summaryrefslogtreecommitdiff
path: root/fs/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'fs/crypto')
-rw-r--r--fs/crypto/Kconfig22
-rw-r--r--fs/crypto/bio.c114
-rw-r--r--fs/crypto/crypto.c57
-rw-r--r--fs/crypto/fname.c316
-rw-r--r--fs/crypto/fscrypt_private.h58
-rw-r--r--fs/crypto/hkdf.c2
-rw-r--r--fs/crypto/hooks.c47
-rw-r--r--fs/crypto/keyring.c147
-rw-r--r--fs/crypto/keysetup.c102
-rw-r--r--fs/crypto/keysetup_v1.c19
-rw-r--r--fs/crypto/policy.c170
11 files changed, 726 insertions, 328 deletions
diff --git a/fs/crypto/Kconfig b/fs/crypto/Kconfig
index ff5a1746cbae..8046d7c7a3e9 100644
--- a/fs/crypto/Kconfig
+++ b/fs/crypto/Kconfig
@@ -2,13 +2,8 @@
config FS_ENCRYPTION
bool "FS Encryption (Per-file encryption)"
select CRYPTO
- select CRYPTO_AES
- select CRYPTO_CBC
- select CRYPTO_ECB
- select CRYPTO_XTS
- select CRYPTO_CTS
- select CRYPTO_SHA512
- select CRYPTO_HMAC
+ select CRYPTO_HASH
+ select CRYPTO_SKCIPHER
select KEYS
help
Enable encryption of files and directories. This
@@ -16,3 +11,16 @@ config FS_ENCRYPTION
efficient since it avoids caching the encrypted and
decrypted pages in the page cache. Currently Ext4,
F2FS and UBIFS make use of this feature.
+
+# Filesystems supporting encryption must select this if FS_ENCRYPTION. This
+# allows the algorithms to be built as modules when all the filesystems are.
+config FS_ENCRYPTION_ALGS
+ tristate
+ select CRYPTO_AES
+ select CRYPTO_CBC
+ select CRYPTO_CTS
+ select CRYPTO_ECB
+ select CRYPTO_HMAC
+ select CRYPTO_SHA256
+ select CRYPTO_SHA512
+ select CRYPTO_XTS
diff --git a/fs/crypto/bio.c b/fs/crypto/bio.c
index 1f4b8a277060..4fa18fff9c4e 100644
--- a/fs/crypto/bio.c
+++ b/fs/crypto/bio.c
@@ -41,53 +41,101 @@ void fscrypt_decrypt_bio(struct bio *bio)
}
EXPORT_SYMBOL(fscrypt_decrypt_bio);
+/**
+ * fscrypt_zeroout_range() - zero out a range of blocks in an encrypted file
+ * @inode: the file's inode
+ * @lblk: the first file logical block to zero out
+ * @pblk: the first filesystem physical block to zero out
+ * @len: number of blocks to zero out
+ *
+ * Zero out filesystem blocks in an encrypted regular file on-disk, i.e. write
+ * ciphertext blocks which decrypt to the all-zeroes block. The blocks must be
+ * both logically and physically contiguous. It's also assumed that the
+ * filesystem only uses a single block device, ->s_bdev.
+ *
+ * Note that since each block uses a different IV, this involves writing a
+ * different ciphertext to each block; we can't simply reuse the same one.
+ *
+ * Return: 0 on success; -errno on failure.
+ */
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
- sector_t pblk, unsigned int len)
+ sector_t pblk, unsigned int len)
{
const unsigned int blockbits = inode->i_blkbits;
const unsigned int blocksize = 1 << blockbits;
- struct page *ciphertext_page;
+ const unsigned int blocks_per_page_bits = PAGE_SHIFT - blockbits;
+ const unsigned int blocks_per_page = 1 << blocks_per_page_bits;
+ struct page *pages[16]; /* write up to 16 pages at a time */
+ unsigned int nr_pages;
+ unsigned int i;
+ unsigned int offset;
struct bio *bio;
- int ret, err = 0;
+ int ret, err;
- ciphertext_page = fscrypt_alloc_bounce_page(GFP_NOWAIT);
- if (!ciphertext_page)
- return -ENOMEM;
+ if (len == 0)
+ return 0;
- while (len--) {
- err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk,
- ZERO_PAGE(0), ciphertext_page,
- blocksize, 0, GFP_NOFS);
- if (err)
- goto errout;
+ BUILD_BUG_ON(ARRAY_SIZE(pages) > BIO_MAX_PAGES);
+ nr_pages = min_t(unsigned int, ARRAY_SIZE(pages),
+ (len + blocks_per_page - 1) >> blocks_per_page_bits);
- bio = bio_alloc(GFP_NOWAIT, 1);
- if (!bio) {
- err = -ENOMEM;
- goto errout;
- }
+ /*
+ * We need at least one page for ciphertext. Allocate the first one
+ * from a mempool, with __GFP_DIRECT_RECLAIM set so that it can't fail.
+ *
+ * Any additional page allocations are allowed to fail, as they only
+ * help performance, and waiting on the mempool for them could deadlock.
+ */
+ for (i = 0; i < nr_pages; i++) {
+ pages[i] = fscrypt_alloc_bounce_page(i == 0 ? GFP_NOFS :
+ GFP_NOWAIT | __GFP_NOWARN);
+ if (!pages[i])
+ break;
+ }
+ nr_pages = i;
+ if (WARN_ON(nr_pages <= 0))
+ return -EINVAL;
+
+ /* This always succeeds since __GFP_DIRECT_RECLAIM is set. */
+ bio = bio_alloc(GFP_NOFS, nr_pages);
+
+ do {
bio_set_dev(bio, inode->i_sb->s_bdev);
bio->bi_iter.bi_sector = pblk << (blockbits - 9);
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
- ret = bio_add_page(bio, ciphertext_page, blocksize, 0);
- if (WARN_ON(ret != blocksize)) {
- /* should never happen! */
- bio_put(bio);
- err = -EIO;
- goto errout;
- }
+
+ i = 0;
+ offset = 0;
+ do {
+ err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk,
+ ZERO_PAGE(0), pages[i],
+ blocksize, offset, GFP_NOFS);
+ if (err)
+ goto out;
+ lblk++;
+ pblk++;
+ len--;
+ offset += blocksize;
+ if (offset == PAGE_SIZE || len == 0) {
+ ret = bio_add_page(bio, pages[i++], offset, 0);
+ if (WARN_ON(ret != offset)) {
+ err = -EIO;
+ goto out;
+ }
+ offset = 0;
+ }
+ } while (i != nr_pages && len != 0);
+
err = submit_bio_wait(bio);
- if (err == 0 && bio->bi_status)
- err = -EIO;
- bio_put(bio);
if (err)
- goto errout;
- lblk++;
- pblk++;
- }
+ goto out;
+ bio_reset(bio);
+ } while (len != 0);
err = 0;
-errout:
- fscrypt_free_bounce_page(ciphertext_page);
+out:
+ bio_put(bio);
+ for (i = 0; i < nr_pages; i++)
+ fscrypt_free_bounce_page(pages[i]);
return err;
}
EXPORT_SYMBOL(fscrypt_zeroout_range);
diff --git a/fs/crypto/crypto.c b/fs/crypto/crypto.c
index 3719efa546c6..1ecaac7ee3cb 100644
--- a/fs/crypto/crypto.c
+++ b/fs/crypto/crypto.c
@@ -25,8 +25,6 @@
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/ratelimit.h>
-#include <linux/dcache.h>
-#include <linux/namei.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"
@@ -140,7 +138,7 @@ int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
* multiple of the filesystem's block size.
* @offs: Byte offset within @page of the first block to encrypt. Must be
* a multiple of the filesystem's block size.
- * @gfp_flags: Memory allocation flags
+ * @gfp_flags: Memory allocation flags. See details below.
*
* A new bounce page is allocated, and the specified block(s) are encrypted into
* it. In the bounce page, the ciphertext block(s) will be located at the same
@@ -150,6 +148,11 @@ int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
*
* This is for use by the filesystem's ->writepages() method.
*
+ * The bounce page allocation is mempool-backed, so it will always succeed when
+ * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS. However,
+ * only the first page of each bio can be allocated this way. To prevent
+ * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
+ *
* Return: the new encrypted bounce page on success; an ERR_PTR() on failure
*/
struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
@@ -286,54 +289,6 @@ int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
}
EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
-/*
- * Validate dentries in encrypted directories to make sure we aren't potentially
- * caching stale dentries after a key has been added.
- */
-static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
-{
- struct dentry *dir;
- int err;
- int valid;
-
- /*
- * Plaintext names are always valid, since fscrypt doesn't support
- * reverting to ciphertext names without evicting the directory's inode
- * -- which implies eviction of the dentries in the directory.
- */
- if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
- return 1;
-
- /*
- * Ciphertext name; valid if the directory's key is still unavailable.
- *
- * Although fscrypt forbids rename() on ciphertext names, we still must
- * use dget_parent() here rather than use ->d_parent directly. That's
- * because a corrupted fs image may contain directory hard links, which
- * the VFS handles by moving the directory's dentry tree in the dcache
- * each time ->lookup() finds the directory and it already has a dentry
- * elsewhere. Thus ->d_parent can be changing, and we must safely grab
- * a reference to some ->d_parent to prevent it from being freed.
- */
-
- if (flags & LOOKUP_RCU)
- return -ECHILD;
-
- dir = dget_parent(dentry);
- err = fscrypt_get_encryption_info(d_inode(dir));
- valid = !fscrypt_has_encryption_key(d_inode(dir));
- dput(dir);
-
- if (err < 0)
- return err;
-
- return valid;
-}
-
-const struct dentry_operations fscrypt_d_ops = {
- .d_revalidate = fscrypt_d_revalidate,
-};
-
/**
* fscrypt_initialize() - allocate major buffers for fs encryption.
* @cop_flags: fscrypt operations flags
diff --git a/fs/crypto/fname.c b/fs/crypto/fname.c
index 3da3707c10e3..4c212442a8f7 100644
--- a/fs/crypto/fname.c
+++ b/fs/crypto/fname.c
@@ -11,10 +11,87 @@
* This has not yet undergone a rigorous security audit.
*/
+#include <linux/namei.h>
#include <linux/scatterlist.h>
+#include <crypto/hash.h>
+#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"
+/**
+ * struct fscrypt_nokey_name - identifier for directory entry when key is absent
+ *
+ * When userspace lists an encrypted directory without access to the key, the
+ * filesystem must present a unique "no-key name" for each filename that allows
+ * it to find the directory entry again if requested. Naively, that would just
+ * mean using the ciphertext filenames. However, since the ciphertext filenames
+ * can contain illegal characters ('\0' and '/'), they must be encoded in some
+ * way. We use base64. But that can cause names to exceed NAME_MAX (255
+ * bytes), so we also need to use a strong hash to abbreviate long names.
+ *
+ * The filesystem may also need another kind of hash, the "dirhash", to quickly
+ * find the directory entry. Since filesystems normally compute the dirhash
+ * over the on-disk filename (i.e. the ciphertext), it's not computable from
+ * no-key names that abbreviate the ciphertext using the strong hash to fit in
+ * NAME_MAX. It's also not computable if it's a keyed hash taken over the
+ * plaintext (but it may still be available in the on-disk directory entry);
+ * casefolded directories use this type of dirhash. At least in these cases,
+ * each no-key name must include the name's dirhash too.
+ *
+ * To meet all these requirements, we base64-encode the following
+ * variable-length structure. It contains the dirhash, or 0's if the filesystem
+ * didn't provide one; up to 149 bytes of the ciphertext name; and for
+ * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
+ *
+ * This ensures that each no-key name contains everything needed to find the
+ * directory entry again, contains only legal characters, doesn't exceed
+ * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
+ * take the performance hit of SHA-256 on very long filenames (which are rare).
+ */
+struct fscrypt_nokey_name {
+ u32 dirhash[2];
+ u8 bytes[149];
+ u8 sha256[SHA256_DIGEST_SIZE];
+}; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */
+
+/*
+ * Decoded size of max-size nokey name, i.e. a name that was abbreviated using
+ * the strong hash and thus includes the 'sha256' field. This isn't simply
+ * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
+ */
+#define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256)
+
+static struct crypto_shash *sha256_hash_tfm;
+
+static int fscrypt_do_sha256(const u8 *data, unsigned int data_len, u8 *result)
+{
+ struct crypto_shash *tfm = READ_ONCE(sha256_hash_tfm);
+
+ if (unlikely(!tfm)) {
+ struct crypto_shash *prev_tfm;
+
+ tfm = crypto_alloc_shash("sha256", 0, 0);
+ if (IS_ERR(tfm)) {
+ fscrypt_err(NULL,
+ "Error allocating SHA-256 transform: %ld",
+ PTR_ERR(tfm));
+ return PTR_ERR(tfm);
+ }
+ prev_tfm = cmpxchg(&sha256_hash_tfm, NULL, tfm);
+ if (prev_tfm) {
+ crypto_free_shash(tfm);
+ tfm = prev_tfm;
+ }
+ }
+ {
+ SHASH_DESC_ON_STACK(desc, tfm);
+
+ desc->tfm = tfm;
+
+ return crypto_shash_digest(desc, data, data_len, result);
+ }
+}
+
static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
{
if (str->len == 1 && str->name[0] == '.')
@@ -27,19 +104,19 @@ static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
}
/**
- * fname_encrypt() - encrypt a filename
+ * fscrypt_fname_encrypt() - encrypt a filename
*
* The output buffer must be at least as large as the input buffer.
* Any extra space is filled with NUL padding before encryption.
*
* Return: 0 on success, -errno on failure
*/
-int fname_encrypt(struct inode *inode, const struct qstr *iname,
- u8 *out, unsigned int olen)
+int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
+ u8 *out, unsigned int olen)
{
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
- struct fscrypt_info *ci = inode->i_crypt_info;
+ const struct fscrypt_info *ci = inode->i_crypt_info;
struct crypto_skcipher *tfm = ci->ci_ctfm;
union fscrypt_iv iv;
struct scatterlist sg;
@@ -85,14 +162,14 @@ int fname_encrypt(struct inode *inode, const struct qstr *iname,
*
* Return: 0 on success, -errno on failure
*/
-static int fname_decrypt(struct inode *inode,
- const struct fscrypt_str *iname,
- struct fscrypt_str *oname)
+static int fname_decrypt(const struct inode *inode,
+ const struct fscrypt_str *iname,
+ struct fscrypt_str *oname)
{
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct scatterlist src_sg, dst_sg;
- struct fscrypt_info *ci = inode->i_crypt_info;
+ const struct fscrypt_info *ci = inode->i_crypt_info;
struct crypto_skcipher *tfm = ci->ci_ctfm;
union fscrypt_iv iv;
int res;
@@ -206,9 +283,7 @@ int fscrypt_fname_alloc_buffer(const struct inode *inode,
u32 max_encrypted_len,
struct fscrypt_str *crypto_str)
{
- const u32 max_encoded_len =
- max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
- 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
+ const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
u32 max_presented_len;
max_presented_len = max(max_encoded_len, max_encrypted_len);
@@ -241,19 +316,21 @@ EXPORT_SYMBOL(fscrypt_fname_free_buffer);
*
* The caller must have allocated sufficient memory for the @oname string.
*
- * If the key is available, we'll decrypt the disk name; otherwise, we'll encode
- * it for presentation. Short names are directly base64-encoded, while long
- * names are encoded in fscrypt_digested_name format.
+ * If the key is available, we'll decrypt the disk name. Otherwise, we'll
+ * encode it for presentation in fscrypt_nokey_name format.
+ * See struct fscrypt_nokey_name for details.
*
* Return: 0 on success, -errno on failure
*/
-int fscrypt_fname_disk_to_usr(struct inode *inode,
- u32 hash, u32 minor_hash,
- const struct fscrypt_str *iname,
- struct fscrypt_str *oname)
+int fscrypt_fname_disk_to_usr(const struct inode *inode,
+ u32 hash, u32 minor_hash,
+ const struct fscrypt_str *iname,
+ struct fscrypt_str *oname)
{
const struct qstr qname = FSTR_TO_QSTR(iname);
- struct fscrypt_digested_name digested_name;
+ struct fscrypt_nokey_name nokey_name;
+ u32 size; /* size of the unencoded no-key name */
+ int err;
if (fscrypt_is_dot_dotdot(&qname)) {
oname->name[0] = '.';
@@ -268,24 +345,37 @@ int fscrypt_fname_disk_to_usr(struct inode *inode,
if (fscrypt_has_encryption_key(inode))
return fname_decrypt(inode, iname, oname);
- if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
- oname->len = base64_encode(iname->name, iname->len,
- oname->name);
- return 0;
- }
+ /*
+ * Sanity check that struct fscrypt_nokey_name doesn't have padding
+ * between fields and that its encoded size never exceeds NAME_MAX.
+ */
+ BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
+ offsetof(struct fscrypt_nokey_name, bytes));
+ BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
+ offsetof(struct fscrypt_nokey_name, sha256));
+ BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);
+
if (hash) {
- digested_name.hash = hash;
- digested_name.minor_hash = minor_hash;
+ nokey_name.dirhash[0] = hash;
+ nokey_name.dirhash[1] = minor_hash;
+ } else {
+ nokey_name.dirhash[0] = 0;
+ nokey_name.dirhash[1] = 0;
+ }
+ if (iname->len <= sizeof(nokey_name.bytes)) {
+ memcpy(nokey_name.bytes, iname->name, iname->len);
+ size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
} else {
- digested_name.hash = 0;
- digested_name.minor_hash = 0;
+ memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
+ /* Compute strong hash of remaining part of name. */
+ err = fscrypt_do_sha256(&iname->name[sizeof(nokey_name.bytes)],
+ iname->len - sizeof(nokey_name.bytes),
+ nokey_name.sha256);
+ if (err)
+ return err;
+ size = FSCRYPT_NOKEY_NAME_MAX;
}
- memcpy(digested_name.digest,
- FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
- FSCRYPT_FNAME_DIGEST_SIZE);
- oname->name[0] = '_';
- oname->len = 1 + base64_encode((const u8 *)&digested_name,
- sizeof(digested_name), oname->name + 1);
+ oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
return 0;
}
EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
@@ -306,8 +396,7 @@ EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
* get the disk_name.
*
* Else, for keyless @lookup operations, @iname is the presented ciphertext, so
- * we decode it to get either the ciphertext disk_name (for short names) or the
- * fscrypt_digested_name (for long names). Non-@lookup operations will be
+ * we decode it to get the fscrypt_nokey_name. Non-@lookup operations will be
* impossible in this case, so we fail them with ENOKEY.
*
* If successful, fscrypt_free_filename() must be called later to clean up.
@@ -317,8 +406,8 @@ EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
int lookup, struct fscrypt_name *fname)
{
+ struct fscrypt_nokey_name *nokey_name;
int ret;
- int digested;
memset(fname, 0, sizeof(struct fscrypt_name));
fname->usr_fname = iname;
@@ -342,8 +431,8 @@ int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
if (!fname->crypto_buf.name)
return -ENOMEM;
- ret = fname_encrypt(dir, iname, fname->crypto_buf.name,
- fname->crypto_buf.len);
+ ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
+ fname->crypto_buf.len);
if (ret)
goto errout;
fname->disk_name.name = fname->crypto_buf.name;
@@ -358,40 +447,31 @@ int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
* We don't have the key and we are doing a lookup; decode the
* user-supplied name
*/
- if (iname->name[0] == '_') {
- if (iname->len !=
- 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
- return -ENOENT;
- digested = 1;
- } else {
- if (iname->len >
- BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
- return -ENOENT;
- digested = 0;
- }
- fname->crypto_buf.name =
- kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
- sizeof(struct fscrypt_digested_name)),
- GFP_KERNEL);
+ if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
+ return -ENOENT;
+
+ fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
if (fname->crypto_buf.name == NULL)
return -ENOMEM;
- ret = base64_decode(iname->name + digested, iname->len - digested,
- fname->crypto_buf.name);
- if (ret < 0) {
+ ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
+ if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
+ (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
+ ret != FSCRYPT_NOKEY_NAME_MAX)) {
ret = -ENOENT;
goto errout;
}
fname->crypto_buf.len = ret;
- if (digested) {
- const struct fscrypt_digested_name *n =
- (const void *)fname->crypto_buf.name;
- fname->hash = n->hash;
- fname->minor_hash = n->minor_hash;
- } else {
- fname->disk_name.name = fname->crypto_buf.name;
- fname->disk_name.len = fname->crypto_buf.len;
+
+ nokey_name = (void *)fname->crypto_buf.name;
+ fname->hash = nokey_name->dirhash[0];
+ fname->minor_hash = nokey_name->dirhash[1];
+ if (ret != FSCRYPT_NOKEY_NAME_MAX) {
+ /* The full ciphertext filename is available. */
+ fname->disk_name.name = nokey_name->bytes;
+ fname->disk_name.len =
+ ret - offsetof(struct fscrypt_nokey_name, bytes);
}
return 0;
@@ -400,3 +480,109 @@ errout:
return ret;
}
EXPORT_SYMBOL(fscrypt_setup_filename);
+
+/**
+ * fscrypt_match_name() - test whether the given name matches a directory entry
+ * @fname: the name being searched for
+ * @de_name: the name from the directory entry
+ * @de_name_len: the length of @de_name in bytes
+ *
+ * Normally @fname->disk_name will be set, and in that case we simply compare
+ * that to the name stored in the directory entry. The only exception is that
+ * if we don't have the key for an encrypted directory and the name we're
+ * looking for is very long, then we won't have the full disk_name and instead
+ * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
+ *
+ * Return: %true if the name matches, otherwise %false.
+ */
+bool fscrypt_match_name(const struct fscrypt_name *fname,
+ const u8 *de_name, u32 de_name_len)
+{
+ const struct fscrypt_nokey_name *nokey_name =
+ (const void *)fname->crypto_buf.name;
+ u8 sha256[SHA256_DIGEST_SIZE];
+
+ if (likely(fname->disk_name.name)) {
+ if (de_name_len != fname->disk_name.len)
+ return false;
+ return !memcmp(de_name, fname->disk_name.name, de_name_len);
+ }
+ if (de_name_len <= sizeof(nokey_name->bytes))
+ return false;
+ if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
+ return false;
+ if (fscrypt_do_sha256(&de_name[sizeof(nokey_name->bytes)],
+ de_name_len - sizeof(nokey_name->bytes), sha256))
+ return false;
+ return !memcmp(sha256, nokey_name->sha256, sizeof(sha256));
+}
+EXPORT_SYMBOL_GPL(fscrypt_match_name);
+
+/**
+ * fscrypt_fname_siphash() - calculate the SipHash of a filename
+ * @dir: the parent directory
+ * @name: the filename to calculate the SipHash of
+ *
+ * Given a plaintext filename @name and a directory @dir which uses SipHash as
+ * its dirhash method and has had its fscrypt key set up, this function
+ * calculates the SipHash of that name using the directory's secret dirhash key.
+ *
+ * Return: the SipHash of @name using the hash key of @dir
+ */
+u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
+{
+ const struct fscrypt_info *ci = dir->i_crypt_info;
+
+ WARN_ON(!ci->ci_dirhash_key_initialized);
+
+ return siphash(name->name, name->len, &ci->ci_dirhash_key);
+}
+EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
+
+/*
+ * Validate dentries in encrypted directories to make sure we aren't potentially
+ * caching stale dentries after a key has been added.
+ */
+static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
+{
+ struct dentry *dir;
+ int err;
+ int valid;
+
+ /*
+ * Plaintext names are always valid, since fscrypt doesn't support
+ * reverting to ciphertext names without evicting the directory's inode
+ * -- which implies eviction of the dentries in the directory.
+ */
+ if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
+ return 1;
+
+ /*
+ * Ciphertext name; valid if the directory's key is still unavailable.
+ *
+ * Although fscrypt forbids rename() on ciphertext names, we still must
+ * use dget_parent() here rather than use ->d_parent directly. That's
+ * because a corrupted fs image may contain directory hard links, which
+ * the VFS handles by moving the directory's dentry tree in the dcache
+ * each time ->lookup() finds the directory and it already has a dentry
+ * elsewhere. Thus ->d_parent can be changing, and we must safely grab
+ * a reference to some ->d_parent to prevent it from being freed.
+ */
+
+ if (flags & LOOKUP_RCU)
+ return -ECHILD;
+
+ dir = dget_parent(dentry);
+ err = fscrypt_get_encryption_info(d_inode(dir));
+ valid = !fscrypt_has_encryption_key(d_inode(dir));
+ dput(dir);
+
+ if (err < 0)
+ return err;
+
+ return valid;
+}
+
+const struct dentry_operations fscrypt_d_ops = {
+ .d_revalidate = fscrypt_d_revalidate,
+};
diff --git a/fs/crypto/fscrypt_private.h b/fs/crypto/fscrypt_private.h
index 130b50e5a011..9aae851409e5 100644
--- a/fs/crypto/fscrypt_private.h
+++ b/fs/crypto/fscrypt_private.h
@@ -12,6 +12,7 @@
#define _FSCRYPT_PRIVATE_H
#include <linux/fscrypt.h>
+#include <linux/siphash.h>
#include <crypto/hash.h>
#define CONST_STRLEN(str) (sizeof(str) - 1)
@@ -136,12 +137,6 @@ fscrypt_policy_flags(const union fscrypt_policy *policy)
BUG();
}
-static inline bool
-fscrypt_is_direct_key_policy(const union fscrypt_policy *policy)
-{
- return fscrypt_policy_flags(policy) & FSCRYPT_POLICY_FLAG_DIRECT_KEY;
-}
-
/**
* For encrypted symlinks, the ciphertext length is stored at the beginning
* of the string in little-endian format.
@@ -194,6 +189,14 @@ struct fscrypt_info {
*/
struct fscrypt_direct_key *ci_direct_key;
+ /*
+ * This inode's hash key for filenames. This is a 128-bit SipHash-2-4
+ * key. This is only set for directories that use a keyed dirhash over
+ * the plaintext filenames -- currently just casefolded directories.
+ */
+ siphash_key_t ci_dirhash_key;
+ bool ci_dirhash_key_initialized;
+
/* The encryption policy used by this inode */
union fscrypt_policy ci_policy;
@@ -206,24 +209,6 @@ typedef enum {
FS_ENCRYPT,
} fscrypt_direction_t;
-static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
- u32 filenames_mode)
-{
- if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
- filenames_mode == FSCRYPT_MODE_AES_128_CTS)
- return true;
-
- if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
- filenames_mode == FSCRYPT_MODE_AES_256_CTS)
- return true;
-
- if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
- filenames_mode == FSCRYPT_MODE_ADIANTUM)
- return true;
-
- return false;
-}
-
/* crypto.c */
extern struct kmem_cache *fscrypt_info_cachep;
extern int fscrypt_initialize(unsigned int cop_flags);
@@ -233,7 +218,6 @@ extern int fscrypt_crypt_block(const struct inode *inode,
unsigned int len, unsigned int offs,
gfp_t gfp_flags);
extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
-extern const struct dentry_operations fscrypt_d_ops;
extern void __printf(3, 4) __cold
fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
@@ -260,11 +244,13 @@ void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
const struct fscrypt_info *ci);
/* fname.c */
-extern int fname_encrypt(struct inode *inode, const struct qstr *iname,
- u8 *out, unsigned int olen);
+extern int fscrypt_fname_encrypt(const struct inode *inode,
+ const struct qstr *iname,
+ u8 *out, unsigned int olen);
extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
u32 orig_len, u32 max_len,
u32 *encrypted_len_ret);
+extern const struct dentry_operations fscrypt_d_ops;
/* hkdf.c */
@@ -283,11 +269,12 @@ extern int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
* output doesn't reveal another.
*/
#define HKDF_CONTEXT_KEY_IDENTIFIER 1
-#define HKDF_CONTEXT_PER_FILE_KEY 2
+#define HKDF_CONTEXT_PER_FILE_ENC_KEY 2
#define HKDF_CONTEXT_DIRECT_KEY 3
#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4
+#define HKDF_CONTEXT_DIRHASH_KEY 5
-extern int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
+extern int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
const u8 *info, unsigned int infolen,
u8 *okm, unsigned int okmlen);
@@ -448,18 +435,17 @@ struct fscrypt_mode {
int logged_impl_name;
};
-static inline bool
-fscrypt_mode_supports_direct_key(const struct fscrypt_mode *mode)
-{
- return mode->ivsize >= offsetofend(union fscrypt_iv, nonce);
-}
+extern struct fscrypt_mode fscrypt_modes[];
extern struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
const struct inode *inode);
-extern int fscrypt_set_derived_key(struct fscrypt_info *ci,
- const u8 *derived_key);
+extern int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci,
+ const u8 *raw_key);
+
+extern int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
+ const struct fscrypt_master_key *mk);
/* keysetup_v1.c */
diff --git a/fs/crypto/hkdf.c b/fs/crypto/hkdf.c
index f21873e1b467..efb95bd19a89 100644
--- a/fs/crypto/hkdf.c
+++ b/fs/crypto/hkdf.c
@@ -112,7 +112,7 @@ out:
* adds to its application-specific info strings to guarantee that it doesn't
* accidentally repeat an info string when using HKDF for different purposes.)
*/
-int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
+int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
const u8 *info, unsigned int infolen,
u8 *okm, unsigned int okmlen)
{
diff --git a/fs/crypto/hooks.c b/fs/crypto/hooks.c
index bb3b7fcfdd48..5ef861742921 100644
--- a/fs/crypto/hooks.c
+++ b/fs/crypto/hooks.c
@@ -5,6 +5,8 @@
* Encryption hooks for higher-level filesystem operations.
*/
+#include <linux/key.h>
+
#include "fscrypt_private.h"
/**
@@ -122,6 +124,48 @@ int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
}
EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
+/**
+ * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
+ * @inode: the inode on which flags are being changed
+ * @oldflags: the old flags
+ * @flags: the new flags
+ *
+ * The caller should be holding i_rwsem for write.
+ *
+ * Return: 0 on success; -errno if the flags change isn't allowed or if
+ * another error occurs.
+ */
+int fscrypt_prepare_setflags(struct inode *inode,
+ unsigned int oldflags, unsigned int flags)
+{
+ struct fscrypt_info *ci;
+ struct fscrypt_master_key *mk;
+ int err;
+
+ /*
+ * When the CASEFOLD flag is set on an encrypted directory, we must
+ * derive the secret key needed for the dirhash. This is only possible
+ * if the directory uses a v2 encryption policy.
+ */
+ if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
+ err = fscrypt_require_key(inode);
+ if (err)
+ return err;
+ ci = inode->i_crypt_info;
+ if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
+ return -EINVAL;
+ mk = ci->ci_master_key->payload.data[0];
+ down_read(&mk->mk_secret_sem);
+ if (is_master_key_secret_present(&mk->mk_secret))
+ err = fscrypt_derive_dirhash_key(ci, mk);
+ else
+ err = -ENOKEY;
+ up_read(&mk->mk_secret_sem);
+ return err;
+ }
+ return 0;
+}
+
int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
unsigned int max_len,
struct fscrypt_str *disk_link)
@@ -188,7 +232,8 @@ int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
ciphertext_len = disk_link->len - sizeof(*sd);
sd->len = cpu_to_le16(ciphertext_len);
- err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
+ err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
+ ciphertext_len);
if (err)
goto err_free_sd;
diff --git a/fs/crypto/keyring.c b/fs/crypto/keyring.c
index 40cca351273f..ab41b25d4fa1 100644
--- a/fs/crypto/keyring.c
+++ b/fs/crypto/keyring.c
@@ -465,6 +465,109 @@ out_unlock:
return err;
}
+static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
+{
+ const struct fscrypt_provisioning_key_payload *payload = prep->data;
+
+ if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
+ prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
+ return -EINVAL;
+
+ if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
+ payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
+ return -EINVAL;
+
+ if (payload->__reserved)
+ return -EINVAL;
+
+ prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
+ if (!prep->payload.data[0])
+ return -ENOMEM;
+
+ prep->quotalen = prep->datalen;
+ return 0;
+}
+
+static void fscrypt_provisioning_key_free_preparse(
+ struct key_preparsed_payload *prep)
+{
+ kzfree(prep->payload.data[0]);
+}
+
+static void fscrypt_provisioning_key_describe(const struct key *key,
+ struct seq_file *m)
+{
+ seq_puts(m, key->description);
+ if (key_is_positive(key)) {
+ const struct fscrypt_provisioning_key_payload *payload =
+ key->payload.data[0];
+
+ seq_printf(m, ": %u [%u]", key->datalen, payload->type);
+ }
+}
+
+static void fscrypt_provisioning_key_destroy(struct key *key)
+{
+ kzfree(key->payload.data[0]);
+}
+
+static struct key_type key_type_fscrypt_provisioning = {
+ .name = "fscrypt-provisioning",
+ .preparse = fscrypt_provisioning_key_preparse,
+ .free_preparse = fscrypt_provisioning_key_free_preparse,
+ .instantiate = generic_key_instantiate,
+ .describe = fscrypt_provisioning_key_describe,
+ .destroy = fscrypt_provisioning_key_destroy,
+};
+
+/*
+ * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
+ * store it into 'secret'.
+ *
+ * The key must be of type "fscrypt-provisioning" and must have the field
+ * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
+ * only usable with fscrypt with the particular KDF version identified by
+ * 'type'. We don't use the "logon" key type because there's no way to
+ * completely restrict the use of such keys; they can be used by any kernel API
+ * that accepts "logon" keys and doesn't require a specific service prefix.
+ *
+ * The ability to specify the key via Linux keyring key is intended for cases
+ * where userspace needs to re-add keys after the filesystem is unmounted and
+ * re-mounted. Most users should just provide the raw key directly instead.
+ */
+static int get_keyring_key(u32 key_id, u32 type,
+ struct fscrypt_master_key_secret *secret)
+{
+ key_ref_t ref;
+ struct key *key;
+ const struct fscrypt_provisioning_key_payload *payload;
+ int err;
+
+ ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
+ if (IS_ERR(ref))
+ return PTR_ERR(ref);
+ key = key_ref_to_ptr(ref);
+
+ if (key->type != &key_type_fscrypt_provisioning)
+ goto bad_key;
+ payload = key->payload.data[0];
+
+ /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
+ if (payload->type != type)
+ goto bad_key;
+
+ secret->size = key->datalen - sizeof(*payload);
+ memcpy(secret->raw, payload->raw, secret->size);
+ err = 0;
+ goto out_put;
+
+bad_key:
+ err = -EKEYREJECTED;
+out_put:
+ key_ref_put(ref);
+ return err;
+}
+
/*
* Add a master encryption key to the filesystem, causing all files which were
* encrypted with it to appear "unlocked" (decrypted) when accessed.
@@ -503,18 +606,25 @@ int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
if (!valid_key_spec(&arg.key_spec))
return -EINVAL;
- if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
- arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
- return -EINVAL;
-
if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
return -EINVAL;
memset(&secret, 0, sizeof(secret));
- secret.size = arg.raw_size;
- err = -EFAULT;
- if (copy_from_user(secret.raw, uarg->raw, secret.size))
- goto out_wipe_secret;
+ if (arg.key_id) {
+ if (arg.raw_size != 0)
+ return -EINVAL;
+ err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
+ if (err)
+ goto out_wipe_secret;
+ } else {
+ if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
+ arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
+ return -EINVAL;
+ secret.size = arg.raw_size;
+ err = -EFAULT;
+ if (copy_from_user(secret.raw, uarg->raw, secret.size))
+ goto out_wipe_secret;
+ }
switch (arg.key_spec.type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
@@ -666,9 +776,6 @@ static int check_for_busy_inodes(struct super_block *sb,
struct list_head *pos;
size_t busy_count = 0;
unsigned long ino;
- struct dentry *dentry;
- char _path[256];
- char *path = NULL;
spin_lock(&mk->mk_decrypted_inodes_lock);
@@ -687,22 +794,14 @@ static int check_for_busy_inodes(struct super_block *sb,
struct fscrypt_info,
ci_master_key_link)->ci_inode;
ino = inode->i_ino;
- dentry = d_find_alias(inode);
}
spin_unlock(&mk->mk_decrypted_inodes_lock);
- if (dentry) {
- path = dentry_path(dentry, _path, sizeof(_path));
- dput(dentry);
- }
- if (IS_ERR_OR_NULL(path))
- path = "(unknown)";
-
fscrypt_warn(NULL,
- "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu (%s)",
+ "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu",
sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
- ino, path);
+ ino);
return -EBUSY;
}
@@ -978,8 +1077,14 @@ int __init fscrypt_init_keyring(void)
if (err)
goto err_unregister_fscrypt;
+ err = register_key_type(&key_type_fscrypt_provisioning);
+ if (err)
+ goto err_unregister_fscrypt_user;
+
return 0;
+err_unregister_fscrypt_user:
+ unregister_key_type(&key_type_fscrypt_user);
err_unregister_fscrypt:
unregister_key_type(&key_type_fscrypt);
return err;
diff --git a/fs/crypto/keysetup.c b/fs/crypto/keysetup.c
index f577bb6613f9..65cb09fa6ead 100644
--- a/fs/crypto/keysetup.c
+++ b/fs/crypto/keysetup.c
@@ -13,7 +13,7 @@
#include "fscrypt_private.h"
-static struct fscrypt_mode available_modes[] = {
+struct fscrypt_mode fscrypt_modes[] = {
[FSCRYPT_MODE_AES_256_XTS] = {
.friendly_name = "AES-256-XTS",
.cipher_str = "xts(aes)",
@@ -51,10 +51,10 @@ select_encryption_mode(const union fscrypt_policy *policy,
const struct inode *inode)
{
if (S_ISREG(inode->i_mode))
- return &available_modes[fscrypt_policy_contents_mode(policy)];
+ return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
- return &available_modes[fscrypt_policy_fnames_mode(policy)];
+ return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
inode->i_ino, (inode->i_mode & S_IFMT));
@@ -89,8 +89,11 @@ struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode,
* first time a mode is used.
*/
pr_info("fscrypt: %s using implementation \"%s\"\n",
- mode->friendly_name,
- crypto_skcipher_alg(tfm)->base.cra_driver_name);
+ mode->friendly_name, crypto_skcipher_driver_name(tfm));
+ }
+ if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
+ err = -EINVAL;
+ goto err_free_tfm;
}
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
@@ -104,12 +107,12 @@ err_free_tfm:
return ERR_PTR(err);
}
-/* Given the per-file key, set up the file's crypto transform object */
-int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key)
+/* Given a per-file encryption key, set up the file's crypto transform object */
+int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
{
struct crypto_skcipher *tfm;
- tfm = fscrypt_allocate_skcipher(ci->ci_mode, derived_key, ci->ci_inode);
+ tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
@@ -118,15 +121,15 @@ int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key)
return 0;
}
-static int setup_per_mode_key(struct fscrypt_info *ci,
- struct fscrypt_master_key *mk,
- struct crypto_skcipher **tfms,
- u8 hkdf_context, bool include_fs_uuid)
+static int setup_per_mode_enc_key(struct fscrypt_info *ci,
+ struct fscrypt_master_key *mk,
+ struct crypto_skcipher **tfms,
+ u8 hkdf_context, bool include_fs_uuid)
{
const struct inode *inode = ci->ci_inode;
const struct super_block *sb = inode->i_sb;
struct fscrypt_mode *mode = ci->ci_mode;
- u8 mode_num = mode - available_modes;
+ const u8 mode_num = mode - fscrypt_modes;
struct crypto_skcipher *tfm, *prev_tfm;
u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
@@ -171,29 +174,37 @@ done:
return 0;
}
+int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
+ const struct fscrypt_master_key *mk)
+{
+ int err;
+
+ err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY,
+ ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
+ (u8 *)&ci->ci_dirhash_key,
+ sizeof(ci->ci_dirhash_key));
+ if (err)
+ return err;
+ ci->ci_dirhash_key_initialized = true;
+ return 0;
+}
+
static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
struct fscrypt_master_key *mk)
{
- u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
int err;
if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
/*
- * DIRECT_KEY: instead of deriving per-file keys, the per-file
- * nonce will be included in all the IVs. But unlike v1
- * policies, for v2 policies in this case we don't encrypt with
- * the master key directly but rather derive a per-mode key.
- * This ensures that the master key is consistently used only
- * for HKDF, avoiding key reuse issues.
+ * DIRECT_KEY: instead of deriving per-file encryption keys, the
+ * per-file nonce will be included in all the IVs. But unlike
+ * v1 policies, for v2 policies in this case we don't encrypt
+ * with the master key directly but rather derive a per-mode
+ * encryption key. This ensures that the master key is
+ * consistently used only for HKDF, avoiding key reuse issues.
*/
- if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) {
- fscrypt_warn(ci->ci_inode,
- "Direct key flag not allowed with %s",
- ci->ci_mode->friendly_name);
- return -EINVAL;
- }
- return setup_per_mode_key(ci, mk, mk->mk_direct_tfms,
- HKDF_CONTEXT_DIRECT_KEY, false);
+ err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_tfms,
+ HKDF_CONTEXT_DIRECT_KEY, false);
} else if (ci->ci_policy.v2.flags &
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
/*
@@ -202,21 +213,34 @@ static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
* the IVs. This format is optimized for use with inline
* encryption hardware compliant with the UFS or eMMC standards.
*/
- return setup_per_mode_key(ci, mk, mk->mk_iv_ino_lblk_64_tfms,
- HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
- true);
+ err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_tfms,
+ HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
+ true);
+ } else {
+ u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
+
+ err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
+ HKDF_CONTEXT_PER_FILE_ENC_KEY,
+ ci->ci_nonce,
+ FS_KEY_DERIVATION_NONCE_SIZE,
+ derived_key, ci->ci_mode->keysize);
+ if (err)
+ return err;
+
+ err = fscrypt_set_per_file_enc_key(ci, derived_key);
+ memzero_explicit(derived_key, ci->ci_mode->keysize);
}
-
- err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
- HKDF_CONTEXT_PER_FILE_KEY,
- ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
- derived_key, ci->ci_mode->keysize);
if (err)
return err;
- err = fscrypt_set_derived_key(ci, derived_key);
- memzero_explicit(derived_key, ci->ci_mode->keysize);
- return err;
+ /* Derive a secret dirhash key for directories that need it. */
+ if (S_ISDIR(ci->ci_inode->i_mode) && IS_CASEFOLDED(ci->ci_inode)) {
+ err = fscrypt_derive_dirhash_key(ci, mk);
+ if (err)
+ return err;
+ }
+
+ return 0;
}
/*
diff --git a/fs/crypto/keysetup_v1.c b/fs/crypto/keysetup_v1.c
index 5298ef22aa85..801b48c0cd7f 100644
--- a/fs/crypto/keysetup_v1.c
+++ b/fs/crypto/keysetup_v1.c
@@ -9,7 +9,7 @@
* This file implements compatibility functions for the original encryption
* policy version ("v1"), including:
*
- * - Deriving per-file keys using the AES-128-ECB based KDF
+ * - Deriving per-file encryption keys using the AES-128-ECB based KDF
* (rather than the new method of using HKDF-SHA512)
*
* - Retrieving fscrypt master keys from process-subscribed keyrings
@@ -253,23 +253,8 @@ err_free_dk:
static int setup_v1_file_key_direct(struct fscrypt_info *ci,
const u8 *raw_master_key)
{
- const struct fscrypt_mode *mode = ci->ci_mode;
struct fscrypt_direct_key *dk;
- if (!fscrypt_mode_supports_direct_key(mode)) {
- fscrypt_warn(ci->ci_inode,
- "Direct key mode not allowed with %s",
- mode->friendly_name);
- return -EINVAL;
- }
-
- if (ci->ci_policy.v1.contents_encryption_mode !=
- ci->ci_policy.v1.filenames_encryption_mode) {
- fscrypt_warn(ci->ci_inode,
- "Direct key mode not allowed with different contents and filenames modes");
- return -EINVAL;
- }
-
dk = fscrypt_get_direct_key(ci, raw_master_key);
if (IS_ERR(dk))
return PTR_ERR(dk);
@@ -298,7 +283,7 @@ static int setup_v1_file_key_derived(struct fscrypt_info *ci,
if (err)
goto out;
- err = fscrypt_set_derived_key(ci, derived_key);
+ err = fscrypt_set_per_file_enc_key(ci, derived_key);
out:
kzfree(derived_key);
return err;
diff --git a/fs/crypto/policy.c b/fs/crypto/policy.c
index 96f528071bed..cf2a9d26ef7d 100644
--- a/fs/crypto/policy.c
+++ b/fs/crypto/policy.c
@@ -29,6 +29,43 @@ bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
return !memcmp(policy1, policy2, fscrypt_policy_size(policy1));
}
+static bool fscrypt_valid_enc_modes(u32 contents_mode, u32 filenames_mode)
+{
+ if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
+ filenames_mode == FSCRYPT_MODE_AES_256_CTS)
+ return true;
+
+ if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
+ filenames_mode == FSCRYPT_MODE_AES_128_CTS)
+ return true;
+
+ if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
+ filenames_mode == FSCRYPT_MODE_ADIANTUM)
+ return true;
+
+ return false;
+}
+
+static bool supported_direct_key_modes(const struct inode *inode,
+ u32 contents_mode, u32 filenames_mode)
+{
+ const struct fscrypt_mode *mode;
+
+ if (contents_mode != filenames_mode) {
+ fscrypt_warn(inode,
+ "Direct key flag not allowed with different contents and filenames modes");
+ return false;
+ }
+ mode = &fscrypt_modes[contents_mode];
+
+ if (mode->ivsize < offsetofend(union fscrypt_iv, nonce)) {
+ fscrypt_warn(inode, "Direct key flag not allowed with %s",
+ mode->friendly_name);
+ return false;
+ }
+ return true;
+}
+
static bool supported_iv_ino_lblk_64_policy(
const struct fscrypt_policy_v2 *policy,
const struct inode *inode)
@@ -63,13 +100,82 @@ static bool supported_iv_ino_lblk_64_policy(
return true;
}
+static bool fscrypt_supported_v1_policy(const struct fscrypt_policy_v1 *policy,
+ const struct inode *inode)
+{
+ if (!fscrypt_valid_enc_modes(policy->contents_encryption_mode,
+ policy->filenames_encryption_mode)) {
+ fscrypt_warn(inode,
+ "Unsupported encryption modes (contents %d, filenames %d)",
+ policy->contents_encryption_mode,
+ policy->filenames_encryption_mode);
+ return false;
+ }
+
+ if (policy->flags & ~(FSCRYPT_POLICY_FLAGS_PAD_MASK |
+ FSCRYPT_POLICY_FLAG_DIRECT_KEY)) {
+ fscrypt_warn(inode, "Unsupported encryption flags (0x%02x)",
+ policy->flags);
+ return false;
+ }
+
+ if ((policy->flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) &&
+ !supported_direct_key_modes(inode, policy->contents_encryption_mode,
+ policy->filenames_encryption_mode))
+ return false;
+
+ if (IS_CASEFOLDED(inode)) {
+ /* With v1, there's no way to derive dirhash keys. */
+ fscrypt_warn(inode,
+ "v1 policies can't be used on casefolded directories");
+ return false;
+ }
+
+ return true;
+}
+
+static bool fscrypt_supported_v2_policy(const struct fscrypt_policy_v2 *policy,
+ const struct inode *inode)
+{
+ if (!fscrypt_valid_enc_modes(policy->contents_encryption_mode,
+ policy->filenames_encryption_mode)) {
+ fscrypt_warn(inode,
+ "Unsupported encryption modes (contents %d, filenames %d)",
+ policy->contents_encryption_mode,
+ policy->filenames_encryption_mode);
+ return false;
+ }
+
+ if (policy->flags & ~FSCRYPT_POLICY_FLAGS_VALID) {
+ fscrypt_warn(inode, "Unsupported encryption flags (0x%02x)",
+ policy->flags);
+ return false;
+ }
+
+ if ((policy->flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) &&
+ !supported_direct_key_modes(inode, policy->contents_encryption_mode,
+ policy->filenames_encryption_mode))
+ return false;
+
+ if ((policy->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) &&
+ !supported_iv_ino_lblk_64_policy(policy, inode))
+ return false;
+
+ if (memchr_inv(policy->__reserved, 0, sizeof(policy->__reserved))) {
+ fscrypt_warn(inode, "Reserved bits set in encryption policy");
+ return false;
+ }
+
+ return true;
+}
+
/**
* fscrypt_supported_policy - check whether an encryption policy is supported
*
* Given an encryption policy, check whether all its encryption modes and other
- * settings are supported by this kernel. (But we don't currently don't check
- * for crypto API support here, so attempting to use an algorithm not configured
- * into the crypto API will still fail later.)
+ * settings are supported by this kernel on the given inode. (But we don't
+ * currently don't check for crypto API support here, so attempting to use an
+ * algorithm not configured into the crypto API will still fail later.)
*
* Return: %true if supported, else %false
*/
@@ -77,60 +183,10 @@ bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
const struct inode *inode)
{
switch (policy_u->version) {
- case FSCRYPT_POLICY_V1: {
- const struct fscrypt_policy_v1 *policy = &policy_u->v1;
-
- if (!fscrypt_valid_enc_modes(policy->contents_encryption_mode,
- policy->filenames_encryption_mode)) {
- fscrypt_warn(inode,
- "Unsupported encryption modes (contents %d, filenames %d)",
- policy->contents_encryption_mode,
- policy->filenames_encryption_mode);
- return false;
- }
-
- if (policy->flags & ~(FSCRYPT_POLICY_FLAGS_PAD_MASK |
- FSCRYPT_POLICY_FLAG_DIRECT_KEY)) {
- fscrypt_warn(inode,
- "Unsupported encryption flags (0x%02x)",
- policy->flags);
- return false;
- }
-
- return true;
- }
- case FSCRYPT_POLICY_V2: {
- const struct fscrypt_policy_v2 *policy = &policy_u->v2;
-
- if (!fscrypt_valid_enc_modes(policy->contents_encryption_mode,
- policy->filenames_encryption_mode)) {
- fscrypt_warn(inode,
- "Unsupported encryption modes (contents %d, filenames %d)",
- policy->contents_encryption_mode,
- policy->filenames_encryption_mode);
- return false;
- }
-
- if (policy->flags & ~FSCRYPT_POLICY_FLAGS_VALID) {
- fscrypt_warn(inode,
- "Unsupported encryption flags (0x%02x)",
- policy->flags);
- return false;
- }
-
- if ((policy->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) &&
- !supported_iv_ino_lblk_64_policy(policy, inode))
- return false;
-
- if (memchr_inv(policy->__reserved, 0,
- sizeof(policy->__reserved))) {
- fscrypt_warn(inode,
- "Reserved bits set in encryption policy");
- return false;
- }
-
- return true;
- }
+ case FSCRYPT_POLICY_V1:
+ return fscrypt_supported_v1_policy(&policy_u->v1, inode);
+ case FSCRYPT_POLICY_V2:
+ return fscrypt_supported_v2_policy(&policy_u->v2, inode);
}
return false;
}