summaryrefslogtreecommitdiff
path: root/fs/crypto/hooks.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/crypto/hooks.c')
-rw-r--r--fs/crypto/hooks.c270
1 files changed, 270 insertions, 0 deletions
diff --git a/fs/crypto/hooks.c b/fs/crypto/hooks.c
new file mode 100644
index 000000000000..bec06490fb13
--- /dev/null
+++ b/fs/crypto/hooks.c
@@ -0,0 +1,270 @@
+/*
+ * fs/crypto/hooks.c
+ *
+ * Encryption hooks for higher-level filesystem operations.
+ */
+
+#include <linux/ratelimit.h>
+#include "fscrypt_private.h"
+
+/**
+ * fscrypt_file_open - prepare to open a possibly-encrypted regular file
+ * @inode: the inode being opened
+ * @filp: the struct file being set up
+ *
+ * Currently, an encrypted regular file can only be opened if its encryption key
+ * is available; access to the raw encrypted contents is not supported.
+ * Therefore, we first set up the inode's encryption key (if not already done)
+ * and return an error if it's unavailable.
+ *
+ * We also verify that if the parent directory (from the path via which the file
+ * is being opened) is encrypted, then the inode being opened uses the same
+ * encryption policy. This is needed as part of the enforcement that all files
+ * in an encrypted directory tree use the same encryption policy, as a
+ * protection against certain types of offline attacks. Note that this check is
+ * needed even when opening an *unencrypted* file, since it's forbidden to have
+ * an unencrypted file in an encrypted directory.
+ *
+ * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
+ */
+int fscrypt_file_open(struct inode *inode, struct file *filp)
+{
+ int err;
+ struct dentry *dir;
+
+ err = fscrypt_require_key(inode);
+ if (err)
+ return err;
+
+ dir = dget_parent(file_dentry(filp));
+ if (IS_ENCRYPTED(d_inode(dir)) &&
+ !fscrypt_has_permitted_context(d_inode(dir), inode)) {
+ pr_warn_ratelimited("fscrypt: inconsistent encryption contexts: %lu/%lu",
+ d_inode(dir)->i_ino, inode->i_ino);
+ err = -EPERM;
+ }
+ dput(dir);
+ return err;
+}
+EXPORT_SYMBOL_GPL(fscrypt_file_open);
+
+int __fscrypt_prepare_link(struct inode *inode, struct inode *dir)
+{
+ int err;
+
+ err = fscrypt_require_key(dir);
+ if (err)
+ return err;
+
+ if (!fscrypt_has_permitted_context(dir, inode))
+ return -EPERM;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
+
+int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
+ struct inode *new_dir, struct dentry *new_dentry,
+ unsigned int flags)
+{
+ int err;
+
+ err = fscrypt_require_key(old_dir);
+ if (err)
+ return err;
+
+ err = fscrypt_require_key(new_dir);
+ if (err)
+ return err;
+
+ if (old_dir != new_dir) {
+ if (IS_ENCRYPTED(new_dir) &&
+ !fscrypt_has_permitted_context(new_dir,
+ d_inode(old_dentry)))
+ return -EPERM;
+
+ if ((flags & RENAME_EXCHANGE) &&
+ IS_ENCRYPTED(old_dir) &&
+ !fscrypt_has_permitted_context(old_dir,
+ d_inode(new_dentry)))
+ return -EPERM;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
+
+int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry)
+{
+ int err = fscrypt_get_encryption_info(dir);
+
+ if (err)
+ return err;
+
+ if (fscrypt_has_encryption_key(dir)) {
+ spin_lock(&dentry->d_lock);
+ dentry->d_flags |= DCACHE_ENCRYPTED_WITH_KEY;
+ spin_unlock(&dentry->d_lock);
+ }
+
+ d_set_d_op(dentry, &fscrypt_d_ops);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
+
+int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
+ unsigned int max_len,
+ struct fscrypt_str *disk_link)
+{
+ int err;
+
+ /*
+ * To calculate the size of the encrypted symlink target we need to know
+ * the amount of NUL padding, which is determined by the flags set in
+ * the encryption policy which will be inherited from the directory.
+ * The easiest way to get access to this is to just load the directory's
+ * fscrypt_info, since we'll need it to create the dir_entry anyway.
+ *
+ * Note: in test_dummy_encryption mode, @dir may be unencrypted.
+ */
+ err = fscrypt_get_encryption_info(dir);
+ if (err)
+ return err;
+ if (!fscrypt_has_encryption_key(dir))
+ return -ENOKEY;
+
+ /*
+ * Calculate the size of the encrypted symlink and verify it won't
+ * exceed max_len. Note that for historical reasons, encrypted symlink
+ * targets are prefixed with the ciphertext length, despite this
+ * actually being redundant with i_size. This decreases by 2 bytes the
+ * longest symlink target we can accept.
+ *
+ * We could recover 1 byte by not counting a null terminator, but
+ * counting it (even though it is meaningless for ciphertext) is simpler
+ * for now since filesystems will assume it is there and subtract it.
+ */
+ if (!fscrypt_fname_encrypted_size(dir, len,
+ max_len - sizeof(struct fscrypt_symlink_data),
+ &disk_link->len))
+ return -ENAMETOOLONG;
+ disk_link->len += sizeof(struct fscrypt_symlink_data);
+
+ disk_link->name = NULL;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
+
+int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
+ unsigned int len, struct fscrypt_str *disk_link)
+{
+ int err;
+ struct qstr iname = QSTR_INIT(target, len);
+ struct fscrypt_symlink_data *sd;
+ unsigned int ciphertext_len;
+
+ err = fscrypt_require_key(inode);
+ if (err)
+ return err;
+
+ if (disk_link->name) {
+ /* filesystem-provided buffer */
+ sd = (struct fscrypt_symlink_data *)disk_link->name;
+ } else {
+ sd = kmalloc(disk_link->len, GFP_NOFS);
+ if (!sd)
+ return -ENOMEM;
+ }
+ ciphertext_len = disk_link->len - sizeof(*sd);
+ sd->len = cpu_to_le16(ciphertext_len);
+
+ err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
+ if (err) {
+ if (!disk_link->name)
+ kfree(sd);
+ return err;
+ }
+ /*
+ * Null-terminating the ciphertext doesn't make sense, but we still
+ * count the null terminator in the length, so we might as well
+ * initialize it just in case the filesystem writes it out.
+ */
+ sd->encrypted_path[ciphertext_len] = '\0';
+
+ if (!disk_link->name)
+ disk_link->name = (unsigned char *)sd;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
+
+/**
+ * fscrypt_get_symlink - get the target of an encrypted symlink
+ * @inode: the symlink inode
+ * @caddr: the on-disk contents of the symlink
+ * @max_size: size of @caddr buffer
+ * @done: if successful, will be set up to free the returned target
+ *
+ * If the symlink's encryption key is available, we decrypt its target.
+ * Otherwise, we encode its target for presentation.
+ *
+ * This may sleep, so the filesystem must have dropped out of RCU mode already.
+ *
+ * Return: the presentable symlink target or an ERR_PTR()
+ */
+const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
+ unsigned int max_size,
+ struct delayed_call *done)
+{
+ const struct fscrypt_symlink_data *sd;
+ struct fscrypt_str cstr, pstr;
+ int err;
+
+ /* This is for encrypted symlinks only */
+ if (WARN_ON(!IS_ENCRYPTED(inode)))
+ return ERR_PTR(-EINVAL);
+
+ /*
+ * Try to set up the symlink's encryption key, but we can continue
+ * regardless of whether the key is available or not.
+ */
+ err = fscrypt_get_encryption_info(inode);
+ if (err)
+ return ERR_PTR(err);
+
+ /*
+ * For historical reasons, encrypted symlink targets are prefixed with
+ * the ciphertext length, even though this is redundant with i_size.
+ */
+
+ if (max_size < sizeof(*sd))
+ return ERR_PTR(-EUCLEAN);
+ sd = caddr;
+ cstr.name = (unsigned char *)sd->encrypted_path;
+ cstr.len = le16_to_cpu(sd->len);
+
+ if (cstr.len == 0)
+ return ERR_PTR(-EUCLEAN);
+
+ if (cstr.len + sizeof(*sd) - 1 > max_size)
+ return ERR_PTR(-EUCLEAN);
+
+ err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
+ if (err)
+ return ERR_PTR(err);
+
+ err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
+ if (err)
+ goto err_kfree;
+
+ err = -EUCLEAN;
+ if (pstr.name[0] == '\0')
+ goto err_kfree;
+
+ pstr.name[pstr.len] = '\0';
+ set_delayed_call(done, kfree_link, pstr.name);
+ return pstr.name;
+
+err_kfree:
+ kfree(pstr.name);
+ return ERR_PTR(err);
+}
+EXPORT_SYMBOL_GPL(fscrypt_get_symlink);