summaryrefslogtreecommitdiff
path: root/drivers/comedi/drivers/rtd520.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/comedi/drivers/rtd520.c')
-rw-r--r--drivers/comedi/drivers/rtd520.c1365
1 files changed, 1365 insertions, 0 deletions
diff --git a/drivers/comedi/drivers/rtd520.c b/drivers/comedi/drivers/rtd520.c
new file mode 100644
index 000000000000..2d99a648b054
--- /dev/null
+++ b/drivers/comedi/drivers/rtd520.c
@@ -0,0 +1,1365 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * comedi/drivers/rtd520.c
+ * Comedi driver for Real Time Devices (RTD) PCI4520/DM7520
+ *
+ * COMEDI - Linux Control and Measurement Device Interface
+ * Copyright (C) 2001 David A. Schleef <ds@schleef.org>
+ */
+
+/*
+ * Driver: rtd520
+ * Description: Real Time Devices PCI4520/DM7520
+ * Devices: [Real Time Devices] DM7520HR-1 (DM7520), DM7520HR-8,
+ * PCI4520 (PCI4520), PCI4520-8
+ * Author: Dan Christian
+ * Status: Works. Only tested on DM7520-8. Not SMP safe.
+ *
+ * Configuration options: not applicable, uses PCI auto config
+ */
+
+/*
+ * Created by Dan Christian, NASA Ames Research Center.
+ *
+ * The PCI4520 is a PCI card. The DM7520 is a PC/104-plus card.
+ * Both have:
+ * 8/16 12 bit ADC with FIFO and channel gain table
+ * 8 bits high speed digital out (for external MUX) (or 8 in or 8 out)
+ * 8 bits high speed digital in with FIFO and interrupt on change (or 8 IO)
+ * 2 12 bit DACs with FIFOs
+ * 2 bits output
+ * 2 bits input
+ * bus mastering DMA
+ * timers: ADC sample, pacer, burst, about, delay, DA1, DA2
+ * sample counter
+ * 3 user timer/counters (8254)
+ * external interrupt
+ *
+ * The DM7520 has slightly fewer features (fewer gain steps).
+ *
+ * These boards can support external multiplexors and multi-board
+ * synchronization, but this driver doesn't support that.
+ *
+ * Board docs: http://www.rtdusa.com/PC104/DM/analog%20IO/dm7520.htm
+ * Data sheet: http://www.rtdusa.com/pdf/dm7520.pdf
+ * Example source: http://www.rtdusa.com/examples/dm/dm7520.zip
+ * Call them and ask for the register level manual.
+ * PCI chip: http://www.plxtech.com/products/io/pci9080
+ *
+ * Notes:
+ * This board is memory mapped. There is some IO stuff, but it isn't needed.
+ *
+ * I use a pretty loose naming style within the driver (rtd_blah).
+ * All externally visible names should be rtd520_blah.
+ * I use camelCase for structures (and inside them).
+ * I may also use upper CamelCase for function names (old habit).
+ *
+ * This board is somewhat related to the RTD PCI4400 board.
+ *
+ * I borrowed heavily from the ni_mio_common, ni_atmio16d, mite, and
+ * das1800, since they have the best documented code. Driver cb_pcidas64.c
+ * uses the same DMA controller.
+ *
+ * As far as I can tell, the About interrupt doesn't work if Sample is
+ * also enabled. It turns out that About really isn't needed, since
+ * we always count down samples read.
+ */
+
+/*
+ * driver status:
+ *
+ * Analog-In supports instruction and command mode.
+ *
+ * With DMA, you can sample at 1.15Mhz with 70% idle on a 400Mhz K6-2
+ * (single channel, 64K read buffer). I get random system lockups when
+ * using DMA with ALI-15xx based systems. I haven't been able to test
+ * any other chipsets. The lockups happen soon after the start of an
+ * acquistion, not in the middle of a long run.
+ *
+ * Without DMA, you can do 620Khz sampling with 20% idle on a 400Mhz K6-2
+ * (with a 256K read buffer).
+ *
+ * Digital-IO and Analog-Out only support instruction mode.
+ */
+
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+
+#include "../comedi_pci.h"
+
+#include "comedi_8254.h"
+#include "plx9080.h"
+
+/*
+ * Local Address Space 0 Offsets
+ */
+#define LAS0_USER_IO 0x0008 /* User I/O */
+#define LAS0_ADC 0x0010 /* FIFO Status/Software A/D Start */
+#define FS_DAC1_NOT_EMPTY BIT(0) /* DAC1 FIFO not empty */
+#define FS_DAC1_HEMPTY BIT(1) /* DAC1 FIFO half empty */
+#define FS_DAC1_NOT_FULL BIT(2) /* DAC1 FIFO not full */
+#define FS_DAC2_NOT_EMPTY BIT(4) /* DAC2 FIFO not empty */
+#define FS_DAC2_HEMPTY BIT(5) /* DAC2 FIFO half empty */
+#define FS_DAC2_NOT_FULL BIT(6) /* DAC2 FIFO not full */
+#define FS_ADC_NOT_EMPTY BIT(8) /* ADC FIFO not empty */
+#define FS_ADC_HEMPTY BIT(9) /* ADC FIFO half empty */
+#define FS_ADC_NOT_FULL BIT(10) /* ADC FIFO not full */
+#define FS_DIN_NOT_EMPTY BIT(12) /* DIN FIFO not empty */
+#define FS_DIN_HEMPTY BIT(13) /* DIN FIFO half empty */
+#define FS_DIN_NOT_FULL BIT(14) /* DIN FIFO not full */
+#define LAS0_UPDATE_DAC(x) (0x0014 + ((x) * 0x4)) /* D/Ax Update (w) */
+#define LAS0_DAC 0x0024 /* Software Simultaneous Update (w) */
+#define LAS0_PACER 0x0028 /* Software Pacer Start/Stop */
+#define LAS0_TIMER 0x002c /* Timer Status/HDIN Software Trig. */
+#define LAS0_IT 0x0030 /* Interrupt Status/Enable */
+#define IRQM_ADC_FIFO_WRITE BIT(0) /* ADC FIFO Write */
+#define IRQM_CGT_RESET BIT(1) /* Reset CGT */
+#define IRQM_CGT_PAUSE BIT(3) /* Pause CGT */
+#define IRQM_ADC_ABOUT_CNT BIT(4) /* About Counter out */
+#define IRQM_ADC_DELAY_CNT BIT(5) /* Delay Counter out */
+#define IRQM_ADC_SAMPLE_CNT BIT(6) /* ADC Sample Counter */
+#define IRQM_DAC1_UCNT BIT(7) /* DAC1 Update Counter */
+#define IRQM_DAC2_UCNT BIT(8) /* DAC2 Update Counter */
+#define IRQM_UTC1 BIT(9) /* User TC1 out */
+#define IRQM_UTC1_INV BIT(10) /* User TC1 out, inverted */
+#define IRQM_UTC2 BIT(11) /* User TC2 out */
+#define IRQM_DIGITAL_IT BIT(12) /* Digital Interrupt */
+#define IRQM_EXTERNAL_IT BIT(13) /* External Interrupt */
+#define IRQM_ETRIG_RISING BIT(14) /* Ext Trigger rising-edge */
+#define IRQM_ETRIG_FALLING BIT(15) /* Ext Trigger falling-edge */
+#define LAS0_CLEAR 0x0034 /* Clear/Set Interrupt Clear Mask */
+#define LAS0_OVERRUN 0x0038 /* Pending interrupts/Clear Overrun */
+#define LAS0_PCLK 0x0040 /* Pacer Clock (24bit) */
+#define LAS0_BCLK 0x0044 /* Burst Clock (10bit) */
+#define LAS0_ADC_SCNT 0x0048 /* A/D Sample counter (10bit) */
+#define LAS0_DAC1_UCNT 0x004c /* D/A1 Update counter (10 bit) */
+#define LAS0_DAC2_UCNT 0x0050 /* D/A2 Update counter (10 bit) */
+#define LAS0_DCNT 0x0054 /* Delay counter (16 bit) */
+#define LAS0_ACNT 0x0058 /* About counter (16 bit) */
+#define LAS0_DAC_CLK 0x005c /* DAC clock (16bit) */
+#define LAS0_8254_TIMER_BASE 0x0060 /* 8254 timer/counter base */
+#define LAS0_DIO0 0x0070 /* Digital I/O Port 0 */
+#define LAS0_DIO1 0x0074 /* Digital I/O Port 1 */
+#define LAS0_DIO0_CTRL 0x0078 /* Digital I/O Control */
+#define LAS0_DIO_STATUS 0x007c /* Digital I/O Status */
+#define LAS0_BOARD_RESET 0x0100 /* Board reset */
+#define LAS0_DMA0_SRC 0x0104 /* DMA 0 Sources select */
+#define LAS0_DMA1_SRC 0x0108 /* DMA 1 Sources select */
+#define LAS0_ADC_CONVERSION 0x010c /* A/D Conversion Signal select */
+#define LAS0_BURST_START 0x0110 /* Burst Clock Start Trigger select */
+#define LAS0_PACER_START 0x0114 /* Pacer Clock Start Trigger select */
+#define LAS0_PACER_STOP 0x0118 /* Pacer Clock Stop Trigger select */
+#define LAS0_ACNT_STOP_ENABLE 0x011c /* About Counter Stop Enable */
+#define LAS0_PACER_REPEAT 0x0120 /* Pacer Start Trigger Mode select */
+#define LAS0_DIN_START 0x0124 /* HiSpd DI Sampling Signal select */
+#define LAS0_DIN_FIFO_CLEAR 0x0128 /* Digital Input FIFO Clear */
+#define LAS0_ADC_FIFO_CLEAR 0x012c /* A/D FIFO Clear */
+#define LAS0_CGT_WRITE 0x0130 /* Channel Gain Table Write */
+#define LAS0_CGL_WRITE 0x0134 /* Channel Gain Latch Write */
+#define LAS0_CG_DATA 0x0138 /* Digital Table Write */
+#define LAS0_CGT_ENABLE 0x013c /* Channel Gain Table Enable */
+#define LAS0_CG_ENABLE 0x0140 /* Digital Table Enable */
+#define LAS0_CGT_PAUSE 0x0144 /* Table Pause Enable */
+#define LAS0_CGT_RESET 0x0148 /* Reset Channel Gain Table */
+#define LAS0_CGT_CLEAR 0x014c /* Clear Channel Gain Table */
+#define LAS0_DAC_CTRL(x) (0x0150 + ((x) * 0x14)) /* D/Ax type/range */
+#define LAS0_DAC_SRC(x) (0x0154 + ((x) * 0x14)) /* D/Ax update source */
+#define LAS0_DAC_CYCLE(x) (0x0158 + ((x) * 0x14)) /* D/Ax cycle mode */
+#define LAS0_DAC_RESET(x) (0x015c + ((x) * 0x14)) /* D/Ax FIFO reset */
+#define LAS0_DAC_FIFO_CLEAR(x) (0x0160 + ((x) * 0x14)) /* D/Ax FIFO clear */
+#define LAS0_ADC_SCNT_SRC 0x0178 /* A/D Sample Counter Source select */
+#define LAS0_PACER_SELECT 0x0180 /* Pacer Clock select */
+#define LAS0_SBUS0_SRC 0x0184 /* SyncBus 0 Source select */
+#define LAS0_SBUS0_ENABLE 0x0188 /* SyncBus 0 enable */
+#define LAS0_SBUS1_SRC 0x018c /* SyncBus 1 Source select */
+#define LAS0_SBUS1_ENABLE 0x0190 /* SyncBus 1 enable */
+#define LAS0_SBUS2_SRC 0x0198 /* SyncBus 2 Source select */
+#define LAS0_SBUS2_ENABLE 0x019c /* SyncBus 2 enable */
+#define LAS0_ETRG_POLARITY 0x01a4 /* Ext. Trigger polarity select */
+#define LAS0_EINT_POLARITY 0x01a8 /* Ext. Interrupt polarity select */
+#define LAS0_8254_CLK_SEL(x) (0x01ac + ((x) * 0x8)) /* 8254 clock select */
+#define LAS0_8254_GATE_SEL(x) (0x01b0 + ((x) * 0x8)) /* 8254 gate select */
+#define LAS0_UOUT0_SELECT 0x01c4 /* User Output 0 source select */
+#define LAS0_UOUT1_SELECT 0x01c8 /* User Output 1 source select */
+#define LAS0_DMA0_RESET 0x01cc /* DMA0 Request state machine reset */
+#define LAS0_DMA1_RESET 0x01d0 /* DMA1 Request state machine reset */
+
+/*
+ * Local Address Space 1 Offsets
+ */
+#define LAS1_ADC_FIFO 0x0000 /* A/D FIFO (16bit) */
+#define LAS1_HDIO_FIFO 0x0004 /* HiSpd DI FIFO (16bit) */
+#define LAS1_DAC_FIFO(x) (0x0008 + ((x) * 0x4)) /* D/Ax FIFO (16bit) */
+
+/*
+ * Driver specific stuff (tunable)
+ */
+
+/*
+ * We really only need 2 buffers. More than that means being much
+ * smarter about knowing which ones are full.
+ */
+#define DMA_CHAIN_COUNT 2 /* max DMA segments/buffers in a ring (min 2) */
+
+/* Target period for periodic transfers. This sets the user read latency. */
+/* Note: There are certain rates where we give this up and transfer 1/2 FIFO */
+/* If this is too low, efficiency is poor */
+#define TRANS_TARGET_PERIOD 10000000 /* 10 ms (in nanoseconds) */
+
+/* Set a practical limit on how long a list to support (affects memory use) */
+/* The board support a channel list up to the FIFO length (1K or 8K) */
+#define RTD_MAX_CHANLIST 128 /* max channel list that we allow */
+
+/*
+ * Board specific stuff
+ */
+
+#define RTD_CLOCK_RATE 8000000 /* 8Mhz onboard clock */
+#define RTD_CLOCK_BASE 125 /* clock period in ns */
+
+/* Note: these speed are slower than the spec, but fit the counter resolution*/
+#define RTD_MAX_SPEED 1625 /* when sampling, in nanoseconds */
+/* max speed if we don't have to wait for settling */
+#define RTD_MAX_SPEED_1 875 /* if single channel, in nanoseconds */
+
+#define RTD_MIN_SPEED 2097151875 /* (24bit counter) in nanoseconds */
+/* min speed when only 1 channel (no burst counter) */
+#define RTD_MIN_SPEED_1 5000000 /* 200Hz, in nanoseconds */
+
+/* Setup continuous ring of 1/2 FIFO transfers. See RTD manual p91 */
+#define DMA_MODE_BITS (\
+ PLX_LOCAL_BUS_16_WIDE_BITS \
+ | PLX_DMA_EN_READYIN_BIT \
+ | PLX_DMA_LOCAL_BURST_EN_BIT \
+ | PLX_EN_CHAIN_BIT \
+ | PLX_DMA_INTR_PCI_BIT \
+ | PLX_LOCAL_ADDR_CONST_BIT \
+ | PLX_DEMAND_MODE_BIT)
+
+#define DMA_TRANSFER_BITS (\
+/* descriptors in PCI memory*/ PLX_DESC_IN_PCI_BIT \
+/* interrupt at end of block */ | PLX_INTR_TERM_COUNT \
+/* from board to PCI */ | PLX_XFER_LOCAL_TO_PCI)
+
+/*
+ * Comedi specific stuff
+ */
+
+/*
+ * The board has 3 input modes and the gains of 1,2,4,...32 (, 64, 128)
+ */
+static const struct comedi_lrange rtd_ai_7520_range = {
+ 18, {
+ /* +-5V input range gain steps */
+ BIP_RANGE(5.0),
+ BIP_RANGE(5.0 / 2),
+ BIP_RANGE(5.0 / 4),
+ BIP_RANGE(5.0 / 8),
+ BIP_RANGE(5.0 / 16),
+ BIP_RANGE(5.0 / 32),
+ /* +-10V input range gain steps */
+ BIP_RANGE(10.0),
+ BIP_RANGE(10.0 / 2),
+ BIP_RANGE(10.0 / 4),
+ BIP_RANGE(10.0 / 8),
+ BIP_RANGE(10.0 / 16),
+ BIP_RANGE(10.0 / 32),
+ /* +10V input range gain steps */
+ UNI_RANGE(10.0),
+ UNI_RANGE(10.0 / 2),
+ UNI_RANGE(10.0 / 4),
+ UNI_RANGE(10.0 / 8),
+ UNI_RANGE(10.0 / 16),
+ UNI_RANGE(10.0 / 32),
+ }
+};
+
+/* PCI4520 has two more gains (6 more entries) */
+static const struct comedi_lrange rtd_ai_4520_range = {
+ 24, {
+ /* +-5V input range gain steps */
+ BIP_RANGE(5.0),
+ BIP_RANGE(5.0 / 2),
+ BIP_RANGE(5.0 / 4),
+ BIP_RANGE(5.0 / 8),
+ BIP_RANGE(5.0 / 16),
+ BIP_RANGE(5.0 / 32),
+ BIP_RANGE(5.0 / 64),
+ BIP_RANGE(5.0 / 128),
+ /* +-10V input range gain steps */
+ BIP_RANGE(10.0),
+ BIP_RANGE(10.0 / 2),
+ BIP_RANGE(10.0 / 4),
+ BIP_RANGE(10.0 / 8),
+ BIP_RANGE(10.0 / 16),
+ BIP_RANGE(10.0 / 32),
+ BIP_RANGE(10.0 / 64),
+ BIP_RANGE(10.0 / 128),
+ /* +10V input range gain steps */
+ UNI_RANGE(10.0),
+ UNI_RANGE(10.0 / 2),
+ UNI_RANGE(10.0 / 4),
+ UNI_RANGE(10.0 / 8),
+ UNI_RANGE(10.0 / 16),
+ UNI_RANGE(10.0 / 32),
+ UNI_RANGE(10.0 / 64),
+ UNI_RANGE(10.0 / 128),
+ }
+};
+
+/* Table order matches range values */
+static const struct comedi_lrange rtd_ao_range = {
+ 4, {
+ UNI_RANGE(5),
+ UNI_RANGE(10),
+ BIP_RANGE(5),
+ BIP_RANGE(10),
+ }
+};
+
+enum rtd_boardid {
+ BOARD_DM7520,
+ BOARD_PCI4520,
+};
+
+struct rtd_boardinfo {
+ const char *name;
+ int range_bip10; /* start of +-10V range */
+ int range_uni10; /* start of +10V range */
+ const struct comedi_lrange *ai_range;
+};
+
+static const struct rtd_boardinfo rtd520_boards[] = {
+ [BOARD_DM7520] = {
+ .name = "DM7520",
+ .range_bip10 = 6,
+ .range_uni10 = 12,
+ .ai_range = &rtd_ai_7520_range,
+ },
+ [BOARD_PCI4520] = {
+ .name = "PCI4520",
+ .range_bip10 = 8,
+ .range_uni10 = 16,
+ .ai_range = &rtd_ai_4520_range,
+ },
+};
+
+struct rtd_private {
+ /* memory mapped board structures */
+ void __iomem *las1;
+ void __iomem *lcfg;
+
+ long ai_count; /* total transfer size (samples) */
+ int xfer_count; /* # to transfer data. 0->1/2FIFO */
+ int flags; /* flag event modes */
+ unsigned int fifosz;
+
+ /* 8254 Timer/Counter gate and clock sources */
+ unsigned char timer_gate_src[3];
+ unsigned char timer_clk_src[3];
+};
+
+/* bit defines for "flags" */
+#define SEND_EOS 0x01 /* send End Of Scan events */
+#define DMA0_ACTIVE 0x02 /* DMA0 is active */
+#define DMA1_ACTIVE 0x04 /* DMA1 is active */
+
+/*
+ * Given a desired period and the clock period (both in ns), return the
+ * proper counter value (divider-1). Sets the original period to be the
+ * true value.
+ * Note: you have to check if the value is larger than the counter range!
+ */
+static int rtd_ns_to_timer_base(unsigned int *nanosec,
+ unsigned int flags, int base)
+{
+ int divider;
+
+ switch (flags & CMDF_ROUND_MASK) {
+ case CMDF_ROUND_NEAREST:
+ default:
+ divider = DIV_ROUND_CLOSEST(*nanosec, base);
+ break;
+ case CMDF_ROUND_DOWN:
+ divider = (*nanosec) / base;
+ break;
+ case CMDF_ROUND_UP:
+ divider = DIV_ROUND_UP(*nanosec, base);
+ break;
+ }
+ if (divider < 2)
+ divider = 2; /* min is divide by 2 */
+
+ /*
+ * Note: we don't check for max, because different timers
+ * have different ranges
+ */
+
+ *nanosec = base * divider;
+ return divider - 1; /* countdown is divisor+1 */
+}
+
+/*
+ * Given a desired period (in ns), return the proper counter value
+ * (divider-1) for the internal clock. Sets the original period to
+ * be the true value.
+ */
+static int rtd_ns_to_timer(unsigned int *ns, unsigned int flags)
+{
+ return rtd_ns_to_timer_base(ns, flags, RTD_CLOCK_BASE);
+}
+
+/* Convert a single comedi channel-gain entry to a RTD520 table entry */
+static unsigned short rtd_convert_chan_gain(struct comedi_device *dev,
+ unsigned int chanspec, int index)
+{
+ const struct rtd_boardinfo *board = dev->board_ptr;
+ unsigned int chan = CR_CHAN(chanspec);
+ unsigned int range = CR_RANGE(chanspec);
+ unsigned int aref = CR_AREF(chanspec);
+ unsigned short r = 0;
+
+ r |= chan & 0xf;
+
+ /* Note: we also setup the channel list bipolar flag array */
+ if (range < board->range_bip10) {
+ /* +-5 range */
+ r |= 0x000;
+ r |= (range & 0x7) << 4;
+ } else if (range < board->range_uni10) {
+ /* +-10 range */
+ r |= 0x100;
+ r |= ((range - board->range_bip10) & 0x7) << 4;
+ } else {
+ /* +10 range */
+ r |= 0x200;
+ r |= ((range - board->range_uni10) & 0x7) << 4;
+ }
+
+ switch (aref) {
+ case AREF_GROUND: /* on-board ground */
+ break;
+
+ case AREF_COMMON:
+ r |= 0x80; /* ref external analog common */
+ break;
+
+ case AREF_DIFF:
+ r |= 0x400; /* differential inputs */
+ break;
+
+ case AREF_OTHER: /* ??? */
+ break;
+ }
+ return r;
+}
+
+/* Setup the channel-gain table from a comedi list */
+static void rtd_load_channelgain_list(struct comedi_device *dev,
+ unsigned int n_chan, unsigned int *list)
+{
+ if (n_chan > 1) { /* setup channel gain table */
+ int ii;
+
+ writel(0, dev->mmio + LAS0_CGT_CLEAR);
+ writel(1, dev->mmio + LAS0_CGT_ENABLE);
+ for (ii = 0; ii < n_chan; ii++) {
+ writel(rtd_convert_chan_gain(dev, list[ii], ii),
+ dev->mmio + LAS0_CGT_WRITE);
+ }
+ } else { /* just use the channel gain latch */
+ writel(0, dev->mmio + LAS0_CGT_ENABLE);
+ writel(rtd_convert_chan_gain(dev, list[0], 0),
+ dev->mmio + LAS0_CGL_WRITE);
+ }
+}
+
+/*
+ * Determine fifo size by doing adc conversions until the fifo half
+ * empty status flag clears.
+ */
+static int rtd520_probe_fifo_depth(struct comedi_device *dev)
+{
+ unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
+ unsigned int i;
+ static const unsigned int limit = 0x2000;
+ unsigned int fifo_size = 0;
+
+ writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
+ rtd_load_channelgain_list(dev, 1, &chanspec);
+ /* ADC conversion trigger source: SOFTWARE */
+ writel(0, dev->mmio + LAS0_ADC_CONVERSION);
+ /* convert samples */
+ for (i = 0; i < limit; ++i) {
+ unsigned int fifo_status;
+ /* trigger conversion */
+ writew(0, dev->mmio + LAS0_ADC);
+ usleep_range(1, 1000);
+ fifo_status = readl(dev->mmio + LAS0_ADC);
+ if ((fifo_status & FS_ADC_HEMPTY) == 0) {
+ fifo_size = 2 * i;
+ break;
+ }
+ }
+ if (i == limit) {
+ dev_info(dev->class_dev, "failed to probe fifo size.\n");
+ return -EIO;
+ }
+ writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
+ if (fifo_size != 0x400 && fifo_size != 0x2000) {
+ dev_info(dev->class_dev,
+ "unexpected fifo size of %i, expected 1024 or 8192.\n",
+ fifo_size);
+ return -EIO;
+ }
+ return fifo_size;
+}
+
+static int rtd_ai_eoc(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned long context)
+{
+ unsigned int status;
+
+ status = readl(dev->mmio + LAS0_ADC);
+ if (status & FS_ADC_NOT_EMPTY)
+ return 0;
+ return -EBUSY;
+}
+
+static int rtd_ai_rinsn(struct comedi_device *dev,
+ struct comedi_subdevice *s, struct comedi_insn *insn,
+ unsigned int *data)
+{
+ struct rtd_private *devpriv = dev->private;
+ unsigned int range = CR_RANGE(insn->chanspec);
+ int ret;
+ int n;
+
+ /* clear any old fifo data */
+ writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
+
+ /* write channel to multiplexer and clear channel gain table */
+ rtd_load_channelgain_list(dev, 1, &insn->chanspec);
+
+ /* ADC conversion trigger source: SOFTWARE */
+ writel(0, dev->mmio + LAS0_ADC_CONVERSION);
+
+ /* convert n samples */
+ for (n = 0; n < insn->n; n++) {
+ unsigned short d;
+ /* trigger conversion */
+ writew(0, dev->mmio + LAS0_ADC);
+
+ ret = comedi_timeout(dev, s, insn, rtd_ai_eoc, 0);
+ if (ret)
+ return ret;
+
+ /* read data */
+ d = readw(devpriv->las1 + LAS1_ADC_FIFO);
+ d >>= 3; /* low 3 bits are marker lines */
+
+ /* convert bipolar data to comedi unsigned data */
+ if (comedi_range_is_bipolar(s, range))
+ d = comedi_offset_munge(s, d);
+
+ data[n] = d & s->maxdata;
+ }
+
+ /* return the number of samples read/written */
+ return n;
+}
+
+static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
+ int count)
+{
+ struct rtd_private *devpriv = dev->private;
+ struct comedi_async *async = s->async;
+ struct comedi_cmd *cmd = &async->cmd;
+ int ii;
+
+ for (ii = 0; ii < count; ii++) {
+ unsigned int range = CR_RANGE(cmd->chanlist[async->cur_chan]);
+ unsigned short d;
+
+ if (devpriv->ai_count == 0) { /* done */
+ d = readw(devpriv->las1 + LAS1_ADC_FIFO);
+ continue;
+ }
+
+ d = readw(devpriv->las1 + LAS1_ADC_FIFO);
+ d >>= 3; /* low 3 bits are marker lines */
+
+ /* convert bipolar data to comedi unsigned data */
+ if (comedi_range_is_bipolar(s, range))
+ d = comedi_offset_munge(s, d);
+ d &= s->maxdata;
+
+ if (!comedi_buf_write_samples(s, &d, 1))
+ return -1;
+
+ if (devpriv->ai_count > 0) /* < 0, means read forever */
+ devpriv->ai_count--;
+ }
+ return 0;
+}
+
+static irqreturn_t rtd_interrupt(int irq, void *d)
+{
+ struct comedi_device *dev = d;
+ struct comedi_subdevice *s = dev->read_subdev;
+ struct rtd_private *devpriv = dev->private;
+ u32 overrun;
+ u16 status;
+ u16 fifo_status;
+
+ if (!dev->attached)
+ return IRQ_NONE;
+
+ fifo_status = readl(dev->mmio + LAS0_ADC);
+ /* check for FIFO full, this automatically halts the ADC! */
+ if (!(fifo_status & FS_ADC_NOT_FULL)) /* 0 -> full */
+ goto xfer_abort;
+
+ status = readw(dev->mmio + LAS0_IT);
+ /* if interrupt was not caused by our board, or handled above */
+ if (status == 0)
+ return IRQ_HANDLED;
+
+ if (status & IRQM_ADC_ABOUT_CNT) { /* sample count -> read FIFO */
+ /*
+ * since the priority interrupt controller may have queued
+ * a sample counter interrupt, even though we have already
+ * finished, we must handle the possibility that there is
+ * no data here
+ */
+ if (!(fifo_status & FS_ADC_HEMPTY)) {
+ /* FIFO half full */
+ if (ai_read_n(dev, s, devpriv->fifosz / 2) < 0)
+ goto xfer_abort;
+
+ if (devpriv->ai_count == 0)
+ goto xfer_done;
+ } else if (devpriv->xfer_count > 0) {
+ if (fifo_status & FS_ADC_NOT_EMPTY) {
+ /* FIFO not empty */
+ if (ai_read_n(dev, s, devpriv->xfer_count) < 0)
+ goto xfer_abort;
+
+ if (devpriv->ai_count == 0)
+ goto xfer_done;
+ }
+ }
+ }
+
+ overrun = readl(dev->mmio + LAS0_OVERRUN) & 0xffff;
+ if (overrun)
+ goto xfer_abort;
+
+ /* clear the interrupt */
+ writew(status, dev->mmio + LAS0_CLEAR);
+ readw(dev->mmio + LAS0_CLEAR);
+
+ comedi_handle_events(dev, s);
+
+ return IRQ_HANDLED;
+
+xfer_abort:
+ s->async->events |= COMEDI_CB_ERROR;
+
+xfer_done:
+ s->async->events |= COMEDI_CB_EOA;
+
+ /* clear the interrupt */
+ status = readw(dev->mmio + LAS0_IT);
+ writew(status, dev->mmio + LAS0_CLEAR);
+ readw(dev->mmio + LAS0_CLEAR);
+
+ fifo_status = readl(dev->mmio + LAS0_ADC);
+ overrun = readl(dev->mmio + LAS0_OVERRUN) & 0xffff;
+
+ comedi_handle_events(dev, s);
+
+ return IRQ_HANDLED;
+}
+
+static int rtd_ai_cmdtest(struct comedi_device *dev,
+ struct comedi_subdevice *s, struct comedi_cmd *cmd)
+{
+ int err = 0;
+ unsigned int arg;
+
+ /* Step 1 : check if triggers are trivially valid */
+
+ err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW);
+ err |= comedi_check_trigger_src(&cmd->scan_begin_src,
+ TRIG_TIMER | TRIG_EXT);
+ err |= comedi_check_trigger_src(&cmd->convert_src,
+ TRIG_TIMER | TRIG_EXT);
+ err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
+ err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
+
+ if (err)
+ return 1;
+
+ /* Step 2a : make sure trigger sources are unique */
+
+ err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
+ err |= comedi_check_trigger_is_unique(cmd->convert_src);
+ err |= comedi_check_trigger_is_unique(cmd->stop_src);
+
+ /* Step 2b : and mutually compatible */
+
+ if (err)
+ return 2;
+
+ /* Step 3: check if arguments are trivially valid */
+
+ err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ /* Note: these are time periods, not actual rates */
+ if (cmd->chanlist_len == 1) { /* no scanning */
+ if (comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
+ RTD_MAX_SPEED_1)) {
+ rtd_ns_to_timer(&cmd->scan_begin_arg,
+ CMDF_ROUND_UP);
+ err |= -EINVAL;
+ }
+ if (comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
+ RTD_MIN_SPEED_1)) {
+ rtd_ns_to_timer(&cmd->scan_begin_arg,
+ CMDF_ROUND_DOWN);
+ err |= -EINVAL;
+ }
+ } else {
+ if (comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
+ RTD_MAX_SPEED)) {
+ rtd_ns_to_timer(&cmd->scan_begin_arg,
+ CMDF_ROUND_UP);
+ err |= -EINVAL;
+ }
+ if (comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
+ RTD_MIN_SPEED)) {
+ rtd_ns_to_timer(&cmd->scan_begin_arg,
+ CMDF_ROUND_DOWN);
+ err |= -EINVAL;
+ }
+ }
+ } else {
+ /* external trigger */
+ /* should be level/edge, hi/lo specification here */
+ /* should specify multiple external triggers */
+ err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
+ }
+
+ if (cmd->convert_src == TRIG_TIMER) {
+ if (cmd->chanlist_len == 1) { /* no scanning */
+ if (comedi_check_trigger_arg_min(&cmd->convert_arg,
+ RTD_MAX_SPEED_1)) {
+ rtd_ns_to_timer(&cmd->convert_arg,
+ CMDF_ROUND_UP);
+ err |= -EINVAL;
+ }
+ if (comedi_check_trigger_arg_max(&cmd->convert_arg,
+ RTD_MIN_SPEED_1)) {
+ rtd_ns_to_timer(&cmd->convert_arg,
+ CMDF_ROUND_DOWN);
+ err |= -EINVAL;
+ }
+ } else {
+ if (comedi_check_trigger_arg_min(&cmd->convert_arg,
+ RTD_MAX_SPEED)) {
+ rtd_ns_to_timer(&cmd->convert_arg,
+ CMDF_ROUND_UP);
+ err |= -EINVAL;
+ }
+ if (comedi_check_trigger_arg_max(&cmd->convert_arg,
+ RTD_MIN_SPEED)) {
+ rtd_ns_to_timer(&cmd->convert_arg,
+ CMDF_ROUND_DOWN);
+ err |= -EINVAL;
+ }
+ }
+ } else {
+ /* external trigger */
+ /* see above */
+ err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 9);
+ }
+
+ err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
+ cmd->chanlist_len);
+
+ if (cmd->stop_src == TRIG_COUNT)
+ err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
+ else /* TRIG_NONE */
+ err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
+
+ if (err)
+ return 3;
+
+ /* step 4: fix up any arguments */
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ arg = cmd->scan_begin_arg;
+ rtd_ns_to_timer(&arg, cmd->flags);
+ err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
+ }
+
+ if (cmd->convert_src == TRIG_TIMER) {
+ arg = cmd->convert_arg;
+ rtd_ns_to_timer(&arg, cmd->flags);
+ err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ arg = cmd->convert_arg * cmd->scan_end_arg;
+ err |= comedi_check_trigger_arg_min(
+ &cmd->scan_begin_arg, arg);
+ }
+ }
+
+ if (err)
+ return 4;
+
+ return 0;
+}
+
+static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
+{
+ struct rtd_private *devpriv = dev->private;
+ struct comedi_cmd *cmd = &s->async->cmd;
+ int timer;
+
+ /* stop anything currently running */
+ /* pacer stop source: SOFTWARE */
+ writel(0, dev->mmio + LAS0_PACER_STOP);
+ writel(0, dev->mmio + LAS0_PACER); /* stop pacer */
+ writel(0, dev->mmio + LAS0_ADC_CONVERSION);
+ writew(0, dev->mmio + LAS0_IT);
+ writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
+ writel(0, dev->mmio + LAS0_OVERRUN);
+
+ /* start configuration */
+ /* load channel list and reset CGT */
+ rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);
+
+ /* setup the common case and override if needed */
+ if (cmd->chanlist_len > 1) {
+ /* pacer start source: SOFTWARE */
+ writel(0, dev->mmio + LAS0_PACER_START);
+ /* burst trigger source: PACER */
+ writel(1, dev->mmio + LAS0_BURST_START);
+ /* ADC conversion trigger source: BURST */
+ writel(2, dev->mmio + LAS0_ADC_CONVERSION);
+ } else { /* single channel */
+ /* pacer start source: SOFTWARE */
+ writel(0, dev->mmio + LAS0_PACER_START);
+ /* ADC conversion trigger source: PACER */
+ writel(1, dev->mmio + LAS0_ADC_CONVERSION);
+ }
+ writel((devpriv->fifosz / 2 - 1) & 0xffff, dev->mmio + LAS0_ACNT);
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ /* scan_begin_arg is in nanoseconds */
+ /* find out how many samples to wait before transferring */
+ if (cmd->flags & CMDF_WAKE_EOS) {
+ /*
+ * this may generate un-sustainable interrupt rates
+ * the application is responsible for doing the
+ * right thing
+ */
+ devpriv->xfer_count = cmd->chanlist_len;
+ devpriv->flags |= SEND_EOS;
+ } else {
+ /* arrange to transfer data periodically */
+ devpriv->xfer_count =
+ (TRANS_TARGET_PERIOD * cmd->chanlist_len) /
+ cmd->scan_begin_arg;
+ if (devpriv->xfer_count < cmd->chanlist_len) {
+ /* transfer after each scan (and avoid 0) */
+ devpriv->xfer_count = cmd->chanlist_len;
+ } else { /* make a multiple of scan length */
+ devpriv->xfer_count =
+ DIV_ROUND_UP(devpriv->xfer_count,
+ cmd->chanlist_len);
+ devpriv->xfer_count *= cmd->chanlist_len;
+ }
+ devpriv->flags |= SEND_EOS;
+ }
+ if (devpriv->xfer_count >= (devpriv->fifosz / 2)) {
+ /* out of counter range, use 1/2 fifo instead */
+ devpriv->xfer_count = 0;
+ devpriv->flags &= ~SEND_EOS;
+ } else {
+ /* interrupt for each transfer */
+ writel((devpriv->xfer_count - 1) & 0xffff,
+ dev->mmio + LAS0_ACNT);
+ }
+ } else { /* unknown timing, just use 1/2 FIFO */
+ devpriv->xfer_count = 0;
+ devpriv->flags &= ~SEND_EOS;
+ }
+ /* pacer clock source: INTERNAL 8MHz */
+ writel(1, dev->mmio + LAS0_PACER_SELECT);
+ /* just interrupt, don't stop */
+ writel(1, dev->mmio + LAS0_ACNT_STOP_ENABLE);
+
+ /* BUG??? these look like enumerated values, but they are bit fields */
+
+ /* First, setup when to stop */
+ switch (cmd->stop_src) {
+ case TRIG_COUNT: /* stop after N scans */
+ devpriv->ai_count = cmd->stop_arg * cmd->chanlist_len;
+ if ((devpriv->xfer_count > 0) &&
+ (devpriv->xfer_count > devpriv->ai_count)) {
+ devpriv->xfer_count = devpriv->ai_count;
+ }
+ break;
+
+ case TRIG_NONE: /* stop when cancel is called */
+ devpriv->ai_count = -1; /* read forever */
+ break;
+ }
+
+ /* Scan timing */
+ switch (cmd->scan_begin_src) {
+ case TRIG_TIMER: /* periodic scanning */
+ timer = rtd_ns_to_timer(&cmd->scan_begin_arg,
+ CMDF_ROUND_NEAREST);
+ /* set PACER clock */
+ writel(timer & 0xffffff, dev->mmio + LAS0_PCLK);
+
+ break;
+
+ case TRIG_EXT:
+ /* pacer start source: EXTERNAL */
+ writel(1, dev->mmio + LAS0_PACER_START);
+ break;
+ }
+
+ /* Sample timing within a scan */
+ switch (cmd->convert_src) {
+ case TRIG_TIMER: /* periodic */
+ if (cmd->chanlist_len > 1) {
+ /* only needed for multi-channel */
+ timer = rtd_ns_to_timer(&cmd->convert_arg,
+ CMDF_ROUND_NEAREST);
+ /* setup BURST clock */
+ writel(timer & 0x3ff, dev->mmio + LAS0_BCLK);
+ }
+
+ break;
+
+ case TRIG_EXT: /* external */
+ /* burst trigger source: EXTERNAL */
+ writel(2, dev->mmio + LAS0_BURST_START);
+ break;
+ }
+ /* end configuration */
+
+ /*
+ * This doesn't seem to work. There is no way to clear an interrupt
+ * that the priority controller has queued!
+ */
+ writew(~0, dev->mmio + LAS0_CLEAR);
+ readw(dev->mmio + LAS0_CLEAR);
+
+ /* TODO: allow multiple interrupt sources */
+ /* transfer every N samples */
+ writew(IRQM_ADC_ABOUT_CNT, dev->mmio + LAS0_IT);
+
+ /* BUG: start_src is ASSUMED to be TRIG_NOW */
+ /* BUG? it seems like things are running before the "start" */
+ readl(dev->mmio + LAS0_PACER); /* start pacer */
+ return 0;
+}
+
+static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
+{
+ struct rtd_private *devpriv = dev->private;
+
+ /* pacer stop source: SOFTWARE */
+ writel(0, dev->mmio + LAS0_PACER_STOP);
+ writel(0, dev->mmio + LAS0_PACER); /* stop pacer */
+ writel(0, dev->mmio + LAS0_ADC_CONVERSION);
+ writew(0, dev->mmio + LAS0_IT);
+ devpriv->ai_count = 0; /* stop and don't transfer any more */
+ writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
+ return 0;
+}
+
+static int rtd_ao_eoc(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned long context)
+{
+ unsigned int chan = CR_CHAN(insn->chanspec);
+ unsigned int bit = (chan == 0) ? FS_DAC1_NOT_EMPTY : FS_DAC2_NOT_EMPTY;
+ unsigned int status;
+
+ status = readl(dev->mmio + LAS0_ADC);
+ if (status & bit)
+ return 0;
+ return -EBUSY;
+}
+
+static int rtd_ao_insn_write(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ struct rtd_private *devpriv = dev->private;
+ unsigned int chan = CR_CHAN(insn->chanspec);
+ unsigned int range = CR_RANGE(insn->chanspec);
+ int ret;
+ int i;
+
+ /* Configure the output range (table index matches the range values) */
+ writew(range & 7, dev->mmio + LAS0_DAC_CTRL(chan));
+
+ for (i = 0; i < insn->n; ++i) {
+ unsigned int val = data[i];
+
+ /* bipolar uses 2's complement values with an extended sign */
+ if (comedi_range_is_bipolar(s, range)) {
+ val = comedi_offset_munge(s, val);
+ val |= (val & ((s->maxdata + 1) >> 1)) << 1;
+ }
+
+ /* shift the 12-bit data (+ sign) to match the register */
+ val <<= 3;
+
+ writew(val, devpriv->las1 + LAS1_DAC_FIFO(chan));
+ writew(0, dev->mmio + LAS0_UPDATE_DAC(chan));
+
+ ret = comedi_timeout(dev, s, insn, rtd_ao_eoc, 0);
+ if (ret)
+ return ret;
+
+ s->readback[chan] = data[i];
+ }
+
+ return insn->n;
+}
+
+static int rtd_dio_insn_bits(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ if (comedi_dio_update_state(s, data))
+ writew(s->state & 0xff, dev->mmio + LAS0_DIO0);
+
+ data[1] = readw(dev->mmio + LAS0_DIO0) & 0xff;
+
+ return insn->n;
+}
+
+static int rtd_dio_insn_config(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ int ret;
+
+ ret = comedi_dio_insn_config(dev, s, insn, data, 0);
+ if (ret)
+ return ret;
+
+ /* TODO support digital match interrupts and strobes */
+
+ /* set direction */
+ writew(0x01, dev->mmio + LAS0_DIO_STATUS);
+ writew(s->io_bits & 0xff, dev->mmio + LAS0_DIO0_CTRL);
+
+ /* clear interrupts */
+ writew(0x00, dev->mmio + LAS0_DIO_STATUS);
+
+ /* port1 can only be all input or all output */
+
+ /* there are also 2 user input lines and 2 user output lines */
+
+ return insn->n;
+}
+
+static int rtd_counter_insn_config(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn,
+ unsigned int *data)
+{
+ struct rtd_private *devpriv = dev->private;
+ unsigned int chan = CR_CHAN(insn->chanspec);
+ unsigned int max_src;
+ unsigned int src;
+
+ switch (data[0]) {
+ case INSN_CONFIG_SET_GATE_SRC:
+ /*
+ * 8254 Timer/Counter gate sources:
+ *
+ * 0 = Not gated, free running (reset state)
+ * 1 = Gated, off
+ * 2 = Ext. TC Gate 1
+ * 3 = Ext. TC Gate 2
+ * 4 = Previous TC out (chan 1 and 2 only)
+ */
+ src = data[2];
+ max_src = (chan == 0) ? 3 : 4;
+ if (src > max_src)
+ return -EINVAL;
+
+ devpriv->timer_gate_src[chan] = src;
+ writeb(src, dev->mmio + LAS0_8254_GATE_SEL(chan));
+ break;
+ case INSN_CONFIG_GET_GATE_SRC:
+ data[2] = devpriv->timer_gate_src[chan];
+ break;
+ case INSN_CONFIG_SET_CLOCK_SRC:
+ /*
+ * 8254 Timer/Counter clock sources:
+ *
+ * 0 = 8 MHz (reset state)
+ * 1 = Ext. TC Clock 1
+ * 2 = Ext. TX Clock 2
+ * 3 = Ext. Pacer Clock
+ * 4 = Previous TC out (chan 1 and 2 only)
+ * 5 = High-Speed Digital Input Sampling signal (chan 1 only)
+ */
+ src = data[1];
+ switch (chan) {
+ case 0:
+ max_src = 3;
+ break;
+ case 1:
+ max_src = 5;
+ break;
+ case 2:
+ max_src = 4;
+ break;
+ default:
+ return -EINVAL;
+ }
+ if (src > max_src)
+ return -EINVAL;
+
+ devpriv->timer_clk_src[chan] = src;
+ writeb(src, dev->mmio + LAS0_8254_CLK_SEL(chan));
+ break;
+ case INSN_CONFIG_GET_CLOCK_SRC:
+ src = devpriv->timer_clk_src[chan];
+ data[1] = devpriv->timer_clk_src[chan];
+ data[2] = (src == 0) ? RTD_CLOCK_BASE : 0;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return insn->n;
+}
+
+static void rtd_reset(struct comedi_device *dev)
+{
+ struct rtd_private *devpriv = dev->private;
+
+ writel(0, dev->mmio + LAS0_BOARD_RESET);
+ usleep_range(100, 1000); /* needed? */
+ writel(0, devpriv->lcfg + PLX_REG_INTCSR);
+ writew(0, dev->mmio + LAS0_IT);
+ writew(~0, dev->mmio + LAS0_CLEAR);
+ readw(dev->mmio + LAS0_CLEAR);
+}
+
+/*
+ * initialize board, per RTD spec
+ * also, initialize shadow registers
+ */
+static void rtd_init_board(struct comedi_device *dev)
+{
+ rtd_reset(dev);
+
+ writel(0, dev->mmio + LAS0_OVERRUN);
+ writel(0, dev->mmio + LAS0_CGT_CLEAR);
+ writel(0, dev->mmio + LAS0_ADC_FIFO_CLEAR);
+ writel(0, dev->mmio + LAS0_DAC_RESET(0));
+ writel(0, dev->mmio + LAS0_DAC_RESET(1));
+ /* clear digital IO fifo */
+ writew(0, dev->mmio + LAS0_DIO_STATUS);
+ /* TODO: set user out source ??? */
+}
+
+/* The RTD driver does this */
+static void rtd_pci_latency_quirk(struct comedi_device *dev,
+ struct pci_dev *pcidev)
+{
+ unsigned char pci_latency;
+
+ pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency);
+ if (pci_latency < 32) {
+ dev_info(dev->class_dev,
+ "PCI latency changed from %d to %d\n",
+ pci_latency, 32);
+ pci_write_config_byte(pcidev, PCI_LATENCY_TIMER, 32);
+ }
+}
+
+static int rtd_auto_attach(struct comedi_device *dev,
+ unsigned long context)
+{
+ struct pci_dev *pcidev = comedi_to_pci_dev(dev);
+ const struct rtd_boardinfo *board = NULL;
+ struct rtd_private *devpriv;
+ struct comedi_subdevice *s;
+ int ret;
+
+ if (context < ARRAY_SIZE(rtd520_boards))
+ board = &rtd520_boards[context];
+ if (!board)
+ return -ENODEV;
+ dev->board_ptr = board;
+ dev->board_name = board->name;
+
+ devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
+ if (!devpriv)
+ return -ENOMEM;
+
+ ret = comedi_pci_enable(dev);
+ if (ret)
+ return ret;
+
+ dev->mmio = pci_ioremap_bar(pcidev, 2);
+ devpriv->las1 = pci_ioremap_bar(pcidev, 3);
+ devpriv->lcfg = pci_ioremap_bar(pcidev, 0);
+ if (!dev->mmio || !devpriv->las1 || !devpriv->lcfg)
+ return -ENOMEM;
+
+ rtd_pci_latency_quirk(dev, pcidev);
+
+ if (pcidev->irq) {
+ ret = request_irq(pcidev->irq, rtd_interrupt, IRQF_SHARED,
+ dev->board_name, dev);
+ if (ret == 0)
+ dev->irq = pcidev->irq;
+ }
+
+ ret = comedi_alloc_subdevices(dev, 4);
+ if (ret)
+ return ret;
+
+ s = &dev->subdevices[0];
+ /* analog input subdevice */
+ s->type = COMEDI_SUBD_AI;
+ s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF;
+ s->n_chan = 16;
+ s->maxdata = 0x0fff;
+ s->range_table = board->ai_range;
+ s->len_chanlist = RTD_MAX_CHANLIST;
+ s->insn_read = rtd_ai_rinsn;
+ if (dev->irq) {
+ dev->read_subdev = s;
+ s->subdev_flags |= SDF_CMD_READ;
+ s->do_cmd = rtd_ai_cmd;
+ s->do_cmdtest = rtd_ai_cmdtest;
+ s->cancel = rtd_ai_cancel;
+ }
+
+ s = &dev->subdevices[1];
+ /* analog output subdevice */
+ s->type = COMEDI_SUBD_AO;
+ s->subdev_flags = SDF_WRITABLE;
+ s->n_chan = 2;
+ s->maxdata = 0x0fff;
+ s->range_table = &rtd_ao_range;
+ s->insn_write = rtd_ao_insn_write;
+
+ ret = comedi_alloc_subdev_readback(s);
+ if (ret)
+ return ret;
+
+ s = &dev->subdevices[2];
+ /* digital i/o subdevice */
+ s->type = COMEDI_SUBD_DIO;
+ s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
+ /* we only support port 0 right now. Ignoring port 1 and user IO */
+ s->n_chan = 8;
+ s->maxdata = 1;
+ s->range_table = &range_digital;
+ s->insn_bits = rtd_dio_insn_bits;
+ s->insn_config = rtd_dio_insn_config;
+
+ /* 8254 Timer/Counter subdevice */
+ s = &dev->subdevices[3];
+ dev->pacer = comedi_8254_mm_init(dev->mmio + LAS0_8254_TIMER_BASE,
+ RTD_CLOCK_BASE, I8254_IO8, 2);
+ if (!dev->pacer)
+ return -ENOMEM;
+
+ comedi_8254_subdevice_init(s, dev->pacer);
+ dev->pacer->insn_config = rtd_counter_insn_config;
+
+ rtd_init_board(dev);
+
+ ret = rtd520_probe_fifo_depth(dev);
+ if (ret < 0)
+ return ret;
+ devpriv->fifosz = ret;
+
+ if (dev->irq)
+ writel(PLX_INTCSR_PIEN | PLX_INTCSR_PLIEN,
+ devpriv->lcfg + PLX_REG_INTCSR);
+
+ return 0;
+}
+
+static void rtd_detach(struct comedi_device *dev)
+{
+ struct rtd_private *devpriv = dev->private;
+
+ if (devpriv) {
+ /* Shut down any board ops by resetting it */
+ if (dev->mmio && devpriv->lcfg)
+ rtd_reset(dev);
+ if (dev->irq)
+ free_irq(dev->irq, dev);
+ if (dev->mmio)
+ iounmap(dev->mmio);
+ if (devpriv->las1)
+ iounmap(devpriv->las1);
+ if (devpriv->lcfg)
+ iounmap(devpriv->lcfg);
+ }
+ comedi_pci_disable(dev);
+}
+
+static struct comedi_driver rtd520_driver = {
+ .driver_name = "rtd520",
+ .module = THIS_MODULE,
+ .auto_attach = rtd_auto_attach,
+ .detach = rtd_detach,
+};
+
+static int rtd520_pci_probe(struct pci_dev *dev,
+ const struct pci_device_id *id)
+{
+ return comedi_pci_auto_config(dev, &rtd520_driver, id->driver_data);
+}
+
+static const struct pci_device_id rtd520_pci_table[] = {
+ { PCI_VDEVICE(RTD, 0x7520), BOARD_DM7520 },
+ { PCI_VDEVICE(RTD, 0x4520), BOARD_PCI4520 },
+ { 0 }
+};
+MODULE_DEVICE_TABLE(pci, rtd520_pci_table);
+
+static struct pci_driver rtd520_pci_driver = {
+ .name = "rtd520",
+ .id_table = rtd520_pci_table,
+ .probe = rtd520_pci_probe,
+ .remove = comedi_pci_auto_unconfig,
+};
+module_comedi_pci_driver(rtd520_driver, rtd520_pci_driver);
+
+MODULE_AUTHOR("Comedi https://www.comedi.org");
+MODULE_DESCRIPTION("Comedi low-level driver");
+MODULE_LICENSE("GPL");