summaryrefslogtreecommitdiff
path: root/drivers/staging/wlags49_h2/mmd.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/staging/wlags49_h2/mmd.c')
-rw-r--r--drivers/staging/wlags49_h2/mmd.c250
1 files changed, 0 insertions, 250 deletions
diff --git a/drivers/staging/wlags49_h2/mmd.c b/drivers/staging/wlags49_h2/mmd.c
deleted file mode 100644
index 3312348c3477..000000000000
--- a/drivers/staging/wlags49_h2/mmd.c
+++ /dev/null
@@ -1,250 +0,0 @@
-
-/************************************************************************************************************
-*
-* FILE : mmd.c
-*
-* DATE : $Date: 2004/07/23 11:57:45 $ $Revision: 1.4 $
-* Original: 2004/05/28 14:05:35 Revision: 1.32 Tag: hcf7_t20040602_01
-* Original: 2004/05/13 15:31:45 Revision: 1.30 Tag: hcf7_t7_20040513_01
-* Original: 2004/04/15 09:24:42 Revision: 1.25 Tag: hcf7_t7_20040415_01
-* Original: 2004/04/08 15:18:17 Revision: 1.24 Tag: t7_20040413_01
-* Original: 2004/04/01 15:32:55 Revision: 1.22 Tag: t7_20040401_01
-* Original: 2004/03/10 15:39:28 Revision: 1.18 Tag: t20040310_01
-* Original: 2004/03/03 14:10:12 Revision: 1.16 Tag: t20040304_01
-* Original: 2004/03/02 09:27:12 Revision: 1.14 Tag: t20040302_03
-* Original: 2004/02/24 13:00:29 Revision: 1.12 Tag: t20040224_01
-* Original: 2004/01/30 09:59:33 Revision: 1.11 Tag: t20040219_01
-*
-* AUTHOR : Nico Valster
-*
-* DESC : Common routines for HCF, MSF, UIL as well as USF sources
-*
-* Note: relative to Asserts, the following can be observed:
-* Since the IFB is not known inside the routine, the macro HCFASSERT is replaced with MDDASSERT.
-* Also the line number reported in the assert is raised by FILE_NAME_OFFSET (20000) to discriminate the
-* MMD Asserts from HCF and DHF asserts.
-*
-***************************************************************************************************************
-*
-*
-* SOFTWARE LICENSE
-*
-* This software is provided subject to the following terms and conditions,
-* which you should read carefully before using the software. Using this
-* software indicates your acceptance of these terms and conditions. If you do
-* not agree with these terms and conditions, do not use the software.
-*
-* COPYRIGHT © 2001 - 2004 by Agere Systems Inc. All Rights Reserved
-* All rights reserved.
-*
-* Redistribution and use in source or binary forms, with or without
-* modifications, are permitted provided that the following conditions are met:
-*
-* . Redistributions of source code must retain the above copyright notice, this
-* list of conditions and the following Disclaimer as comments in the code as
-* well as in the documentation and/or other materials provided with the
-* distribution.
-*
-* . Redistributions in binary form must reproduce the above copyright notice,
-* this list of conditions and the following Disclaimer in the documentation
-* and/or other materials provided with the distribution.
-*
-* . Neither the name of Agere Systems Inc. nor the names of the contributors
-* may be used to endorse or promote products derived from this software
-* without specific prior written permission.
-*
-* Disclaimer
-*
-* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
-* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
-* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
-* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
-* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
-* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
-* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-* DAMAGE.
-*
-*
-**************************************************************************************************************/
-
-#include "hcf.h" // Needed as long as we do not really sort out the mess
-#include "hcfdef.h" // get CNV_LITTLE_TO_SHORT
-#include "mmd.h" // MoreModularDriver common include file
-
-//to distinguish DHF from HCF asserts by means of line number
-#undef FILE_NAME_OFFSET
-#define FILE_NAME_OFFSET DHF_FILE_NAME_OFFSET
-
-
-/*************************************************************************************************************
-*
-*.MODULE CFG_RANGE_SPEC_STRCT* mmd_check_comp( CFG_RANGES_STRCT *actp, CFG_SUP_RANGE_STRCT *supp )
-*.PURPOSE Checks compatibility between an actor and a supplier.
-*
-*.ARGUMENTS
-* actp
-* supp
-*
-*.RETURNS
-* NULL incompatible
-* <>NULL pointer to matching CFG_RANGE_SPEC_STRCT substructure in actor-structure matching the supplier
-*
-*.NARRATIVE
-*
-* Parameters:
-* actp address of the actor specification
-* supp address of the supplier specification
-*
-* Description: mmd_check_comp is a support routine to check the compatibility between an actor and a
-* supplier. mmd_check_comp is independent of the endianness of the actp and supp structures. This is
-* achieved by checking the "bottom" or "role" fields of these structures. Since these fields are restricted
-* to a limited range, comparing the contents to a value with a known endian-ess gives a clue to their actual
-* endianness.
-*
-*.DIAGRAM
-*1a: The role-field of the actor structure has a known non-zero, not "byte symmetric" value (namely
-* COMP_ROLE_ACT or 0x0001), so if and only the contents of this field matches COMP_ROLE_ACT (in Native
-* Endian format), the actor structure is Native Endian.
-*2a: Since the role-field of the supplier structure is 0x0000, the test as used for the actor does not work
-* for a supplier. A supplier has always exactly 1 variant,top,bottom record with (officially, but see the
-* note below) each of these 3 values in the range 1 through 99, so one byte of the word value of variant,
-* top and bottom words is 0x00 and the other byte is non-zero. Whether the lowest address byte or the
-* highest address byte is non-zero depends on the Endianness of the LTV. If and only if the word value of
-* bottom is less than 0x0100, the supplier is Native Endian.
-* NOTE: the variant field of the supplier structure can not be used for the Endian Detection Algorithm,
-* because a a zero-valued variant has been used as Controlled Deployment indication in the past.
-* Note: An actor may have multiple sets of variant,top,bottom records, including dummy sets with variant,
-* top and bottom fields with a zero-value. As a consequence the endianness of the actor can not be determined
-* based on its variant,top,bottom values.
-*
-* Note: the L and T field of the structures are always in Native Endian format, so you can not draw
-* conclusions concerning the Endianness of the structure based on these two fields.
-*
-*1b/2b
-* The only purpose of the CFG_RANGE_SPEC_BYTE_STRCT is to give easy access to the non-zero byte of the word
-* value of variant, top and bottom. The variables sup_endian and act_endian are used for the supplier and
-* actor structure respectively. These variables must be 0 when the structure has LE format and 1 if the
-* structure has BE format. This can be phrased as:
-* the variable is false (i.e 0x0000) if either
-* (the platform is LE and the LTV is the same as the platform)
-* or
-* (the platform is BE and the LTV differs from the platform).
-* the variable is true (i.e 0x0001) if either
-* (the platform is BE and the LTV is the same as the platform)
-* or
-* (the platform is LE and the LTV differs from the platform).
-*
-* Alternatively this can be phrased as:
-* if the platform is LE
-* if the LTV is LE (i.e the same as the platform), then the variable = 0
-* else (the LTV is BE (i.e. different from the platform) ), then the variable = 1
-* if the platform is BE
-* if the LTV is BE (i.e the same as the platform), then the variable = 1
-* else (the LTV is LE (i.e. different from the platform) ), then the variable = 0
-*
-* This is implemented as:
-* #if HCF_BIG_ENDIAN == 0 //platform is LE
-* sup/act_endian becomes reverse of structure-endianness as determined in 1a/1b
-* #endif
-*6: Each of the actor variant-bottom-top records is checked against the (single) supplier variant-bottom-top
-* range till either an acceptable match is found or all actor records are tried. As explained above, due to
-* the limited ranges of these values, checking a byte is acceptable and suitable.
-*8: depending on whether a match was found or not (as reflected by the value of the control variable of the
-* for loop), the NULL pointer or a pointer to the matching Number/Bottom/Top record of the Actor structure
-* is returned.
-* As an additional safety, checking the supplier length protects against invalid Supplier structures, which
-* may be caused by failing hcf_get_info (in which case the len-field is zero). Note that the contraption
-* "supp->len != sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1"
-* did turn out not to work for a compiler which padded the structure definition.
-*
-* Note: when consulting references like DesignNotes and Architecture specifications there is a confusing use
-* of the notions number and variant. This resulted in an inconsistent use in the HCF nomenclature as well.
-* This makes the logic hard to follow and one has to be very much aware of the context when walking through
-* the code.
-* NOTE: The Endian Detection Algorithm places limitations on future extensions of the fields, i.e. they should
-* stay within the currently defined boundaries of 1 through 99 (although 1 through 255) would work as well
-* and there should never be used a zero value for the bottom of a valid supplier.
-* Note: relative to Asserts, the following can be observed:
-* 1: Supplier variant 0x0000 has been used for Controlled Deployment
-* 2: An actor may have one or more variant record specifications with a top of zero and a non-zero bottom
-* to override the HCF default support of a particular variant by the MSF programmer via hcfcfg.h
-* 3: An actor range can be specified as all zeros, e.g. as padding in the automatically generated firmware
-* image files.
-*.ENDDOC END DOCUMENTATION
-*************************************************************************************************************/
-CFG_RANGE_SPEC_STRCT*
-mmd_check_comp( CFG_RANGES_STRCT *actp, CFG_SUP_RANGE_STRCT *supp )
-{
-
-CFG_RANGE_SPEC_BYTE_STRCT *actq = (CFG_RANGE_SPEC_BYTE_STRCT*)actp->var_rec;
-CFG_RANGE_SPEC_BYTE_STRCT *supq = (CFG_RANGE_SPEC_BYTE_STRCT*)&(supp->variant);
-hcf_16 i;
-int act_endian; //actor endian flag
-int sup_endian; //supplier endian flag
-
- act_endian = actp->role == COMP_ROLE_ACT; //true if native endian /* 1a */
- sup_endian = supp->bottom < 0x0100; //true if native endian /* 2a */
-
-#if HCF_ASSERT
- MMDASSERT( supp->len == 6, supp->len )
- MMDASSERT( actp->len >= 6 && actp->len%3 == 0, actp->len )
-
- if ( act_endian ) { //native endian
- MMDASSERT( actp->role == COMP_ROLE_ACT, actp->role )
- MMDASSERT( 1 <= actp->id && actp->id <= 99, actp->id )
- } else { //non-native endian
- MMDASSERT( actp->role == CNV_END_SHORT(COMP_ROLE_ACT), actp->role )
- MMDASSERT( 1 <= CNV_END_SHORT(actp->id) && CNV_END_SHORT(actp->id) <= 99, actp->id )
- }
- if ( sup_endian ) { //native endian
- MMDASSERT( supp->role == COMP_ROLE_SUPL, supp->role )
- MMDASSERT( 1 <= supp->id && supp->id <= 99, supp->id )
- MMDASSERT( 1 <= supp->variant && supp->variant <= 99, supp->variant )
- MMDASSERT( 1 <= supp->bottom && supp->bottom <= 99, supp->bottom )
- MMDASSERT( 1 <= supp->top && supp->top <= 99, supp->top )
- MMDASSERT( supp->bottom <= supp->top, supp->bottom << 8 | supp->top )
- } else { //non-native endian
- MMDASSERT( supp->role == CNV_END_SHORT(COMP_ROLE_SUPL), supp->role )
- MMDASSERT( 1 <= CNV_END_SHORT(supp->id) && CNV_END_SHORT(supp->id) <= 99, supp->id )
- MMDASSERT( 1 <= CNV_END_SHORT(supp->variant) && CNV_END_SHORT(supp->variant) <= 99, supp->variant )
- MMDASSERT( 1 <= CNV_END_SHORT(supp->bottom) && CNV_END_SHORT(supp->bottom) <=99, supp->bottom )
- MMDASSERT( 1 <= CNV_END_SHORT(supp->top) && CNV_END_SHORT(supp->top) <=99, supp->top )
- MMDASSERT( CNV_END_SHORT(supp->bottom) <= CNV_END_SHORT(supp->top), supp->bottom << 8 | supp->top )
- }
-#endif // HCF_ASSERT
-
-#if HCF_BIG_ENDIAN == 0
- act_endian = !act_endian; /* 1b*/
- sup_endian = !sup_endian; /* 2b*/
-#endif // HCF_BIG_ENDIAN
-
- for ( i = actp->len ; i > 3; actq++, i -= 3 ) { /* 6 */
- MMDASSERT( actq->variant[act_endian] <= 99, i<<8 | actq->variant[act_endian] )
- MMDASSERT( actq->bottom[act_endian] <= 99 , i<<8 | actq->bottom[act_endian] )
- MMDASSERT( actq->top[act_endian] <= 99 , i<<8 | actq->top[act_endian] )
- MMDASSERT( actq->bottom[act_endian] <= actq->top[act_endian], i<<8 | actq->bottom[act_endian] )
- if ( actq->variant[act_endian] == supq->variant[sup_endian] &&
- actq->bottom[act_endian] <= supq->top[sup_endian] &&
- actq->top[act_endian] >= supq->bottom[sup_endian]
- ) break;
- }
- if ( i <= 3 || supp->len != 6 /*sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1 */ ) {
- actq = NULL; /* 8 */
- }
-#if HCF_ASSERT
- if ( actq == NULL ) {
- for ( i = 0; i <= supp->len; i += 2 ) {
- MMDASSERT( DO_ASSERT, MERGE_2( ((hcf_16*)supp)[i], ((hcf_16*)supp)[i+1] ) );
- }
- for ( i = 0; i <= actp->len; i += 2 ) {
- MMDASSERT( DO_ASSERT, MERGE_2( ((hcf_16*)actp)[i], ((hcf_16*)actp)[i+1] ) );
- }
- }
-#endif // HCF_ASSERT
- return (CFG_RANGE_SPEC_STRCT*)actq;
-} // mmd_check_comp
-