summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/svm/svm.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/svm/svm.c')
-rw-r--r--arch/x86/kvm/svm/svm.c422
1 files changed, 283 insertions, 139 deletions
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c
index 2c99b18d76c0..0884c3414a1b 100644
--- a/arch/x86/kvm/svm/svm.c
+++ b/arch/x86/kvm/svm/svm.c
@@ -263,7 +263,7 @@ u32 svm_msrpm_offset(u32 msr)
return MSR_INVALID;
}
-#define MAX_INST_SIZE 15
+static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
static int get_npt_level(void)
{
@@ -290,7 +290,7 @@ int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
if (!(efer & EFER_SVME)) {
- svm_leave_nested(svm);
+ svm_leave_nested(vcpu);
svm_set_gif(svm, true);
/* #GP intercept is still needed for vmware backdoor */
if (!enable_vmware_backdoor)
@@ -312,7 +312,11 @@ int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
return ret;
}
- if (svm_gp_erratum_intercept)
+ /*
+ * Never intercept #GP for SEV guests, KVM can't
+ * decrypt guest memory to workaround the erratum.
+ */
+ if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
set_exception_intercept(svm, GP_VECTOR);
}
}
@@ -349,7 +353,7 @@ static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
}
-static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
+static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -397,7 +401,7 @@ static void svm_queue_exception(struct kvm_vcpu *vcpu)
* raises a fault that is not intercepted. Still better than
* failing in all cases.
*/
- (void)skip_emulated_instruction(vcpu);
+ (void)svm_skip_emulated_instruction(vcpu);
rip = kvm_rip_read(vcpu);
svm->int3_rip = rip + svm->vmcb->save.cs.base;
svm->int3_injected = rip - old_rip;
@@ -664,6 +668,7 @@ static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
u32 msr, int read, int write)
{
+ struct vcpu_svm *svm = to_svm(vcpu);
u8 bit_read, bit_write;
unsigned long tmp;
u32 offset;
@@ -694,7 +699,7 @@ static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
msrpm[offset] = tmp;
svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
-
+ svm->nested.force_msr_bitmap_recalc = true;
}
void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
@@ -869,11 +874,11 @@ static void shrink_ple_window(struct kvm_vcpu *vcpu)
}
}
-static void svm_hardware_teardown(void)
+static void svm_hardware_unsetup(void)
{
int cpu;
- sev_hardware_teardown();
+ sev_hardware_unsetup();
for_each_possible_cpu(cpu)
svm_cpu_uninit(cpu);
@@ -1010,9 +1015,10 @@ static void init_vmcb(struct kvm_vcpu *vcpu)
* Guest access to VMware backdoor ports could legitimately
* trigger #GP because of TSS I/O permission bitmap.
* We intercept those #GP and allow access to them anyway
- * as VMware does.
+ * as VMware does. Don't intercept #GP for SEV guests as KVM can't
+ * decrypt guest memory to decode the faulting instruction.
*/
- if (enable_vmware_backdoor)
+ if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
set_exception_intercept(svm, GP_VECTOR);
svm_set_intercept(svm, INTERCEPT_INTR);
@@ -1170,7 +1176,7 @@ void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
svm->vmcb = target_vmcb->ptr;
}
-static int svm_create_vcpu(struct kvm_vcpu *vcpu)
+static int svm_vcpu_create(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm;
struct page *vmcb01_page;
@@ -1241,7 +1247,7 @@ static void svm_clear_current_vmcb(struct vmcb *vmcb)
cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
}
-static void svm_free_vcpu(struct kvm_vcpu *vcpu)
+static void svm_vcpu_free(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -1260,7 +1266,7 @@ static void svm_free_vcpu(struct kvm_vcpu *vcpu)
__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
}
-static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
+static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
@@ -1275,10 +1281,12 @@ static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
* Save additional host state that will be restored on VMEXIT (sev-es)
* or subsequent vmload of host save area.
*/
+ vmsave(__sme_page_pa(sd->save_area));
if (sev_es_guest(vcpu->kvm)) {
- sev_es_prepare_guest_switch(svm, vcpu->cpu);
- } else {
- vmsave(__sme_page_pa(sd->save_area));
+ struct vmcb_save_area *hostsa;
+ hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
+
+ sev_es_prepare_switch_to_guest(hostsa);
}
if (tsc_scaling) {
@@ -1310,13 +1318,13 @@ static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
indirect_branch_prediction_barrier();
}
if (kvm_vcpu_apicv_active(vcpu))
- avic_vcpu_load(vcpu, cpu);
+ __avic_vcpu_load(vcpu, cpu);
}
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
if (kvm_vcpu_apicv_active(vcpu))
- avic_vcpu_put(vcpu);
+ __avic_vcpu_put(vcpu);
svm_prepare_host_switch(vcpu);
@@ -1524,6 +1532,15 @@ static int svm_get_cpl(struct kvm_vcpu *vcpu)
return save->cpl;
}
+static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+ struct kvm_segment cs;
+
+ svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ *db = cs.db;
+ *l = cs.l;
+}
+
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -1558,7 +1575,7 @@ static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
}
-static void svm_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -1580,6 +1597,7 @@ void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 hcr0 = cr0;
+ bool old_paging = is_paging(vcpu);
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
@@ -1596,8 +1614,11 @@ void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
#endif
vcpu->arch.cr0 = cr0;
- if (!npt_enabled)
+ if (!npt_enabled) {
hcr0 |= X86_CR0_PG | X86_CR0_WP;
+ if (old_paging != is_paging(vcpu))
+ svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
+ }
/*
* re-enable caching here because the QEMU bios
@@ -1638,11 +1659,15 @@ void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
unsigned long old_cr4 = vcpu->arch.cr4;
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
- svm_flush_tlb(vcpu);
+ svm_flush_tlb_current(vcpu);
vcpu->arch.cr4 = cr4;
- if (!npt_enabled)
+ if (!npt_enabled) {
cr4 |= X86_CR4_PAE;
+
+ if (!is_paging(vcpu))
+ cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
+ }
cr4 |= host_cr4_mce;
to_svm(vcpu)->vmcb->save.cr4 = cr4;
vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
@@ -2091,10 +2116,6 @@ static int gp_interception(struct kvm_vcpu *vcpu)
if (error_code)
goto reinject;
- /* All SVM instructions expect page aligned RAX */
- if (svm->vmcb->save.rax & ~PAGE_MASK)
- goto reinject;
-
/* Decode the instruction for usage later */
if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
goto reinject;
@@ -2112,8 +2133,13 @@ static int gp_interception(struct kvm_vcpu *vcpu)
if (!is_guest_mode(vcpu))
return kvm_emulate_instruction(vcpu,
EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
- } else
+ } else {
+ /* All SVM instructions expect page aligned RAX */
+ if (svm->vmcb->save.rax & ~PAGE_MASK)
+ goto reinject;
+
return emulate_svm_instr(vcpu, opcode);
+ }
reinject:
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
@@ -2255,7 +2281,7 @@ static int task_switch_interception(struct kvm_vcpu *vcpu)
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
(int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
- if (!skip_emulated_instruction(vcpu))
+ if (!svm_skip_emulated_instruction(vcpu))
return 0;
}
@@ -2679,8 +2705,23 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
u64 data = msr->data;
switch (ecx) {
case MSR_AMD64_TSC_RATIO:
- if (!msr->host_initiated && !svm->tsc_scaling_enabled)
- return 1;
+
+ if (!svm->tsc_scaling_enabled) {
+
+ if (!msr->host_initiated)
+ return 1;
+ /*
+ * In case TSC scaling is not enabled, always
+ * leave this MSR at the default value.
+ *
+ * Due to bug in qemu 6.2.0, it would try to set
+ * this msr to 0 if tsc scaling is not enabled.
+ * Ignore this value as well.
+ */
+ if (data != 0 && data != svm->tsc_ratio_msr)
+ return 1;
+ break;
+ }
if (data & TSC_RATIO_RSVD)
return 1;
@@ -3120,7 +3161,7 @@ static void dump_vmcb(struct kvm_vcpu *vcpu)
"excp_to:", save->last_excp_to);
}
-static bool svm_check_exit_valid(struct kvm_vcpu *vcpu, u64 exit_code)
+static bool svm_check_exit_valid(u64 exit_code)
{
return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
svm_exit_handlers[exit_code]);
@@ -3140,7 +3181,7 @@ static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
{
- if (!svm_check_exit_valid(vcpu, exit_code))
+ if (!svm_check_exit_valid(exit_code))
return svm_handle_invalid_exit(vcpu, exit_code);
#ifdef CONFIG_RETPOLINE
@@ -3175,7 +3216,7 @@ static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
*error_code = 0;
}
-static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
+static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct kvm_run *kvm_run = vcpu->run;
@@ -3272,7 +3313,7 @@ static void svm_inject_nmi(struct kvm_vcpu *vcpu)
++vcpu->stat.nmi_injections;
}
-static void svm_set_irq(struct kvm_vcpu *vcpu)
+static void svm_inject_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -3285,6 +3326,55 @@ static void svm_set_irq(struct kvm_vcpu *vcpu)
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
}
+void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
+ int trig_mode, int vector)
+{
+ /*
+ * vcpu->arch.apicv_active must be read after vcpu->mode.
+ * Pairs with smp_store_release in vcpu_enter_guest.
+ */
+ bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
+
+ if (!READ_ONCE(vcpu->arch.apicv_active)) {
+ /* Process the interrupt via inject_pending_event */
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_vcpu_kick(vcpu);
+ return;
+ }
+
+ trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
+ if (in_guest_mode) {
+ /*
+ * Signal the doorbell to tell hardware to inject the IRQ. If
+ * the vCPU exits the guest before the doorbell chimes, hardware
+ * will automatically process AVIC interrupts at the next VMRUN.
+ */
+ avic_ring_doorbell(vcpu);
+ } else {
+ /*
+ * Wake the vCPU if it was blocking. KVM will then detect the
+ * pending IRQ when checking if the vCPU has a wake event.
+ */
+ kvm_vcpu_wake_up(vcpu);
+ }
+}
+
+static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
+ int trig_mode, int vector)
+{
+ kvm_lapic_set_irr(vector, apic);
+
+ /*
+ * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
+ * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
+ * the read of guest_mode. This guarantees that either VMRUN will see
+ * and process the new vIRR entry, or that svm_complete_interrupt_delivery
+ * will signal the doorbell if the CPU has already entered the guest.
+ */
+ smp_mb__after_atomic();
+ svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
+}
+
static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -3332,11 +3422,13 @@ static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
if (svm->nested.nested_run_pending)
return -EBUSY;
+ if (svm_nmi_blocked(vcpu))
+ return 0;
+
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
return -EBUSY;
-
- return !svm_nmi_blocked(vcpu);
+ return 1;
}
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
@@ -3388,9 +3480,13 @@ bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
struct vcpu_svm *svm = to_svm(vcpu);
+
if (svm->nested.nested_run_pending)
return -EBUSY;
+ if (svm_interrupt_blocked(vcpu))
+ return 0;
+
/*
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
* e.g. if the IRQ arrived asynchronously after checking nested events.
@@ -3398,7 +3494,7 @@ static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
return -EBUSY;
- return !svm_interrupt_blocked(vcpu);
+ return 1;
}
static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
@@ -3447,17 +3543,7 @@ static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
}
-static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
-{
- return 0;
-}
-
-static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
-{
- return 0;
-}
-
-void svm_flush_tlb(struct kvm_vcpu *vcpu)
+static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -3609,7 +3695,7 @@ static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long vmcb_pa = svm->current_vmcb->pa;
- kvm_guest_enter_irqoff();
+ guest_state_enter_irqoff();
if (sev_es_guest(vcpu->kvm)) {
__svm_sev_es_vcpu_run(vmcb_pa);
@@ -3629,7 +3715,7 @@ static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
vmload(__sme_page_pa(sd->save_area));
}
- kvm_guest_exit_irqoff();
+ guest_state_exit_irqoff();
}
static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
@@ -3831,11 +3917,6 @@ static int __init svm_check_processor_compat(void)
return 0;
}
-static bool svm_cpu_has_accelerated_tpr(void)
-{
- return false;
-}
-
/*
* The kvm parameter can be NULL (module initialization, or invocation before
* VM creation). Be sure to check the kvm parameter before using it.
@@ -4129,11 +4210,14 @@ static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
if (svm->nested.nested_run_pending)
return -EBUSY;
+ if (svm_smi_blocked(vcpu))
+ return 0;
+
/* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
return -EBUSY;
- return !svm_smi_blocked(vcpu);
+ return 1;
}
static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
@@ -4167,7 +4251,7 @@ static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
* by 0x400 (matches the offset of 'struct vmcb_save_area'
* within 'struct vmcb'). Note: HSAVE area may also be used by
* L1 hypervisor to save additional host context (e.g. KVM does
- * that, see svm_prepare_guest_switch()) which must be
+ * that, see svm_prepare_switch_to_guest()) which must be
* preserved.
*/
if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
@@ -4227,11 +4311,18 @@ static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
* Enter the nested guest now
*/
+ vmcb_mark_all_dirty(svm->vmcb01.ptr);
+
vmcb12 = map.hva;
nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
+ if (ret)
+ goto unmap_save;
+
+ svm->nested.nested_run_pending = 1;
+
unmap_save:
kvm_vcpu_unmap(vcpu, &map_save, true);
unmap_map:
@@ -4252,79 +4343,140 @@ static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
}
}
-static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
+static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
+ void *insn, int insn_len)
{
bool smep, smap, is_user;
unsigned long cr4;
+ u64 error_code;
+
+ /* Emulation is always possible when KVM has access to all guest state. */
+ if (!sev_guest(vcpu->kvm))
+ return true;
+
+ /* #UD and #GP should never be intercepted for SEV guests. */
+ WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
+ EMULTYPE_TRAP_UD_FORCED |
+ EMULTYPE_VMWARE_GP));
/*
- * When the guest is an SEV-ES guest, emulation is not possible.
+ * Emulation is impossible for SEV-ES guests as KVM doesn't have access
+ * to guest register state.
*/
if (sev_es_guest(vcpu->kvm))
return false;
/*
+ * Emulation is possible if the instruction is already decoded, e.g.
+ * when completing I/O after returning from userspace.
+ */
+ if (emul_type & EMULTYPE_NO_DECODE)
+ return true;
+
+ /*
+ * Emulation is possible for SEV guests if and only if a prefilled
+ * buffer containing the bytes of the intercepted instruction is
+ * available. SEV guest memory is encrypted with a guest specific key
+ * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
+ * decode garbage.
+ *
+ * Inject #UD if KVM reached this point without an instruction buffer.
+ * In practice, this path should never be hit by a well-behaved guest,
+ * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
+ * is still theoretically reachable, e.g. via unaccelerated fault-like
+ * AVIC access, and needs to be handled by KVM to avoid putting the
+ * guest into an infinite loop. Injecting #UD is somewhat arbitrary,
+ * but its the least awful option given lack of insight into the guest.
+ */
+ if (unlikely(!insn)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return false;
+ }
+
+ /*
+ * Emulate for SEV guests if the insn buffer is not empty. The buffer
+ * will be empty if the DecodeAssist microcode cannot fetch bytes for
+ * the faulting instruction because the code fetch itself faulted, e.g.
+ * the guest attempted to fetch from emulated MMIO or a guest page
+ * table used to translate CS:RIP resides in emulated MMIO.
+ */
+ if (likely(insn_len))
+ return true;
+
+ /*
* Detect and workaround Errata 1096 Fam_17h_00_0Fh.
*
* Errata:
- * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
- * possible that CPU microcode implementing DecodeAssist will fail
- * to read bytes of instruction which caused #NPF. In this case,
- * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
- * return 0 instead of the correct guest instruction bytes.
+ * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
+ * possible that CPU microcode implementing DecodeAssist will fail to
+ * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
+ * be '0'. This happens because microcode reads CS:RIP using a _data_
+ * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
+ * gives up and does not fill the instruction bytes buffer.
*
- * This happens because CPU microcode reading instruction bytes
- * uses a special opcode which attempts to read data using CPL=0
- * privileges. The microcode reads CS:RIP and if it hits a SMAP
- * fault, it gives up and returns no instruction bytes.
+ * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
+ * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
+ * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
+ * GuestIntrBytes field of the VMCB.
*
- * Detection:
- * We reach here in case CPU supports DecodeAssist, raised #NPF and
- * returned 0 in GuestIntrBytes field of the VMCB.
- * First, errata can only be triggered in case vCPU CR4.SMAP=1.
- * Second, if vCPU CR4.SMEP=1, errata could only be triggered
- * in case vCPU CPL==3 (Because otherwise guest would have triggered
- * a SMEP fault instead of #NPF).
- * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
- * As most guests enable SMAP if they have also enabled SMEP, use above
- * logic in order to attempt minimize false-positive of detecting errata
- * while still preserving all cases semantic correctness.
+ * This does _not_ mean that the erratum has been encountered, as the
+ * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
+ * #PF, e.g. if the guest attempt to execute from emulated MMIO and
+ * encountered a reserved/not-present #PF.
*
- * Workaround:
- * To determine what instruction the guest was executing, the hypervisor
- * will have to decode the instruction at the instruction pointer.
+ * To hit the erratum, the following conditions must be true:
+ * 1. CR4.SMAP=1 (obviously).
+ * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
+ * have been hit as the guest would have encountered a SMEP
+ * violation #PF, not a #NPF.
+ * 3. The #NPF is not due to a code fetch, in which case failure to
+ * retrieve the instruction bytes is legitimate (see abvoe).
*
- * In non SEV guest, hypervisor will be able to read the guest
- * memory to decode the instruction pointer when insn_len is zero
- * so we return true to indicate that decoding is possible.
- *
- * But in the SEV guest, the guest memory is encrypted with the
- * guest specific key and hypervisor will not be able to decode the
- * instruction pointer so we will not able to workaround it. Lets
- * print the error and request to kill the guest.
+ * In addition, don't apply the erratum workaround if the #NPF occurred
+ * while translating guest page tables (see below).
*/
- if (likely(!insn || insn_len))
- return true;
-
- /*
- * If RIP is invalid, go ahead with emulation which will cause an
- * internal error exit.
- */
- if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
- return true;
+ error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
+ if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
+ goto resume_guest;
cr4 = kvm_read_cr4(vcpu);
smep = cr4 & X86_CR4_SMEP;
smap = cr4 & X86_CR4_SMAP;
is_user = svm_get_cpl(vcpu) == 3;
if (smap && (!smep || is_user)) {
- if (!sev_guest(vcpu->kvm))
- return true;
-
pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+
+ /*
+ * If the fault occurred in userspace, arbitrarily inject #GP
+ * to avoid killing the guest and to hopefully avoid confusing
+ * the guest kernel too much, e.g. injecting #PF would not be
+ * coherent with respect to the guest's page tables. Request
+ * triple fault if the fault occurred in the kernel as there's
+ * no fault that KVM can inject without confusing the guest.
+ * In practice, the triple fault is moot as no sane SEV kernel
+ * will execute from user memory while also running with SMAP=1.
+ */
+ if (is_user)
+ kvm_inject_gp(vcpu, 0);
+ else
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
}
+resume_guest:
+ /*
+ * If the erratum was not hit, simply resume the guest and let it fault
+ * again. While awful, e.g. the vCPU may get stuck in an infinite loop
+ * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
+ * userspace will kill the guest, and letting the emulator read garbage
+ * will yield random behavior and potentially corrupt the guest.
+ *
+ * Simply resuming the guest is technically not a violation of the SEV
+ * architecture. AMD's APM states that all code fetches and page table
+ * accesses for SEV guest are encrypted, regardless of the C-Bit. The
+ * APM also states that encrypted accesses to MMIO are "ignored", but
+ * doesn't explicitly define "ignored", i.e. doing nothing and letting
+ * the guest spin is technically "ignoring" the access.
+ */
return false;
}
@@ -4374,21 +4526,20 @@ static int svm_vm_init(struct kvm *kvm)
static struct kvm_x86_ops svm_x86_ops __initdata = {
.name = "kvm_amd",
- .hardware_unsetup = svm_hardware_teardown,
+ .hardware_unsetup = svm_hardware_unsetup,
.hardware_enable = svm_hardware_enable,
.hardware_disable = svm_hardware_disable,
- .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
.has_emulated_msr = svm_has_emulated_msr,
- .vcpu_create = svm_create_vcpu,
- .vcpu_free = svm_free_vcpu,
+ .vcpu_create = svm_vcpu_create,
+ .vcpu_free = svm_vcpu_free,
.vcpu_reset = svm_vcpu_reset,
.vm_size = sizeof(struct kvm_svm),
.vm_init = svm_vm_init,
.vm_destroy = svm_vm_destroy,
- .prepare_guest_switch = svm_prepare_guest_switch,
+ .prepare_switch_to_guest = svm_prepare_switch_to_guest,
.vcpu_load = svm_vcpu_load,
.vcpu_put = svm_vcpu_put,
.vcpu_blocking = avic_vcpu_blocking,
@@ -4402,9 +4553,9 @@ static struct kvm_x86_ops svm_x86_ops __initdata = {
.get_segment = svm_get_segment,
.set_segment = svm_set_segment,
.get_cpl = svm_get_cpl,
- .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
+ .get_cs_db_l_bits = svm_get_cs_db_l_bits,
.set_cr0 = svm_set_cr0,
- .post_set_cr3 = svm_post_set_cr3,
+ .post_set_cr3 = sev_post_set_cr3,
.is_valid_cr4 = svm_is_valid_cr4,
.set_cr4 = svm_set_cr4,
.set_efer = svm_set_efer,
@@ -4419,21 +4570,21 @@ static struct kvm_x86_ops svm_x86_ops __initdata = {
.set_rflags = svm_set_rflags,
.get_if_flag = svm_get_if_flag,
- .tlb_flush_all = svm_flush_tlb,
- .tlb_flush_current = svm_flush_tlb,
- .tlb_flush_gva = svm_flush_tlb_gva,
- .tlb_flush_guest = svm_flush_tlb,
+ .flush_tlb_all = svm_flush_tlb_current,
+ .flush_tlb_current = svm_flush_tlb_current,
+ .flush_tlb_gva = svm_flush_tlb_gva,
+ .flush_tlb_guest = svm_flush_tlb_current,
.vcpu_pre_run = svm_vcpu_pre_run,
- .run = svm_vcpu_run,
- .handle_exit = handle_exit,
- .skip_emulated_instruction = skip_emulated_instruction,
+ .vcpu_run = svm_vcpu_run,
+ .handle_exit = svm_handle_exit,
+ .skip_emulated_instruction = svm_skip_emulated_instruction,
.update_emulated_instruction = NULL,
.set_interrupt_shadow = svm_set_interrupt_shadow,
.get_interrupt_shadow = svm_get_interrupt_shadow,
.patch_hypercall = svm_patch_hypercall,
- .set_irq = svm_set_irq,
- .set_nmi = svm_inject_nmi,
+ .inject_irq = svm_inject_irq,
+ .inject_nmi = svm_inject_nmi,
.queue_exception = svm_queue_exception,
.cancel_injection = svm_cancel_injection,
.interrupt_allowed = svm_interrupt_allowed,
@@ -4443,18 +4594,11 @@ static struct kvm_x86_ops svm_x86_ops __initdata = {
.enable_nmi_window = svm_enable_nmi_window,
.enable_irq_window = svm_enable_irq_window,
.update_cr8_intercept = svm_update_cr8_intercept,
- .set_virtual_apic_mode = svm_set_virtual_apic_mode,
- .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
- .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
- .load_eoi_exitmap = svm_load_eoi_exitmap,
- .hwapic_irr_update = svm_hwapic_irr_update,
- .hwapic_isr_update = svm_hwapic_isr_update,
- .apicv_post_state_restore = avic_post_state_restore,
-
- .set_tss_addr = svm_set_tss_addr,
- .set_identity_map_addr = svm_set_identity_map_addr,
- .get_mt_mask = svm_get_mt_mask,
+ .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
+ .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
+ .apicv_post_state_restore = avic_apicv_post_state_restore,
+ .get_mt_mask = svm_get_mt_mask,
.get_exit_info = svm_get_exit_info,
.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
@@ -4478,9 +4622,8 @@ static struct kvm_x86_ops svm_x86_ops __initdata = {
.pmu_ops = &amd_pmu_ops,
.nested_ops = &svm_nested_ops,
- .deliver_posted_interrupt = svm_deliver_avic_intr,
- .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
- .update_pi_irte = svm_update_pi_irte,
+ .deliver_interrupt = svm_deliver_interrupt,
+ .pi_update_irte = avic_pi_update_irte,
.setup_mce = svm_setup_mce,
.smi_allowed = svm_smi_allowed,
@@ -4488,12 +4631,12 @@ static struct kvm_x86_ops svm_x86_ops __initdata = {
.leave_smm = svm_leave_smm,
.enable_smi_window = svm_enable_smi_window,
- .mem_enc_op = svm_mem_enc_op,
- .mem_enc_reg_region = svm_register_enc_region,
- .mem_enc_unreg_region = svm_unregister_enc_region,
+ .mem_enc_ioctl = sev_mem_enc_ioctl,
+ .mem_enc_register_region = sev_mem_enc_register_region,
+ .mem_enc_unregister_region = sev_mem_enc_unregister_region,
- .vm_copy_enc_context_from = svm_vm_copy_asid_from,
- .vm_move_enc_context_from = svm_vm_migrate_from,
+ .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
+ .vm_move_enc_context_from = sev_vm_move_enc_context_from,
.can_emulate_instruction = svm_can_emulate_instruction,
@@ -4555,6 +4698,7 @@ static __init void svm_set_cpu_caps(void)
/* CPUID 0x80000001 and 0x8000000A (SVM features) */
if (nested) {
kvm_cpu_cap_set(X86_FEATURE_SVM);
+ kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
if (nrips)
kvm_cpu_cap_set(X86_FEATURE_NRIPS);
@@ -4737,7 +4881,7 @@ static __init int svm_hardware_setup(void)
return 0;
err:
- svm_hardware_teardown();
+ svm_hardware_unsetup();
return r;
}