are not enabled, this will require clearing the writable bit on
+ * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
+ * be flushed.
+ */
+static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+ bool spte_set = false;
+
+ tdp_root_for_each_leaf_pte(iter, root, start, end) {
+ if (spte_ad_need_write_protect(iter.old_spte)) {
+ if (is_writable_pte(iter.old_spte))
+ new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
+ else
+ continue;
+ } else {
+ if (iter.old_spte & shadow_dirty_mask)
+ new_spte = iter.old_spte & ~shadow_dirty_mask;
+ else
+ continue;
+ }
+
+ tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
+ spte_set = true;
+
+ tdp_mmu_iter_cond_resched(kvm, &iter);
+ }
+ return spte_set;
+}
+
+/*
+ * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
+ * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
+ * If AD bits are not enabled, this will require clearing the writable bit on
+ * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
+ * be flushed.
+ */
+bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+ struct kvm_mmu_page *root;
+ int root_as_id;
+ bool spte_set = false;
+
+ for_each_tdp_mmu_root(kvm, root) {
+ root_as_id = kvm_mmu_page_as_id(root);
+ if (root_as_id != slot->as_id)
+ continue;
+
+ /*
+ * Take a reference on the root so that it cannot be freed if
+ * this thread releases the MMU lock and yields in this loop.
+ */
+ kvm_mmu_get_root(kvm, root);
+
+ spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
+ slot->base_gfn + slot->npages);
+
+ kvm_mmu_put_root(kvm, root);
+ }
+
+ return spte_set;
+}
+
+/*
+ * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
+ * set in mask, starting at gfn. The given memslot is expected to contain all
+ * the GFNs represented by set bits in the mask. If AD bits are enabled,
+ * clearing the dirty status will involve clearing the dirty bit on each SPTE
+ * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
+ */
+static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t gfn, unsigned long mask, bool wrprot)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+
+ tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
+ gfn + BITS_PER_LONG) {
+ if (!mask)
+ break;
+
+ if (iter.level > PG_LEVEL_4K ||
+ !(mask & (1UL << (iter.gfn - gfn))))
+ continue;
+
+ if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
+ if (is_writable_pte(iter.old_spte))
+ new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
+ else
+ continue;
+ } else {
+ if (iter.old_spte & shadow_dirty_mask)
+ new_spte = iter.old_spte & ~shadow_dirty_mask;
+ else
+ continue;
+ }
+
+ tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
+
+ mask &= ~(1UL << (iter.gfn - gfn));
+ }
+}
+
+/*
+ * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
+ * set in mask, starting at gfn. The given memslot is expected to contain all
+ * the GFNs represented by set bits in the mask. If AD bits are enabled,
+ * clearing the dirty status will involve clearing the dirty bit on each SPTE
+ * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
+ */
+void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn, unsigned long mask,
+ bool wrprot)
+{
+ struct kvm_mmu_page *root;
+ int root_as_id;
+
+ lockdep_assert_held(&kvm->mmu_lock);
+ for_each_tdp_mmu_root(kvm, root) {
+ root_as_id = kvm_mmu_page_as_id(root);
+ if (root_as_id != slot->as_id)
+ continue;
+
+ clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
+ }
+}
+
+/*
+ * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
+ * only used for PML, and so will involve setting the dirty bit on each SPTE.
+ * Returns true if an SPTE has been changed and the TLBs need to be flushed.
+ */
+static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+ bool spte_set = false;
+
+ tdp_root_for_each_pte(iter, root, start, end) {
+ if (!is_shadow_present_pte(iter.old_spte))
+ continue;
+
+ new_spte = iter.old_spte | shadow_dirty_mask;
+
+ tdp_mmu_set_spte(kvm, &iter, new_spte);
+ spte_set = true;
+
+ tdp_mmu_iter_cond_resched(kvm, &iter);
+ }
+
+ return spte_set;
+}
+
+/*
+ * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
+ * only used for PML, and so will involve setting the dirty bit on each SPTE.
+ * Returns true if an SPTE has been changed and the TLBs need to be flushed.
+ */
+bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+ struct kvm_mmu_page *root;
+ int root_as_id;
+ bool spte_set = false;
+
+ for_each_tdp_mmu_root(kvm, root) {
+ root_as_id = kvm_mmu_page_as_id(root);
+ if (root_as_id != slot->as_id)
+ continue;
+
+ /*
+ * Take a reference on the root so that it cannot be freed if
+ * this thread releases the MMU lock and yields in this loop.
+ */
+ kvm_mmu_get_root(kvm, root);
+
+ spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
+ slot->base_gfn + slot->npages);
+
+ kvm_mmu_put_root(kvm, root);
+ }
+ return spte_set;
+}
+
+/*
+ * Clear non-leaf entries (and free associated page tables) which could
+ * be replaced by large mappings, for GFNs within the slot.
+ */
+static void zap_collapsible_spte_range(struct kvm *kvm,
+ struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end)
+{
+ struct tdp_iter iter;
+ kvm_pfn_t pfn;
+ bool spte_set = false;
+
+ tdp_root_for_each_pte(iter, root, start, end) {
+ if (!is_shadow_present_pte(iter.old_spte) ||
+ is_last_spte(iter.old_spte, iter.level))
+ continue;
+
+ pfn = spte_to_pfn(iter.old_spte);
+ if (kvm_is_reserved_pfn(pfn) ||
+ !PageTransCompoundMap(pfn_to_page(pfn)))
+ continue;
+
+ tdp_mmu_set_spte(kvm, &iter, 0);
+
+ spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
+ }
+
+ if (spte_set)
+ kvm_flush_remote_tlbs(kvm);
+}
+
+/*
+ * Clear non-leaf entries (and free associated page tables) which could
+ * be replaced by large mappings, for GFNs within the slot.
+ */
+void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
+ const struct kvm_memory_slot *slot)
+{
+ struct kvm_mmu_page *root;
+ int root_as_id;
+
+ for_each_tdp_mmu_root(kvm, root) {
+ root_as_id = kvm_mmu_page_as_id(root);
+ if (root_as_id != slot->as_id)
+ continue;
+
+ /*
+ * Take a reference on the root so that it cannot be freed if
+ * this thread releases the MMU lock and yields in this loop.
+ */
+ kvm_mmu_get_root(kvm, root);
+
+ zap_collapsible_spte_range(kvm, root, slot->base_gfn,
+ slot->base_gfn + slot->npages);
+
+ kvm_mmu_put_root(kvm, root);
+ }
+}
+
+/*
+ * Removes write access on the last level SPTE mapping this GFN and unsets the
+ * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
+ * Returns true if an SPTE was set and a TLB flush is needed.
+ */
+static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t gfn)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+ bool spte_set = false;
+
+ tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
+ if (!is_writable_pte(iter.old_spte))
+ break;
+
+ new_spte = iter.old_spte &
+ ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
+
+ tdp_mmu_set_spte(kvm, &iter, new_spte);
+ spte_set = true;
+ }
+
+ return spte_set;
+}
+
+/*
+ * Removes write access on the last level SPTE mapping this GFN and unsets the
+ * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
+ * Returns true if an SPTE was set and a TLB flush is needed.
+ */
+bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
+ struct kvm_memory_slot *slot, gfn_t gfn)
+{
+ struct kvm_mmu_page *root;
+ int root_as_id;
+ bool spte_set = false;
+
+ lockdep_assert_held(&kvm->mmu_lock);
+ for_each_tdp_mmu_root(kvm, root) {
+ root_as_id = kvm_mmu_page_as_id(root);
+ if (root_as_id != slot->as_id)
+ continue;
+
+ spte_set |= write_protect_gfn(kvm, root, gfn);
+ }
+ return spte_set;
+}
+
+/*
+ * Return the level of the lowest level SPTE added to sptes.
+ * That SPTE may be non-present.
+ */
+int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
+{
+ struct tdp_iter iter;
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ int leaf = vcpu->arch.mmu->shadow_root_level;
+ gfn_t gfn = addr >> PAGE_SHIFT;
+
+ tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
+ leaf = iter.level;
+ sptes[leaf - 1] = iter.old_spte;
+ }
+
+ return leaf;
+}
diff --git a/arch/x86/kvm/mmu/tdp_mmu.h b/arch/x86/kvm/mmu/tdp_mmu.h
new file mode 100644
index 000000000000..556e065503f6
--- /dev/null
+++ b/arch/x86/kvm/mmu/tdp_mmu.h
@@ -0,0 +1,48 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#ifndef __KVM_X86_MMU_TDP_MMU_H
+#define __KVM_X86_MMU_TDP_MMU_H
+
+#include <linux/kvm_host.h>
+
+void kvm_mmu_init_tdp_mmu(struct kvm *kvm);
+void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm);
+
+bool is_tdp_mmu_root(struct kvm *kvm, hpa_t root);
+hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu);
+void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root);
+
+bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end);
+void kvm_tdp_mmu_zap_all(struct kvm *kvm);
+
+int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
+ int map_writable, int max_level, kvm_pfn_t pfn,
+ bool prefault);
+
+int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
+ unsigned long end);
+
+int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
+ unsigned long end);
+int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva);
+
+int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
+ pte_t *host_ptep);
+
+bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
+ int min_level);
+bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
+ struct kvm_memory_slot *slot);
+void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn, unsigned long mask,
+ bool wrprot);
+bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot);
+void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
+ const struct kvm_memory_slot *slot);
+
+bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
+ struct kvm_memory_slot *slot, gfn_t gfn);
+
+int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes);
+#endif /* __KVM_X86_MMU_TDP_MMU_H */