diff options
Diffstat (limited to 'fs/pidfs.c')
-rw-r--r-- | fs/pidfs.c | 1012 |
1 files changed, 1012 insertions, 0 deletions
diff --git a/fs/pidfs.c b/fs/pidfs.c new file mode 100644 index 000000000000..c1f0a067be40 --- /dev/null +++ b/fs/pidfs.c @@ -0,0 +1,1012 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <linux/anon_inodes.h> +#include <linux/exportfs.h> +#include <linux/file.h> +#include <linux/fs.h> +#include <linux/cgroup.h> +#include <linux/magic.h> +#include <linux/mount.h> +#include <linux/pid.h> +#include <linux/pidfs.h> +#include <linux/pid_namespace.h> +#include <linux/poll.h> +#include <linux/proc_fs.h> +#include <linux/proc_ns.h> +#include <linux/pseudo_fs.h> +#include <linux/ptrace.h> +#include <linux/seq_file.h> +#include <uapi/linux/pidfd.h> +#include <linux/ipc_namespace.h> +#include <linux/time_namespace.h> +#include <linux/utsname.h> +#include <net/net_namespace.h> +#include <linux/coredump.h> + +#include "internal.h" +#include "mount.h" + +static struct kmem_cache *pidfs_cachep __ro_after_init; + +/* + * Stashes information that userspace needs to access even after the + * process has been reaped. + */ +struct pidfs_exit_info { + __u64 cgroupid; + __s32 exit_code; + __u32 coredump_mask; +}; + +struct pidfs_inode { + struct pidfs_exit_info __pei; + struct pidfs_exit_info *exit_info; + struct inode vfs_inode; +}; + +static inline struct pidfs_inode *pidfs_i(struct inode *inode) +{ + return container_of(inode, struct pidfs_inode, vfs_inode); +} + +static struct rb_root pidfs_ino_tree = RB_ROOT; + +#if BITS_PER_LONG == 32 +static inline unsigned long pidfs_ino(u64 ino) +{ + return lower_32_bits(ino); +} + +/* On 32 bit the generation number are the upper 32 bits. */ +static inline u32 pidfs_gen(u64 ino) +{ + return upper_32_bits(ino); +} + +#else + +/* On 64 bit simply return ino. */ +static inline unsigned long pidfs_ino(u64 ino) +{ + return ino; +} + +/* On 64 bit the generation number is 0. */ +static inline u32 pidfs_gen(u64 ino) +{ + return 0; +} +#endif + +static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b) +{ + struct pid *pid_a = rb_entry(a, struct pid, pidfs_node); + struct pid *pid_b = rb_entry(b, struct pid, pidfs_node); + u64 pid_ino_a = pid_a->ino; + u64 pid_ino_b = pid_b->ino; + + if (pid_ino_a < pid_ino_b) + return -1; + if (pid_ino_a > pid_ino_b) + return 1; + return 0; +} + +void pidfs_add_pid(struct pid *pid) +{ + static u64 pidfs_ino_nr = 2; + + /* + * On 64 bit nothing special happens. The 64bit number assigned + * to struct pid is the inode number. + * + * On 32 bit the 64 bit number assigned to struct pid is split + * into two 32 bit numbers. The lower 32 bits are used as the + * inode number and the upper 32 bits are used as the inode + * generation number. + * + * On 32 bit pidfs_ino() will return the lower 32 bit. When + * pidfs_ino() returns zero a wrap around happened. When a + * wraparound happens the 64 bit number will be incremented by 2 + * so inode numbering starts at 2 again. + * + * On 64 bit comparing two pidfds is as simple as comparing + * inode numbers. + * + * When a wraparound happens on 32 bit multiple pidfds with the + * same inode number are likely to exist (This isn't a problem + * since before pidfs pidfds used the anonymous inode meaning + * all pidfds had the same inode number.). Userspace can + * reconstruct the 64 bit identifier by retrieving both the + * inode number and the inode generation number to compare or + * use file handles. + */ + if (pidfs_ino(pidfs_ino_nr) == 0) + pidfs_ino_nr += 2; + + pid->ino = pidfs_ino_nr; + pid->stashed = NULL; + pidfs_ino_nr++; + + write_seqcount_begin(&pidmap_lock_seq); + rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp); + write_seqcount_end(&pidmap_lock_seq); +} + +void pidfs_remove_pid(struct pid *pid) +{ + write_seqcount_begin(&pidmap_lock_seq); + rb_erase(&pid->pidfs_node, &pidfs_ino_tree); + write_seqcount_end(&pidmap_lock_seq); +} + +#ifdef CONFIG_PROC_FS +/** + * pidfd_show_fdinfo - print information about a pidfd + * @m: proc fdinfo file + * @f: file referencing a pidfd + * + * Pid: + * This function will print the pid that a given pidfd refers to in the + * pid namespace of the procfs instance. + * If the pid namespace of the process is not a descendant of the pid + * namespace of the procfs instance 0 will be shown as its pid. This is + * similar to calling getppid() on a process whose parent is outside of + * its pid namespace. + * + * NSpid: + * If pid namespaces are supported then this function will also print + * the pid of a given pidfd refers to for all descendant pid namespaces + * starting from the current pid namespace of the instance, i.e. the + * Pid field and the first entry in the NSpid field will be identical. + * If the pid namespace of the process is not a descendant of the pid + * namespace of the procfs instance 0 will be shown as its first NSpid + * entry and no others will be shown. + * Note that this differs from the Pid and NSpid fields in + * /proc/<pid>/status where Pid and NSpid are always shown relative to + * the pid namespace of the procfs instance. The difference becomes + * obvious when sending around a pidfd between pid namespaces from a + * different branch of the tree, i.e. where no ancestral relation is + * present between the pid namespaces: + * - create two new pid namespaces ns1 and ns2 in the initial pid + * namespace (also take care to create new mount namespaces in the + * new pid namespace and mount procfs) + * - create a process with a pidfd in ns1 + * - send pidfd from ns1 to ns2 + * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid + * have exactly one entry, which is 0 + */ +static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) +{ + struct pid *pid = pidfd_pid(f); + struct pid_namespace *ns; + pid_t nr = -1; + + if (likely(pid_has_task(pid, PIDTYPE_PID))) { + ns = proc_pid_ns(file_inode(m->file)->i_sb); + nr = pid_nr_ns(pid, ns); + } + + seq_put_decimal_ll(m, "Pid:\t", nr); + +#ifdef CONFIG_PID_NS + seq_put_decimal_ll(m, "\nNSpid:\t", nr); + if (nr > 0) { + int i; + + /* If nr is non-zero it means that 'pid' is valid and that + * ns, i.e. the pid namespace associated with the procfs + * instance, is in the pid namespace hierarchy of pid. + * Start at one below the already printed level. + */ + for (i = ns->level + 1; i <= pid->level; i++) + seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); + } +#endif + seq_putc(m, '\n'); +} +#endif + +/* + * Poll support for process exit notification. + */ +static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) +{ + struct pid *pid = pidfd_pid(file); + struct task_struct *task; + __poll_t poll_flags = 0; + + poll_wait(file, &pid->wait_pidfd, pts); + /* + * Don't wake waiters if the thread-group leader exited + * prematurely. They either get notified when the last subthread + * exits or not at all if one of the remaining subthreads execs + * and assumes the struct pid of the old thread-group leader. + */ + guard(rcu)(); + task = pid_task(pid, PIDTYPE_PID); + if (!task) + poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP; + else if (task->exit_state && !delay_group_leader(task)) + poll_flags = EPOLLIN | EPOLLRDNORM; + + return poll_flags; +} + +static inline bool pid_in_current_pidns(const struct pid *pid) +{ + const struct pid_namespace *ns = task_active_pid_ns(current); + + if (ns->level <= pid->level) + return pid->numbers[ns->level].ns == ns; + + return false; +} + +static __u32 pidfs_coredump_mask(unsigned long mm_flags) +{ + switch (__get_dumpable(mm_flags)) { + case SUID_DUMP_USER: + return PIDFD_COREDUMP_USER; + case SUID_DUMP_ROOT: + return PIDFD_COREDUMP_ROOT; + case SUID_DUMP_DISABLE: + return PIDFD_COREDUMP_SKIP; + default: + WARN_ON_ONCE(true); + } + + return 0; +} + +static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg; + struct inode *inode = file_inode(file); + struct pid *pid = pidfd_pid(file); + size_t usize = _IOC_SIZE(cmd); + struct pidfd_info kinfo = {}; + struct pidfs_exit_info *exit_info; + struct user_namespace *user_ns; + struct task_struct *task; + const struct cred *c; + __u64 mask; + + if (!uinfo) + return -EINVAL; + if (usize < PIDFD_INFO_SIZE_VER0) + return -EINVAL; /* First version, no smaller struct possible */ + + if (copy_from_user(&mask, &uinfo->mask, sizeof(mask))) + return -EFAULT; + + /* + * Restrict information retrieval to tasks within the caller's pid + * namespace hierarchy. + */ + if (!pid_in_current_pidns(pid)) + return -ESRCH; + + if (mask & PIDFD_INFO_EXIT) { + exit_info = READ_ONCE(pidfs_i(inode)->exit_info); + if (exit_info) { + kinfo.mask |= PIDFD_INFO_EXIT; +#ifdef CONFIG_CGROUPS + kinfo.cgroupid = exit_info->cgroupid; + kinfo.mask |= PIDFD_INFO_CGROUPID; +#endif + kinfo.exit_code = exit_info->exit_code; + } + } + + if (mask & PIDFD_INFO_COREDUMP) { + kinfo.mask |= PIDFD_INFO_COREDUMP; + kinfo.coredump_mask = READ_ONCE(pidfs_i(inode)->__pei.coredump_mask); + } + + task = get_pid_task(pid, PIDTYPE_PID); + if (!task) { + /* + * If the task has already been reaped, only exit + * information is available + */ + if (!(mask & PIDFD_INFO_EXIT)) + return -ESRCH; + + goto copy_out; + } + + c = get_task_cred(task); + if (!c) + return -ESRCH; + + if (!(kinfo.mask & PIDFD_INFO_COREDUMP)) { + task_lock(task); + if (task->mm) + kinfo.coredump_mask = pidfs_coredump_mask(task->mm->flags); + task_unlock(task); + } + + /* Unconditionally return identifiers and credentials, the rest only on request */ + + user_ns = current_user_ns(); + kinfo.ruid = from_kuid_munged(user_ns, c->uid); + kinfo.rgid = from_kgid_munged(user_ns, c->gid); + kinfo.euid = from_kuid_munged(user_ns, c->euid); + kinfo.egid = from_kgid_munged(user_ns, c->egid); + kinfo.suid = from_kuid_munged(user_ns, c->suid); + kinfo.sgid = from_kgid_munged(user_ns, c->sgid); + kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid); + kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid); + kinfo.mask |= PIDFD_INFO_CREDS; + put_cred(c); + +#ifdef CONFIG_CGROUPS + if (!kinfo.cgroupid) { + struct cgroup *cgrp; + + rcu_read_lock(); + cgrp = task_dfl_cgroup(task); + kinfo.cgroupid = cgroup_id(cgrp); + kinfo.mask |= PIDFD_INFO_CGROUPID; + rcu_read_unlock(); + } +#endif + + /* + * Copy pid/tgid last, to reduce the chances the information might be + * stale. Note that it is not possible to ensure it will be valid as the + * task might return as soon as the copy_to_user finishes, but that's ok + * and userspace expects that might happen and can act accordingly, so + * this is just best-effort. What we can do however is checking that all + * the fields are set correctly, or return ESRCH to avoid providing + * incomplete information. */ + + kinfo.ppid = task_ppid_nr_ns(task, NULL); + kinfo.tgid = task_tgid_vnr(task); + kinfo.pid = task_pid_vnr(task); + kinfo.mask |= PIDFD_INFO_PID; + + if (kinfo.pid == 0 || kinfo.tgid == 0 || (kinfo.ppid == 0 && kinfo.pid != 1)) + return -ESRCH; + +copy_out: + /* + * If userspace and the kernel have the same struct size it can just + * be copied. If userspace provides an older struct, only the bits that + * userspace knows about will be copied. If userspace provides a new + * struct, only the bits that the kernel knows about will be copied. + */ + return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL); +} + +static bool pidfs_ioctl_valid(unsigned int cmd) +{ + switch (cmd) { + case FS_IOC_GETVERSION: + case PIDFD_GET_CGROUP_NAMESPACE: + case PIDFD_GET_IPC_NAMESPACE: + case PIDFD_GET_MNT_NAMESPACE: + case PIDFD_GET_NET_NAMESPACE: + case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: + case PIDFD_GET_TIME_NAMESPACE: + case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: + case PIDFD_GET_UTS_NAMESPACE: + case PIDFD_GET_USER_NAMESPACE: + case PIDFD_GET_PID_NAMESPACE: + return true; + } + + /* Extensible ioctls require some more careful checks. */ + switch (_IOC_NR(cmd)) { + case _IOC_NR(PIDFD_GET_INFO): + /* + * Try to prevent performing a pidfd ioctl when someone + * erronously mistook the file descriptor for a pidfd. + * This is not perfect but will catch most cases. + */ + return (_IOC_TYPE(cmd) == _IOC_TYPE(PIDFD_GET_INFO)); + } + + return false; +} + +static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct task_struct *task __free(put_task) = NULL; + struct nsproxy *nsp __free(put_nsproxy) = NULL; + struct ns_common *ns_common = NULL; + struct pid_namespace *pid_ns; + + if (!pidfs_ioctl_valid(cmd)) + return -ENOIOCTLCMD; + + if (cmd == FS_IOC_GETVERSION) { + if (!arg) + return -EINVAL; + + __u32 __user *argp = (__u32 __user *)arg; + return put_user(file_inode(file)->i_generation, argp); + } + + /* Extensible IOCTL that does not open namespace FDs, take a shortcut */ + if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO)) + return pidfd_info(file, cmd, arg); + + task = get_pid_task(pidfd_pid(file), PIDTYPE_PID); + if (!task) + return -ESRCH; + + if (arg) + return -EINVAL; + + scoped_guard(task_lock, task) { + nsp = task->nsproxy; + if (nsp) + get_nsproxy(nsp); + } + if (!nsp) + return -ESRCH; /* just pretend it didn't exist */ + + /* + * We're trying to open a file descriptor to the namespace so perform a + * filesystem cred ptrace check. Also, we mirror nsfs behavior. + */ + if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) + return -EACCES; + + switch (cmd) { + /* Namespaces that hang of nsproxy. */ + case PIDFD_GET_CGROUP_NAMESPACE: + if (IS_ENABLED(CONFIG_CGROUPS)) { + get_cgroup_ns(nsp->cgroup_ns); + ns_common = to_ns_common(nsp->cgroup_ns); + } + break; + case PIDFD_GET_IPC_NAMESPACE: + if (IS_ENABLED(CONFIG_IPC_NS)) { + get_ipc_ns(nsp->ipc_ns); + ns_common = to_ns_common(nsp->ipc_ns); + } + break; + case PIDFD_GET_MNT_NAMESPACE: + get_mnt_ns(nsp->mnt_ns); + ns_common = to_ns_common(nsp->mnt_ns); + break; + case PIDFD_GET_NET_NAMESPACE: + if (IS_ENABLED(CONFIG_NET_NS)) { + ns_common = to_ns_common(nsp->net_ns); + get_net_ns(ns_common); + } + break; + case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: + if (IS_ENABLED(CONFIG_PID_NS)) { + get_pid_ns(nsp->pid_ns_for_children); + ns_common = to_ns_common(nsp->pid_ns_for_children); + } + break; + case PIDFD_GET_TIME_NAMESPACE: + if (IS_ENABLED(CONFIG_TIME_NS)) { + get_time_ns(nsp->time_ns); + ns_common = to_ns_common(nsp->time_ns); + } + break; + case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: + if (IS_ENABLED(CONFIG_TIME_NS)) { + get_time_ns(nsp->time_ns_for_children); + ns_common = to_ns_common(nsp->time_ns_for_children); + } + break; + case PIDFD_GET_UTS_NAMESPACE: + if (IS_ENABLED(CONFIG_UTS_NS)) { + get_uts_ns(nsp->uts_ns); + ns_common = to_ns_common(nsp->uts_ns); + } + break; + /* Namespaces that don't hang of nsproxy. */ + case PIDFD_GET_USER_NAMESPACE: + if (IS_ENABLED(CONFIG_USER_NS)) { + rcu_read_lock(); + ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns))); + rcu_read_unlock(); + } + break; + case PIDFD_GET_PID_NAMESPACE: + if (IS_ENABLED(CONFIG_PID_NS)) { + rcu_read_lock(); + pid_ns = task_active_pid_ns(task); + if (pid_ns) + ns_common = to_ns_common(get_pid_ns(pid_ns)); + rcu_read_unlock(); + } + break; + default: + return -ENOIOCTLCMD; + } + + if (!ns_common) + return -EOPNOTSUPP; + + /* open_namespace() unconditionally consumes the reference */ + return open_namespace(ns_common); +} + +static const struct file_operations pidfs_file_operations = { + .poll = pidfd_poll, +#ifdef CONFIG_PROC_FS + .show_fdinfo = pidfd_show_fdinfo, +#endif + .unlocked_ioctl = pidfd_ioctl, + .compat_ioctl = compat_ptr_ioctl, +}; + +struct pid *pidfd_pid(const struct file *file) +{ + if (file->f_op != &pidfs_file_operations) + return ERR_PTR(-EBADF); + return file_inode(file)->i_private; +} + +/* + * We're called from release_task(). We know there's at least one + * reference to struct pid being held that won't be released until the + * task has been reaped which cannot happen until we're out of + * release_task(). + * + * If this struct pid is referred to by a pidfd then + * stashed_dentry_get() will return the dentry and inode for that struct + * pid. Since we've taken a reference on it there's now an additional + * reference from the exit path on it. Which is fine. We're going to put + * it again in a second and we know that the pid is kept alive anyway. + * + * Worst case is that we've filled in the info and immediately free the + * dentry and inode afterwards since the pidfd has been closed. Since + * pidfs_exit() currently is placed after exit_task_work() we know that + * it cannot be us aka the exiting task holding a pidfd to ourselves. + */ +void pidfs_exit(struct task_struct *tsk) +{ + struct dentry *dentry; + + might_sleep(); + + dentry = stashed_dentry_get(&task_pid(tsk)->stashed); + if (dentry) { + struct inode *inode = d_inode(dentry); + struct pidfs_exit_info *exit_info = &pidfs_i(inode)->__pei; +#ifdef CONFIG_CGROUPS + struct cgroup *cgrp; + + rcu_read_lock(); + cgrp = task_dfl_cgroup(tsk); + exit_info->cgroupid = cgroup_id(cgrp); + rcu_read_unlock(); +#endif + exit_info->exit_code = tsk->exit_code; + + /* Ensure that PIDFD_GET_INFO sees either all or nothing. */ + smp_store_release(&pidfs_i(inode)->exit_info, &pidfs_i(inode)->__pei); + dput(dentry); + } +} + +#ifdef CONFIG_COREDUMP +void pidfs_coredump(const struct coredump_params *cprm) +{ + struct pid *pid = cprm->pid; + struct pidfs_exit_info *exit_info; + struct dentry *dentry; + struct inode *inode; + __u32 coredump_mask = 0; + + dentry = pid->stashed; + if (WARN_ON_ONCE(!dentry)) + return; + + inode = d_inode(dentry); + exit_info = &pidfs_i(inode)->__pei; + /* Note how we were coredumped. */ + coredump_mask = pidfs_coredump_mask(cprm->mm_flags); + /* Note that we actually did coredump. */ + coredump_mask |= PIDFD_COREDUMPED; + /* If coredumping is set to skip we should never end up here. */ + VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP); + smp_store_release(&exit_info->coredump_mask, coredump_mask); +} +#endif + +static struct vfsmount *pidfs_mnt __ro_after_init; + +/* + * The vfs falls back to simple_setattr() if i_op->setattr() isn't + * implemented. Let's reject it completely until we have a clean + * permission concept for pidfds. + */ +static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, + struct iattr *attr) +{ + return anon_inode_setattr(idmap, dentry, attr); +} + +static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path, + struct kstat *stat, u32 request_mask, + unsigned int query_flags) +{ + return anon_inode_getattr(idmap, path, stat, request_mask, query_flags); +} + +static const struct inode_operations pidfs_inode_operations = { + .getattr = pidfs_getattr, + .setattr = pidfs_setattr, +}; + +static void pidfs_evict_inode(struct inode *inode) +{ + struct pid *pid = inode->i_private; + + clear_inode(inode); + put_pid(pid); +} + +static struct inode *pidfs_alloc_inode(struct super_block *sb) +{ + struct pidfs_inode *pi; + + pi = alloc_inode_sb(sb, pidfs_cachep, GFP_KERNEL); + if (!pi) + return NULL; + + memset(&pi->__pei, 0, sizeof(pi->__pei)); + pi->exit_info = NULL; + + return &pi->vfs_inode; +} + +static void pidfs_free_inode(struct inode *inode) +{ + kmem_cache_free(pidfs_cachep, pidfs_i(inode)); +} + +static const struct super_operations pidfs_sops = { + .alloc_inode = pidfs_alloc_inode, + .drop_inode = generic_delete_inode, + .evict_inode = pidfs_evict_inode, + .free_inode = pidfs_free_inode, + .statfs = simple_statfs, +}; + +/* + * 'lsof' has knowledge of out historical anon_inode use, and expects + * the pidfs dentry name to start with 'anon_inode'. + */ +static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen) +{ + return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]"); +} + +const struct dentry_operations pidfs_dentry_operations = { + .d_dname = pidfs_dname, + .d_prune = stashed_dentry_prune, +}; + +static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len, + struct inode *parent) +{ + const struct pid *pid = inode->i_private; + + if (*max_len < 2) { + *max_len = 2; + return FILEID_INVALID; + } + + *max_len = 2; + *(u64 *)fh = pid->ino; + return FILEID_KERNFS; +} + +static int pidfs_ino_find(const void *key, const struct rb_node *node) +{ + const u64 pid_ino = *(u64 *)key; + const struct pid *pid = rb_entry(node, struct pid, pidfs_node); + + if (pid_ino < pid->ino) + return -1; + if (pid_ino > pid->ino) + return 1; + return 0; +} + +/* Find a struct pid based on the inode number. */ +static struct pid *pidfs_ino_get_pid(u64 ino) +{ + struct pid *pid; + struct rb_node *node; + unsigned int seq; + + guard(rcu)(); + do { + seq = read_seqcount_begin(&pidmap_lock_seq); + node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find); + if (node) + break; + } while (read_seqcount_retry(&pidmap_lock_seq, seq)); + + if (!node) + return NULL; + + pid = rb_entry(node, struct pid, pidfs_node); + + /* Within our pid namespace hierarchy? */ + if (pid_vnr(pid) == 0) + return NULL; + + return get_pid(pid); +} + +static struct dentry *pidfs_fh_to_dentry(struct super_block *sb, + struct fid *fid, int fh_len, + int fh_type) +{ + int ret; + u64 pid_ino; + struct path path; + struct pid *pid; + + if (fh_len < 2) + return NULL; + + switch (fh_type) { + case FILEID_KERNFS: + pid_ino = *(u64 *)fid; + break; + default: + return NULL; + } + + pid = pidfs_ino_get_pid(pid_ino); + if (!pid) + return NULL; + + ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path); + if (ret < 0) + return ERR_PTR(ret); + + mntput(path.mnt); + return path.dentry; +} + +/* + * Make sure that we reject any nonsensical flags that users pass via + * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and + * PIDFD_NONBLOCK as O_NONBLOCK. + */ +#define VALID_FILE_HANDLE_OPEN_FLAGS \ + (O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL) + +static int pidfs_export_permission(struct handle_to_path_ctx *ctx, + unsigned int oflags) +{ + if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE)) + return -EINVAL; + + /* + * pidfd_ino_get_pid() will verify that the struct pid is part + * of the caller's pid namespace hierarchy. No further + * permission checks are needed. + */ + return 0; +} + +static inline bool pidfs_pid_valid(struct pid *pid, const struct path *path, + unsigned int flags) +{ + enum pid_type type; + + if (flags & PIDFD_STALE) + return true; + + /* + * Make sure that if a pidfd is created PIDFD_INFO_EXIT + * information will be available. So after an inode for the + * pidfd has been allocated perform another check that the pid + * is still alive. If it is exit information is available even + * if the task gets reaped before the pidfd is returned to + * userspace. The only exception are indicated by PIDFD_STALE: + * + * (1) The kernel is in the middle of task creation and thus no + * task linkage has been established yet. + * (2) The caller knows @pid has been registered in pidfs at a + * time when the task was still alive. + * + * In both cases exit information will have been reported. + */ + if (flags & PIDFD_THREAD) + type = PIDTYPE_PID; + else + type = PIDTYPE_TGID; + + /* + * Since pidfs_exit() is called before struct pid's task linkage + * is removed the case where the task got reaped but a dentry + * was already attached to struct pid and exit information was + * recorded and published can be handled correctly. + */ + if (unlikely(!pid_has_task(pid, type))) { + struct inode *inode = d_inode(path->dentry); + return !!READ_ONCE(pidfs_i(inode)->exit_info); + } + + return true; +} + +static struct file *pidfs_export_open(struct path *path, unsigned int oflags) +{ + if (!pidfs_pid_valid(d_inode(path->dentry)->i_private, path, oflags)) + return ERR_PTR(-ESRCH); + + /* + * Clear O_LARGEFILE as open_by_handle_at() forces it and raise + * O_RDWR as pidfds always are. + */ + oflags &= ~O_LARGEFILE; + return dentry_open(path, oflags | O_RDWR, current_cred()); +} + +static const struct export_operations pidfs_export_operations = { + .encode_fh = pidfs_encode_fh, + .fh_to_dentry = pidfs_fh_to_dentry, + .open = pidfs_export_open, + .permission = pidfs_export_permission, +}; + +static int pidfs_init_inode(struct inode *inode, void *data) +{ + const struct pid *pid = data; + + inode->i_private = data; + inode->i_flags |= S_PRIVATE | S_ANON_INODE; + inode->i_mode |= S_IRWXU; + inode->i_op = &pidfs_inode_operations; + inode->i_fop = &pidfs_file_operations; + inode->i_ino = pidfs_ino(pid->ino); + inode->i_generation = pidfs_gen(pid->ino); + return 0; +} + +static void pidfs_put_data(void *data) +{ + struct pid *pid = data; + put_pid(pid); +} + +static const struct stashed_operations pidfs_stashed_ops = { + .init_inode = pidfs_init_inode, + .put_data = pidfs_put_data, +}; + +static int pidfs_init_fs_context(struct fs_context *fc) +{ + struct pseudo_fs_context *ctx; + + ctx = init_pseudo(fc, PID_FS_MAGIC); + if (!ctx) + return -ENOMEM; + + ctx->ops = &pidfs_sops; + ctx->eops = &pidfs_export_operations; + ctx->dops = &pidfs_dentry_operations; + fc->s_fs_info = (void *)&pidfs_stashed_ops; + return 0; +} + +static struct file_system_type pidfs_type = { + .name = "pidfs", + .init_fs_context = pidfs_init_fs_context, + .kill_sb = kill_anon_super, +}; + +struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags) +{ + struct file *pidfd_file; + struct path path __free(path_put) = {}; + int ret; + + /* + * Ensure that PIDFD_STALE can be passed as a flag without + * overloading other uapi pidfd flags. + */ + BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD); + BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK); + + ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path); + if (ret < 0) + return ERR_PTR(ret); + + if (!pidfs_pid_valid(pid, &path, flags)) + return ERR_PTR(-ESRCH); + + flags &= ~PIDFD_STALE; + flags |= O_RDWR; + pidfd_file = dentry_open(&path, flags, current_cred()); + /* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */ + if (!IS_ERR(pidfd_file)) + pidfd_file->f_flags |= (flags & PIDFD_THREAD); + + return pidfd_file; +} + +/** + * pidfs_register_pid - register a struct pid in pidfs + * @pid: pid to pin + * + * Register a struct pid in pidfs. Needs to be paired with + * pidfs_put_pid() to not risk leaking the pidfs dentry and inode. + * + * Return: On success zero, on error a negative error code is returned. + */ +int pidfs_register_pid(struct pid *pid) +{ + struct path path __free(path_put) = {}; + int ret; + + might_sleep(); + + if (!pid) + return 0; + + ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path); + if (unlikely(ret)) + return ret; + /* Keep the dentry and only put the reference to the mount. */ + path.dentry = NULL; + return 0; +} + +/** + * pidfs_get_pid - pin a struct pid through pidfs + * @pid: pid to pin + * + * Similar to pidfs_register_pid() but only valid if the caller knows + * there's a reference to the @pid through a dentry already that can't + * go away. + */ +void pidfs_get_pid(struct pid *pid) +{ + if (!pid) + return; + WARN_ON_ONCE(!stashed_dentry_get(&pid->stashed)); +} + +/** + * pidfs_put_pid - drop a pidfs reference + * @pid: pid to drop + * + * Drop a reference to @pid via pidfs. This is only safe if the + * reference has been taken via pidfs_get_pid(). + */ +void pidfs_put_pid(struct pid *pid) +{ + might_sleep(); + + if (!pid) + return; + VFS_WARN_ON_ONCE(!pid->stashed); + dput(pid->stashed); +} + +static void pidfs_inode_init_once(void *data) +{ + struct pidfs_inode *pi = data; + + inode_init_once(&pi->vfs_inode); +} + +void __init pidfs_init(void) +{ + pidfs_cachep = kmem_cache_create("pidfs_cache", sizeof(struct pidfs_inode), 0, + (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | + SLAB_ACCOUNT | SLAB_PANIC), + pidfs_inode_init_once); + pidfs_mnt = kern_mount(&pidfs_type); + if (IS_ERR(pidfs_mnt)) + panic("Failed to mount pidfs pseudo filesystem"); +} |