diff options
Diffstat (limited to 'include')
-rw-r--r-- | include/linux/bpf.h | 30 | ||||
-rw-r--r-- | include/linux/bpf_verifier.h | 7 | ||||
-rw-r--r-- | include/linux/btf.h | 65 |
3 files changed, 78 insertions, 24 deletions
diff --git a/include/linux/bpf.h b/include/linux/bpf.h index 8b32376ce746..c9eafa67f2a2 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -543,6 +543,35 @@ enum bpf_type_flag { */ MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), + /* PTR was passed from the kernel in a trusted context, and may be + * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. + * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. + * PTR_UNTRUSTED refers to a kptr that was read directly from a map + * without invoking bpf_kptr_xchg(). What we really need to know is + * whether a pointer is safe to pass to a kfunc or BPF helper function. + * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF + * helpers, they do not cover all possible instances of unsafe + * pointers. For example, a pointer that was obtained from walking a + * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the + * fact that it may be NULL, invalid, etc. This is due to backwards + * compatibility requirements, as this was the behavior that was first + * introduced when kptrs were added. The behavior is now considered + * deprecated, and PTR_UNTRUSTED will eventually be removed. + * + * PTR_TRUSTED, on the other hand, is a pointer that the kernel + * guarantees to be valid and safe to pass to kfuncs and BPF helpers. + * For example, pointers passed to tracepoint arguments are considered + * PTR_TRUSTED, as are pointers that are passed to struct_ops + * callbacks. As alluded to above, pointers that are obtained from + * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a + * struct task_struct *task is PTR_TRUSTED, then accessing + * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored + * in a BPF register. Similarly, pointers passed to certain programs + * types such as kretprobes are not guaranteed to be valid, as they may + * for example contain an object that was recently freed. + */ + PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), + __BPF_TYPE_FLAG_MAX, __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, }; @@ -636,6 +665,7 @@ enum bpf_return_type { RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, + RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, /* This must be the last entry. Its purpose is to ensure the enum is * wide enough to hold the higher bits reserved for bpf_type_flag. diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index 608dde740fef..545152ac136c 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -680,4 +680,11 @@ static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) } } +#define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED) + +static inline bool bpf_type_has_unsafe_modifiers(u32 type) +{ + return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; +} + #endif /* _LINUX_BPF_VERIFIER_H */ diff --git a/include/linux/btf.h b/include/linux/btf.h index d5b26380a60f..d38aa4251c28 100644 --- a/include/linux/btf.h +++ b/include/linux/btf.h @@ -19,36 +19,53 @@ #define KF_RELEASE (1 << 1) /* kfunc is a release function */ #define KF_RET_NULL (1 << 2) /* kfunc returns a pointer that may be NULL */ #define KF_KPTR_GET (1 << 3) /* kfunc returns reference to a kptr */ -/* Trusted arguments are those which are meant to be referenced arguments with - * unchanged offset. It is used to enforce that pointers obtained from acquire - * kfuncs remain unmodified when being passed to helpers taking trusted args. +/* Trusted arguments are those which are guaranteed to be valid when passed to + * the kfunc. It is used to enforce that pointers obtained from either acquire + * kfuncs, or from the main kernel on a tracepoint or struct_ops callback + * invocation, remain unmodified when being passed to helpers taking trusted + * args. * - * Consider - * struct foo { - * int data; - * struct foo *next; - * }; + * Consider, for example, the following new task tracepoint: * - * struct bar { - * int data; - * struct foo f; - * }; + * SEC("tp_btf/task_newtask") + * int BPF_PROG(new_task_tp, struct task_struct *task, u64 clone_flags) + * { + * ... + * } * - * struct foo *f = alloc_foo(); // Acquire kfunc - * struct bar *b = alloc_bar(); // Acquire kfunc + * And the following kfunc: * - * If a kfunc set_foo_data() wants to operate only on the allocated object, it - * will set the KF_TRUSTED_ARGS flag, which will prevent unsafe usage like: + * BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS) * - * set_foo_data(f, 42); // Allowed - * set_foo_data(f->next, 42); // Rejected, non-referenced pointer - * set_foo_data(&f->next, 42);// Rejected, referenced, but wrong type - * set_foo_data(&b->f, 42); // Rejected, referenced, but bad offset + * All invocations to the kfunc must pass the unmodified, unwalked task: * - * In the final case, usually for the purposes of type matching, it is deduced - * by looking at the type of the member at the offset, but due to the - * requirement of trusted argument, this deduction will be strict and not done - * for this case. + * bpf_task_acquire(task); // Allowed + * bpf_task_acquire(task->last_wakee); // Rejected, walked task + * + * Programs may also pass referenced tasks directly to the kfunc: + * + * struct task_struct *acquired; + * + * acquired = bpf_task_acquire(task); // Allowed, same as above + * bpf_task_acquire(acquired); // Allowed + * bpf_task_acquire(task); // Allowed + * bpf_task_acquire(acquired->last_wakee); // Rejected, walked task + * + * Programs may _not_, however, pass a task from an arbitrary fentry/fexit, or + * kprobe/kretprobe to the kfunc, as BPF cannot guarantee that all of these + * pointers are guaranteed to be safe. For example, the following BPF program + * would be rejected: + * + * SEC("kretprobe/free_task") + * int BPF_PROG(free_task_probe, struct task_struct *tsk) + * { + * struct task_struct *acquired; + * + * acquired = bpf_task_acquire(acquired); // Rejected, not a trusted pointer + * bpf_task_release(acquired); + * + * return 0; + * } */ #define KF_TRUSTED_ARGS (1 << 4) /* kfunc only takes trusted pointer arguments */ #define KF_SLEEPABLE (1 << 5) /* kfunc may sleep */ |