summaryrefslogtreecommitdiff
path: root/drivers/comedi/drivers/ni_routing/README
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/comedi/drivers/ni_routing/README')
-rw-r--r--drivers/comedi/drivers/ni_routing/README240
1 files changed, 240 insertions, 0 deletions
diff --git a/drivers/comedi/drivers/ni_routing/README b/drivers/comedi/drivers/ni_routing/README
new file mode 100644
index 000000000000..b65c4ebedbc4
--- /dev/null
+++ b/drivers/comedi/drivers/ni_routing/README
@@ -0,0 +1,240 @@
+Framework for Maintaining Common National Instruments Terminal/Signal names
+
+The contents of this directory are primarily for maintaining and formatting all
+known valid signal routes for various National Instruments devices.
+
+Some background:
+ There have been significant confusions over the past many years for users
+ when trying to understand how to connect to/from signals and terminals on
+ NI hardware using comedi. The major reason for this is that the actual
+ register values were exposed and required to be used by users. Several
+ major reasons exist why this caused major confusion for users:
+
+ 1) The register values are _NOT_ in user documentation, but rather in
+ arcane locations, such as a few register programming manuals that are
+ increasingly hard to find and the NI-MHDDK (comments in in example code).
+ There is no one place to find the various valid values of the registers.
+
+ 2) The register values are _NOT_ completely consistent. There is no way to
+ gain any sense of intuition of which values, or even enums one should use
+ for various registers. There was some attempt in prior use of comedi to
+ name enums such that a user might know which enums should be used for
+ varying purposes, but the end-user had to gain a knowledge of register
+ values to correctly wield this approach.
+
+ 3) The names for signals and registers found in the various register level
+ programming manuals and vendor-provided documentation are _not_ even
+ close to the same names that are in the end-user documentation.
+
+ 4) The sets of routes that are valid are not consistent from device to device.
+ One additional major challenge is that this information does not seem to be
+ obtainable in any programmatic fashion, neither through the proprietary
+ NIDAQmx(-base) c-libraries, nor with register level programming, _nor_
+ through any documentation. In fact, the only consistent source of this
+ information is through the proprietary NI-MAX software, which currently only
+ runs on Windows platforms. A further challenge is that this information
+ cannot be exported from NI-MAX, except by screenshot.
+
+
+
+The content of this directory is part of an effort to greatly simplify the use
+of signal routing capabilities of National Instruments data-acquisition and
+control hardware. In order to facilitate the transfer of register-level
+information _and_ the knowledge of valid routes per device, a few specific
+choices were made:
+
+
+1) The names of the National Instruments signals/terminals that are used in this
+ directory are chosen to be consistent with (a) the NI's user level
+ documentation, (b) NI's user-level code, (c) the information as provided by
+ the proprietary NI-MAX software, and (d) the user interface code provided by
+ the user-land comedilib library.
+
+ The impact of this choice implies that one allows the use of CamelScript names
+ in the kernel. In short, the choice to use CamelScript and the exact names
+ below is for maintainability, clarity, similarity to manufacturer's
+ documentation, _and_ a mitigation for confusion that has plagued the use of
+ these drivers for years!
+
+2) The bulk of the real content for this directory is stored in two separate
+ collections (i.e. sub-directories) of tables stored in c source files:
+
+ (a) ni_route_values/ni_[series-label]series.c
+
+ This data represents all the various register values to use for the
+ multiple different signal MUXes for the specific device families.
+
+ The values are all wrapped in one of three macros to help document and
+ track which values have been implemented and tested.
+ These macros are:
+ V(<value>) : register value is valid, tested, and implemented
+ I(<value>) : register value is implemented but needs testing
+ U(<value>) : register value is not implemented
+
+ The actual function of these macros will depend on whether the code is
+ compiled in the kernel or whether it is compiled into the conversion
+ tools. For the conversion tools, it can be used to indicate the status
+ of the register value. For the kernel, V() and I() both perform the
+ same function and prepare data to be used; U() zeroes out the value to
+ ensure that it cannot be used.
+
+ *** It would be a great help for users to test these values such that
+ these files can be correctly marked/documented ***
+
+ (b) ni_device_routes/[board-name].c
+
+ This data represents the known set of valid signal routes that are
+ possible for each specific board. Although the family defines the
+ register values to use for a particular signal MUX, not all possible
+ signals are actually available on each board.
+
+ In order for a particular board to take advantage of the effort to
+ simplify/clarify signal routing on NI devices, a corresponding
+ [board-name].c file must be created. This file should reflect the known
+ valid _direct_ routing capabilities of the board.
+
+ As noted above, the only known consistent source of information for
+ valid device routes comes from the proprietary National Instruments
+ Windows software, NI-MAX. Also, as noted above, this information can
+ only be visually conveyed from NI-MAX to other media. To make this
+ easier, the naming conventions used in the [board-name].c file are
+ similar to the naming conventions as presented by NI-MAX.
+
+
+3) Two other files aggregate the above data to integrate it into comedi:
+ ni_route_values.c
+ ni_device_routes.c
+
+ When adding a new [board-name].c file, be sure to also add in the line in
+ ni_device_routes.c to include this information into comedi.
+
+
+4) Several tools have been included to convert from/to the c file formats.
+ These tools are best used/demonstrated via the included Makefile targets:
+ (a) `make csv-files`
+ Creates new csv-files using content of c-files of existing
+ ni_routing/* content. New csv files are placed in csv
+ sub-directory.
+
+ As noted above, the only consistent source of information of valid
+ device routes comes from the proprietary National Instruments Windows
+ software, NI-MAX. Also, as noted above, this information can only be
+ visually conveyed from NI-MAX to other media. This make target creates
+ spreadsheet representations of the routing data. The choice of using a
+ spreadsheet (ala CSV) to copy this information allows for easy direct
+ visual comparison to the NI-MAX "Valid Routes" tables.
+
+ Furthermore, the register-level information is much easier to identify and
+ correct when entire families of NI devices are shown side by side in table
+ format. This is made easy by using a file-storage format that can be
+ loaded into a spreadsheet application.
+
+ Finally, .csv content is very easy to edit and read using a variety of
+ tools, including spreadsheets or various other scripting languages. In
+ fact, the tools provided here enable quick conversion of the
+ spreadsheet-like .csv format to c-files that follow the kernel coding
+ conventions.
+
+
+ (b) `make c-files`
+ Creates new c-files using content of csv sub-directory. These
+ new c-files can be compared to the active content in the
+ ni_routing directory.
+ (c) `make csv-blank`
+ Create a new blank csv file. This is useful for establishing a
+ new data table for either a device family (less likely) or a
+ specific board of an existing device family (more likely).
+ (d) `make clean`
+ Remove all generated files/directories.
+ (e) `make everything`
+ Build all csv-files, then all new c-files.
+
+
+
+
+In summary, similar confusion about signal routing configuration, albeit less,
+plagued NI's previous version of their own proprietary drivers. Earlier than
+2003, NI greatly simplified the situation for users by releasing a new API that
+abstracted the names of signals/terminals to a common and intuitive set of
+names. In addition, this new API provided a much more common interface to use
+for most of NI hardware.
+
+Comedi already provides such a common interface for data-acquisition and control
+hardware. This effort complements comedi's abstraction layers by further
+abstracting much more of the use cases for NI hardware, but allowing users _and_
+developers to directly refer to NI documentation (user-level, register-level,
+and the register-level examples of the NI-MHDDK).
+
+
+
+--------------------------------------------------------------------------------
+Various naming conventions and relations:
+--------------------------------------------------------------------------------
+These are various notes that help to relate the naming conventions used in the
+NI-STC with those naming conventions used here.
+--------------------------------------------------------------------------------
+
+ Signal sources for most signals-destinations are given a specific naming
+ convention, although the register values are not consistent. This next table
+ shows the mapping between the names used in comedi for NI and those names
+ typically used within the NI-STC documentation.
+
+ (comedi) (NI-STC input or output) (NOTE)
+ ------------------------------------------------------------------------------
+ TRIGGER_LINE(i) RTSI_Trig_i_Output_Select i in range [0..7]
+ NI_AI_STOP AI_STOP
+ NI_AI_SampleClock AI_START_Select
+ NI_AI_SampleClockTimebase AI_SI If internal sample
+ clock signal is used
+ NI_AI_StartTrigger AI_START1_Select
+ NI_AI_ReferenceTrigger AI_START2_Select for pre-triggered
+ acquisition---not
+ currently supported
+ in comedi
+ NI_AI_ConvertClock AI_CONVERT_Source_Select
+ NI_AI_ConvertClockTimebase AI_SI2 If internal convert
+ signal is used
+ NI_AI_HoldCompleteEvent
+ NI_AI_PauseTrigger AI_External_Gate
+ NI_AO_SampleClock AO_UPDATE
+ NI_AO_SampleClockTimebase AO_UI
+ NI_AO_StartTrigger AO_START1
+ NI_AO_PauseTrigger AO_External_Gate
+ NI_DI_SampleClock
+ NI_DO_SampleClock
+ NI_MasterTimebase
+ NI_20MHzTimebase TIMEBASE 1 && TIMEBASE 3 if no higher clock exists
+ NI_80MHzTimebase TIMEBASE 3
+ NI_100kHzTimebase TIMEBASE 2
+ NI_10MHzRefClock
+ PXI_Clk10
+ NI_CtrOut(0) GPFO_0 external ctr0out pin
+ NI_CtrOut(1) GPFO_1 external ctr1out pin
+ NI_CtrSource(0)
+ NI_CtrSource(1)
+ NI_CtrGate(0)
+ NI_CtrGate(1)
+ NI_CtrInternalOutput(0) G_OUT0, G0_TC for Ctr1Source, Ctr1Gate
+ NI_CtrInternalOutput(1) G_OUT1, G1_TC for Ctr0Source, Ctr0Gate
+ NI_RGOUT0 RGOUT0 internal signal
+ NI_FrequencyOutput
+ #NI_FrequencyOutputTimebase
+ NI_ChangeDetectionEvent
+ NI_RTSI_BRD(0)
+ NI_RTSI_BRD(1)
+ NI_RTSI_BRD(2)
+ NI_RTSI_BRD(3)
+ #NI_SoftwareStrobe
+ NI_LogicLow
+ NI_CtrA(0) G0_A_Select see M-Series user
+ manual (371022K-01)
+ NI_CtrA(1) G1_A_Select see M-Series user
+ manual (371022K-01)
+ NI_CtrB(0) G0_B_Select, up/down see M-Series user
+ manual (371022K-01)
+ NI_CtrB(1) G1_B_Select, up/down see M-Series user
+ manual (371022K-01)
+ NI_CtrZ(0) see M-Series user
+ manual (371022K-01)
+ NI_CtrZ(1) see M-Series user
+ manual (371022K-01)