diff options
Diffstat (limited to 'kernel/bpf/verifier.c')
-rw-r--r-- | kernel/bpf/verifier.c | 19207 |
1 files changed, 15704 insertions, 3503 deletions
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 94cead5a43e5..60611df77957 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -4,6 +4,7 @@ * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io */ #include <uapi/linux/btf.h> +#include <linux/bpf-cgroup.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/slab.h> @@ -21,6 +22,14 @@ #include <linux/ctype.h> #include <linux/error-injection.h> #include <linux/bpf_lsm.h> +#include <linux/btf_ids.h> +#include <linux/poison.h> +#include <linux/module.h> +#include <linux/cpumask.h> +#include <linux/bpf_mem_alloc.h> +#include <net/xdp.h> +#include <linux/trace_events.h> +#include <linux/kallsyms.h> #include "disasm.h" @@ -35,6 +44,9 @@ static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { #undef BPF_LINK_TYPE }; +struct bpf_mem_alloc bpf_global_percpu_ma; +static bool bpf_global_percpu_ma_set; + /* bpf_check() is a static code analyzer that walks eBPF program * instruction by instruction and updates register/stack state. * All paths of conditional branches are analyzed until 'bpf_exit' insn. @@ -46,7 +58,7 @@ static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { * - unreachable insns exist (shouldn't be a forest. program = one function) * - out of bounds or malformed jumps * The second pass is all possible path descent from the 1st insn. - * Since it's analyzing all pathes through the program, the length of the + * Since it's analyzing all paths through the program, the length of the * analysis is limited to 64k insn, which may be hit even if total number of * insn is less then 4K, but there are too many branches that change stack/regs. * Number of 'branches to be analyzed' is limited to 1k @@ -131,7 +143,7 @@ static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { * If it's ok, then verifier allows this BPF_CALL insn and looks at * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function - * returns ether pointer to map value or NULL. + * returns either pointer to map value or NULL. * * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' * insn, the register holding that pointer in the true branch changes state to @@ -162,7 +174,7 @@ static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { /* verifier_state + insn_idx are pushed to stack when branch is encountered */ struct bpf_verifier_stack_elem { - /* verifer state is 'st' + /* verifier state is 'st' * before processing instruction 'insn_idx' * and after processing instruction 'prev_insn_idx' */ @@ -180,28 +192,39 @@ struct bpf_verifier_stack_elem { #define BPF_MAP_KEY_POISON (1ULL << 63) #define BPF_MAP_KEY_SEEN (1ULL << 62) -#define BPF_MAP_PTR_UNPRIV 1UL -#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ - POISON_POINTER_DELTA)) -#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) +#define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 + +#define BPF_PRIV_STACK_MIN_SIZE 64 + +static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); +static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); +static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); +static void invalidate_non_owning_refs(struct bpf_verifier_env *env); +static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); +static int ref_set_non_owning(struct bpf_verifier_env *env, + struct bpf_reg_state *reg); +static void specialize_kfunc(struct bpf_verifier_env *env, + u32 func_id, u16 offset, unsigned long *addr); +static bool is_trusted_reg(const struct bpf_reg_state *reg); static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) { - return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; + return aux->map_ptr_state.poison; } static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) { - return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; + return aux->map_ptr_state.unpriv; } static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, - const struct bpf_map *map, bool unpriv) + struct bpf_map *map, + bool unpriv, bool poison) { - BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); unpriv |= bpf_map_ptr_unpriv(aux); - aux->map_ptr_state = (unsigned long)map | - (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); + aux->map_ptr_state.unpriv = unpriv; + aux->map_ptr_state.poison = poison; + aux->map_ptr_state.map_ptr = map; } static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) @@ -227,516 +250,1217 @@ static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) (poisoned ? BPF_MAP_KEY_POISON : 0ULL); } +static bool bpf_helper_call(const struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_CALL) && + insn->src_reg == 0; +} + +static bool bpf_pseudo_call(const struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_CALL) && + insn->src_reg == BPF_PSEUDO_CALL; +} + +static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_CALL) && + insn->src_reg == BPF_PSEUDO_KFUNC_CALL; +} + struct bpf_call_arg_meta { struct bpf_map *map_ptr; bool raw_mode; bool pkt_access; + u8 release_regno; int regno; int access_size; int mem_size; u64 msize_max_value; int ref_obj_id; + int dynptr_id; + int map_uid; int func_id; + struct btf *btf; u32 btf_id; + struct btf *ret_btf; + u32 ret_btf_id; + u32 subprogno; + struct btf_field *kptr_field; + s64 const_map_key; +}; + +struct bpf_kfunc_call_arg_meta { + /* In parameters */ + struct btf *btf; + u32 func_id; + u32 kfunc_flags; + const struct btf_type *func_proto; + const char *func_name; + /* Out parameters */ + u32 ref_obj_id; + u8 release_regno; + bool r0_rdonly; + u32 ret_btf_id; + u64 r0_size; + u32 subprogno; + struct { + u64 value; + bool found; + } arg_constant; + + /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, + * generally to pass info about user-defined local kptr types to later + * verification logic + * bpf_obj_drop/bpf_percpu_obj_drop + * Record the local kptr type to be drop'd + * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) + * Record the local kptr type to be refcount_incr'd and use + * arg_owning_ref to determine whether refcount_acquire should be + * fallible + */ + struct btf *arg_btf; + u32 arg_btf_id; + bool arg_owning_ref; + + struct { + struct btf_field *field; + } arg_list_head; + struct { + struct btf_field *field; + } arg_rbtree_root; + struct { + enum bpf_dynptr_type type; + u32 id; + u32 ref_obj_id; + } initialized_dynptr; + struct { + u8 spi; + u8 frameno; + } iter; + struct { + struct bpf_map *ptr; + int uid; + } map; + u64 mem_size; }; struct btf *btf_vmlinux; +static const char *btf_type_name(const struct btf *btf, u32 id) +{ + return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); +} + static DEFINE_MUTEX(bpf_verifier_lock); +static DEFINE_MUTEX(bpf_percpu_ma_lock); -static const struct bpf_line_info * -find_linfo(const struct bpf_verifier_env *env, u32 insn_off) +__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) { - const struct bpf_line_info *linfo; - const struct bpf_prog *prog; - u32 i, nr_linfo; + struct bpf_verifier_env *env = private_data; + va_list args; - prog = env->prog; - nr_linfo = prog->aux->nr_linfo; + if (!bpf_verifier_log_needed(&env->log)) + return; - if (!nr_linfo || insn_off >= prog->len) - return NULL; + va_start(args, fmt); + bpf_verifier_vlog(&env->log, fmt, args); + va_end(args); +} - linfo = prog->aux->linfo; - for (i = 1; i < nr_linfo; i++) - if (insn_off < linfo[i].insn_off) - break; +static void verbose_invalid_scalar(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + struct bpf_retval_range range, const char *ctx, + const char *reg_name) +{ + bool unknown = true; - return &linfo[i - 1]; + verbose(env, "%s the register %s has", ctx, reg_name); + if (reg->smin_value > S64_MIN) { + verbose(env, " smin=%lld", reg->smin_value); + unknown = false; + } + if (reg->smax_value < S64_MAX) { + verbose(env, " smax=%lld", reg->smax_value); + unknown = false; + } + if (unknown) + verbose(env, " unknown scalar value"); + verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); } -void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, - va_list args) +static bool reg_not_null(const struct bpf_reg_state *reg) { - unsigned int n; + enum bpf_reg_type type; - n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); + type = reg->type; + if (type_may_be_null(type)) + return false; - WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, - "verifier log line truncated - local buffer too short\n"); + type = base_type(type); + return type == PTR_TO_SOCKET || + type == PTR_TO_TCP_SOCK || + type == PTR_TO_MAP_VALUE || + type == PTR_TO_MAP_KEY || + type == PTR_TO_SOCK_COMMON || + (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || + type == PTR_TO_MEM; +} - n = min(log->len_total - log->len_used - 1, n); - log->kbuf[n] = '\0'; +static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) +{ + struct btf_record *rec = NULL; + struct btf_struct_meta *meta; - if (log->level == BPF_LOG_KERNEL) { - pr_err("BPF:%s\n", log->kbuf); - return; + if (reg->type == PTR_TO_MAP_VALUE) { + rec = reg->map_ptr->record; + } else if (type_is_ptr_alloc_obj(reg->type)) { + meta = btf_find_struct_meta(reg->btf, reg->btf_id); + if (meta) + rec = meta->record; } - if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) - log->len_used += n; - else - log->ubuf = NULL; + return rec; } -static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) +static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) { - char zero = 0; + struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; - if (!bpf_verifier_log_needed(log)) - return; + return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; +} + +static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) +{ + struct bpf_func_info *info; + + if (!env->prog->aux->func_info) + return ""; - log->len_used = new_pos; - if (put_user(zero, log->ubuf + new_pos)) - log->ubuf = NULL; + info = &env->prog->aux->func_info[subprog]; + return btf_type_name(env->prog->aux->btf, info->type_id); } -/* log_level controls verbosity level of eBPF verifier. - * bpf_verifier_log_write() is used to dump the verification trace to the log, - * so the user can figure out what's wrong with the program - */ -__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, - const char *fmt, ...) +static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) { - va_list args; + struct bpf_subprog_info *info = subprog_info(env, subprog); - if (!bpf_verifier_log_needed(&env->log)) - return; + info->is_cb = true; + info->is_async_cb = true; + info->is_exception_cb = true; +} - va_start(args, fmt); - bpf_verifier_vlog(&env->log, fmt, args); - va_end(args); +static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) +{ + return subprog_info(env, subprog)->is_exception_cb; } -EXPORT_SYMBOL_GPL(bpf_verifier_log_write); -__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) +static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) { - struct bpf_verifier_env *env = private_data; - va_list args; + return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); +} - if (!bpf_verifier_log_needed(&env->log)) - return; +static bool type_is_rdonly_mem(u32 type) +{ + return type & MEM_RDONLY; +} - va_start(args, fmt); - bpf_verifier_vlog(&env->log, fmt, args); - va_end(args); +static bool is_acquire_function(enum bpf_func_id func_id, + const struct bpf_map *map) +{ + enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; + + if (func_id == BPF_FUNC_sk_lookup_tcp || + func_id == BPF_FUNC_sk_lookup_udp || + func_id == BPF_FUNC_skc_lookup_tcp || + func_id == BPF_FUNC_ringbuf_reserve || + func_id == BPF_FUNC_kptr_xchg) + return true; + + if (func_id == BPF_FUNC_map_lookup_elem && + (map_type == BPF_MAP_TYPE_SOCKMAP || + map_type == BPF_MAP_TYPE_SOCKHASH)) + return true; + + return false; } -__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, - const char *fmt, ...) +static bool is_ptr_cast_function(enum bpf_func_id func_id) { - va_list args; + return func_id == BPF_FUNC_tcp_sock || + func_id == BPF_FUNC_sk_fullsock || + func_id == BPF_FUNC_skc_to_tcp_sock || + func_id == BPF_FUNC_skc_to_tcp6_sock || + func_id == BPF_FUNC_skc_to_udp6_sock || + func_id == BPF_FUNC_skc_to_mptcp_sock || + func_id == BPF_FUNC_skc_to_tcp_timewait_sock || + func_id == BPF_FUNC_skc_to_tcp_request_sock; +} - if (!bpf_verifier_log_needed(log)) - return; +static bool is_dynptr_ref_function(enum bpf_func_id func_id) +{ + return func_id == BPF_FUNC_dynptr_data; +} - va_start(args, fmt); - bpf_verifier_vlog(log, fmt, args); - va_end(args); +static bool is_sync_callback_calling_kfunc(u32 btf_id); +static bool is_async_callback_calling_kfunc(u32 btf_id); +static bool is_callback_calling_kfunc(u32 btf_id); +static bool is_bpf_throw_kfunc(struct bpf_insn *insn); + +static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); + +static bool is_sync_callback_calling_function(enum bpf_func_id func_id) +{ + return func_id == BPF_FUNC_for_each_map_elem || + func_id == BPF_FUNC_find_vma || + func_id == BPF_FUNC_loop || + func_id == BPF_FUNC_user_ringbuf_drain; } -static const char *ltrim(const char *s) +static bool is_async_callback_calling_function(enum bpf_func_id func_id) { - while (isspace(*s)) - s++; + return func_id == BPF_FUNC_timer_set_callback; +} - return s; +static bool is_callback_calling_function(enum bpf_func_id func_id) +{ + return is_sync_callback_calling_function(func_id) || + is_async_callback_calling_function(func_id); } -__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, - u32 insn_off, - const char *prefix_fmt, ...) +static bool is_sync_callback_calling_insn(struct bpf_insn *insn) { - const struct bpf_line_info *linfo; + return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || + (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); +} - if (!bpf_verifier_log_needed(&env->log)) - return; +static bool is_async_callback_calling_insn(struct bpf_insn *insn) +{ + return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || + (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); +} - linfo = find_linfo(env, insn_off); - if (!linfo || linfo == env->prev_linfo) - return; +static bool is_may_goto_insn(struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; +} + +static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) +{ + return is_may_goto_insn(&env->prog->insnsi[insn_idx]); +} - if (prefix_fmt) { - va_list args; +static bool is_storage_get_function(enum bpf_func_id func_id) +{ + return func_id == BPF_FUNC_sk_storage_get || + func_id == BPF_FUNC_inode_storage_get || + func_id == BPF_FUNC_task_storage_get || + func_id == BPF_FUNC_cgrp_storage_get; +} - va_start(args, prefix_fmt); - bpf_verifier_vlog(&env->log, prefix_fmt, args); - va_end(args); +static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, + const struct bpf_map *map) +{ + int ref_obj_uses = 0; + + if (is_ptr_cast_function(func_id)) + ref_obj_uses++; + if (is_acquire_function(func_id, map)) + ref_obj_uses++; + if (is_dynptr_ref_function(func_id)) + ref_obj_uses++; + + return ref_obj_uses > 1; +} + +static bool is_cmpxchg_insn(const struct bpf_insn *insn) +{ + return BPF_CLASS(insn->code) == BPF_STX && + BPF_MODE(insn->code) == BPF_ATOMIC && + insn->imm == BPF_CMPXCHG; +} + +static int __get_spi(s32 off) +{ + return (-off - 1) / BPF_REG_SIZE; +} + +static struct bpf_func_state *func(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg) +{ + struct bpf_verifier_state *cur = env->cur_state; + + return cur->frame[reg->frameno]; +} + +static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) +{ + int allocated_slots = state->allocated_stack / BPF_REG_SIZE; + + /* We need to check that slots between [spi - nr_slots + 1, spi] are + * within [0, allocated_stack). + * + * Please note that the spi grows downwards. For example, a dynptr + * takes the size of two stack slots; the first slot will be at + * spi and the second slot will be at spi - 1. + */ + return spi - nr_slots + 1 >= 0 && spi < allocated_slots; +} + +static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + const char *obj_kind, int nr_slots) +{ + int off, spi; + + if (!tnum_is_const(reg->var_off)) { + verbose(env, "%s has to be at a constant offset\n", obj_kind); + return -EINVAL; + } + + off = reg->off + reg->var_off.value; + if (off % BPF_REG_SIZE) { + verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); + return -EINVAL; } - verbose(env, "%s\n", - ltrim(btf_name_by_offset(env->prog->aux->btf, - linfo->line_off))); + spi = __get_spi(off); + if (spi + 1 < nr_slots) { + verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); + return -EINVAL; + } - env->prev_linfo = linfo; + if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) + return -ERANGE; + return spi; } -static bool type_is_pkt_pointer(enum bpf_reg_type type) +static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) { - return type == PTR_TO_PACKET || - type == PTR_TO_PACKET_META; + return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); } -static bool type_is_sk_pointer(enum bpf_reg_type type) +static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) { - return type == PTR_TO_SOCKET || - type == PTR_TO_SOCK_COMMON || - type == PTR_TO_TCP_SOCK || - type == PTR_TO_XDP_SOCK; + return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); } -static bool reg_type_not_null(enum bpf_reg_type type) +static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) { - return type == PTR_TO_SOCKET || - type == PTR_TO_TCP_SOCK || - type == PTR_TO_MAP_VALUE || - type == PTR_TO_SOCK_COMMON; + return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); } -static bool reg_type_may_be_null(enum bpf_reg_type type) +static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) { - return type == PTR_TO_MAP_VALUE_OR_NULL || - type == PTR_TO_SOCKET_OR_NULL || - type == PTR_TO_SOCK_COMMON_OR_NULL || - type == PTR_TO_TCP_SOCK_OR_NULL || - type == PTR_TO_BTF_ID_OR_NULL || - type == PTR_TO_MEM_OR_NULL; + switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { + case DYNPTR_TYPE_LOCAL: + return BPF_DYNPTR_TYPE_LOCAL; + case DYNPTR_TYPE_RINGBUF: + return BPF_DYNPTR_TYPE_RINGBUF; + case DYNPTR_TYPE_SKB: + return BPF_DYNPTR_TYPE_SKB; + case DYNPTR_TYPE_XDP: + return BPF_DYNPTR_TYPE_XDP; + default: + return BPF_DYNPTR_TYPE_INVALID; + } } -static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) +static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) +{ + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + return DYNPTR_TYPE_LOCAL; + case BPF_DYNPTR_TYPE_RINGBUF: + return DYNPTR_TYPE_RINGBUF; + case BPF_DYNPTR_TYPE_SKB: + return DYNPTR_TYPE_SKB; + case BPF_DYNPTR_TYPE_XDP: + return DYNPTR_TYPE_XDP; + default: + return 0; + } +} + +static bool dynptr_type_refcounted(enum bpf_dynptr_type type) { - return reg->type == PTR_TO_MAP_VALUE && - map_value_has_spin_lock(reg->map_ptr); + return type == BPF_DYNPTR_TYPE_RINGBUF; } -static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) +static void __mark_dynptr_reg(struct bpf_reg_state *reg, + enum bpf_dynptr_type type, + bool first_slot, int dynptr_id); + +static void __mark_reg_not_init(const struct bpf_verifier_env *env, + struct bpf_reg_state *reg); + +static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, + struct bpf_reg_state *sreg1, + struct bpf_reg_state *sreg2, + enum bpf_dynptr_type type) { - return type == PTR_TO_SOCKET || - type == PTR_TO_SOCKET_OR_NULL || - type == PTR_TO_TCP_SOCK || - type == PTR_TO_TCP_SOCK_OR_NULL || - type == PTR_TO_MEM || - type == PTR_TO_MEM_OR_NULL; + int id = ++env->id_gen; + + __mark_dynptr_reg(sreg1, type, true, id); + __mark_dynptr_reg(sreg2, type, false, id); } -static bool arg_type_may_be_refcounted(enum bpf_arg_type type) +static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + enum bpf_dynptr_type type) { - return type == ARG_PTR_TO_SOCK_COMMON; + __mark_dynptr_reg(reg, type, true, ++env->id_gen); } -/* Determine whether the function releases some resources allocated by another - * function call. The first reference type argument will be assumed to be - * released by release_reference(). - */ -static bool is_release_function(enum bpf_func_id func_id) +static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, + struct bpf_func_state *state, int spi); + +static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) { - return func_id == BPF_FUNC_sk_release || - func_id == BPF_FUNC_ringbuf_submit || - func_id == BPF_FUNC_ringbuf_discard; + struct bpf_func_state *state = func(env, reg); + enum bpf_dynptr_type type; + int spi, i, err; + + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + + /* We cannot assume both spi and spi - 1 belong to the same dynptr, + * hence we need to call destroy_if_dynptr_stack_slot twice for both, + * to ensure that for the following example: + * [d1][d1][d2][d2] + * spi 3 2 1 0 + * So marking spi = 2 should lead to destruction of both d1 and d2. In + * case they do belong to same dynptr, second call won't see slot_type + * as STACK_DYNPTR and will simply skip destruction. + */ + err = destroy_if_dynptr_stack_slot(env, state, spi); + if (err) + return err; + err = destroy_if_dynptr_stack_slot(env, state, spi - 1); + if (err) + return err; + + for (i = 0; i < BPF_REG_SIZE; i++) { + state->stack[spi].slot_type[i] = STACK_DYNPTR; + state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; + } + + type = arg_to_dynptr_type(arg_type); + if (type == BPF_DYNPTR_TYPE_INVALID) + return -EINVAL; + + mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, + &state->stack[spi - 1].spilled_ptr, type); + + if (dynptr_type_refcounted(type)) { + /* The id is used to track proper releasing */ + int id; + + if (clone_ref_obj_id) + id = clone_ref_obj_id; + else + id = acquire_reference(env, insn_idx); + + if (id < 0) + return id; + + state->stack[spi].spilled_ptr.ref_obj_id = id; + state->stack[spi - 1].spilled_ptr.ref_obj_id = id; + } + + state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; + + return 0; } -static bool may_be_acquire_function(enum bpf_func_id func_id) +static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) { - return func_id == BPF_FUNC_sk_lookup_tcp || - func_id == BPF_FUNC_sk_lookup_udp || - func_id == BPF_FUNC_skc_lookup_tcp || - func_id == BPF_FUNC_map_lookup_elem || - func_id == BPF_FUNC_ringbuf_reserve; + int i; + + for (i = 0; i < BPF_REG_SIZE; i++) { + state->stack[spi].slot_type[i] = STACK_INVALID; + state->stack[spi - 1].slot_type[i] = STACK_INVALID; + } + + __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); + __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); + + /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? + * + * While we don't allow reading STACK_INVALID, it is still possible to + * do <8 byte writes marking some but not all slots as STACK_MISC. Then, + * helpers or insns can do partial read of that part without failing, + * but check_stack_range_initialized, check_stack_read_var_off, and + * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of + * the slot conservatively. Hence we need to prevent those liveness + * marking walks. + * + * This was not a problem before because STACK_INVALID is only set by + * default (where the default reg state has its reg->parent as NULL), or + * in clean_live_states after REG_LIVE_DONE (at which point + * mark_reg_read won't walk reg->parent chain), but not randomly during + * verifier state exploration (like we did above). Hence, for our case + * parentage chain will still be live (i.e. reg->parent may be + * non-NULL), while earlier reg->parent was NULL, so we need + * REG_LIVE_WRITTEN to screen off read marker propagation when it is + * done later on reads or by mark_dynptr_read as well to unnecessary + * mark registers in verifier state. + */ + state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; } -static bool is_acquire_function(enum bpf_func_id func_id, - const struct bpf_map *map) +static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) { - enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; + struct bpf_func_state *state = func(env, reg); + int spi, ref_obj_id, i; - if (func_id == BPF_FUNC_sk_lookup_tcp || - func_id == BPF_FUNC_sk_lookup_udp || - func_id == BPF_FUNC_skc_lookup_tcp || - func_id == BPF_FUNC_ringbuf_reserve) + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + + if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { + invalidate_dynptr(env, state, spi); + return 0; + } + + ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; + + /* If the dynptr has a ref_obj_id, then we need to invalidate + * two things: + * + * 1) Any dynptrs with a matching ref_obj_id (clones) + * 2) Any slices derived from this dynptr. + */ + + /* Invalidate any slices associated with this dynptr */ + WARN_ON_ONCE(release_reference(env, ref_obj_id)); + + /* Invalidate any dynptr clones */ + for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { + if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) + continue; + + /* it should always be the case that if the ref obj id + * matches then the stack slot also belongs to a + * dynptr + */ + if (state->stack[i].slot_type[0] != STACK_DYNPTR) { + verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); + return -EFAULT; + } + if (state->stack[i].spilled_ptr.dynptr.first_slot) + invalidate_dynptr(env, state, i); + } + + return 0; +} + +static void __mark_reg_unknown(const struct bpf_verifier_env *env, + struct bpf_reg_state *reg); + +static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + if (!env->allow_ptr_leaks) + __mark_reg_not_init(env, reg); + else + __mark_reg_unknown(env, reg); +} + +static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, + struct bpf_func_state *state, int spi) +{ + struct bpf_func_state *fstate; + struct bpf_reg_state *dreg; + int i, dynptr_id; + + /* We always ensure that STACK_DYNPTR is never set partially, + * hence just checking for slot_type[0] is enough. This is + * different for STACK_SPILL, where it may be only set for + * 1 byte, so code has to use is_spilled_reg. + */ + if (state->stack[spi].slot_type[0] != STACK_DYNPTR) + return 0; + + /* Reposition spi to first slot */ + if (!state->stack[spi].spilled_ptr.dynptr.first_slot) + spi = spi + 1; + + if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { + verbose(env, "cannot overwrite referenced dynptr\n"); + return -EINVAL; + } + + mark_stack_slot_scratched(env, spi); + mark_stack_slot_scratched(env, spi - 1); + + /* Writing partially to one dynptr stack slot destroys both. */ + for (i = 0; i < BPF_REG_SIZE; i++) { + state->stack[spi].slot_type[i] = STACK_INVALID; + state->stack[spi - 1].slot_type[i] = STACK_INVALID; + } + + dynptr_id = state->stack[spi].spilled_ptr.id; + /* Invalidate any slices associated with this dynptr */ + bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ + /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ + if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) + continue; + if (dreg->dynptr_id == dynptr_id) + mark_reg_invalid(env, dreg); + })); + + /* Do not release reference state, we are destroying dynptr on stack, + * not using some helper to release it. Just reset register. + */ + __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); + __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); + + /* Same reason as unmark_stack_slots_dynptr above */ + state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; + + return 0; +} + +static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + int spi; + + if (reg->type == CONST_PTR_TO_DYNPTR) + return false; + + spi = dynptr_get_spi(env, reg); + + /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an + * error because this just means the stack state hasn't been updated yet. + * We will do check_mem_access to check and update stack bounds later. + */ + if (spi < 0 && spi != -ERANGE) + return false; + + /* We don't need to check if the stack slots are marked by previous + * dynptr initializations because we allow overwriting existing unreferenced + * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls + * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are + * touching are completely destructed before we reinitialize them for a new + * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early + * instead of delaying it until the end where the user will get "Unreleased + * reference" error. + */ + return true; +} + +static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int i, spi; + + /* This already represents first slot of initialized bpf_dynptr. + * + * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to + * check_func_arg_reg_off's logic, so we don't need to check its + * offset and alignment. + */ + if (reg->type == CONST_PTR_TO_DYNPTR) return true; - if (func_id == BPF_FUNC_map_lookup_elem && - (map_type == BPF_MAP_TYPE_SOCKMAP || - map_type == BPF_MAP_TYPE_SOCKHASH)) + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return false; + if (!state->stack[spi].spilled_ptr.dynptr.first_slot) + return false; + + for (i = 0; i < BPF_REG_SIZE; i++) { + if (state->stack[spi].slot_type[i] != STACK_DYNPTR || + state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) + return false; + } + + return true; +} + +static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + enum bpf_arg_type arg_type) +{ + struct bpf_func_state *state = func(env, reg); + enum bpf_dynptr_type dynptr_type; + int spi; + + /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ + if (arg_type == ARG_PTR_TO_DYNPTR) return true; - return false; + dynptr_type = arg_to_dynptr_type(arg_type); + if (reg->type == CONST_PTR_TO_DYNPTR) { + return reg->dynptr.type == dynptr_type; + } else { + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return false; + return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; + } } -static bool is_ptr_cast_function(enum bpf_func_id func_id) +static void __mark_reg_known_zero(struct bpf_reg_state *reg); + +static bool in_rcu_cs(struct bpf_verifier_env *env); + +static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); + +static int mark_stack_slots_iter(struct bpf_verifier_env *env, + struct bpf_kfunc_call_arg_meta *meta, + struct bpf_reg_state *reg, int insn_idx, + struct btf *btf, u32 btf_id, int nr_slots) { - return func_id == BPF_FUNC_tcp_sock || - func_id == BPF_FUNC_sk_fullsock; -} - -/* string representation of 'enum bpf_reg_type' */ -static const char * const reg_type_str[] = { - [NOT_INIT] = "?", - [SCALAR_VALUE] = "inv", - [PTR_TO_CTX] = "ctx", - [CONST_PTR_TO_MAP] = "map_ptr", - [PTR_TO_MAP_VALUE] = "map_value", - [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", - [PTR_TO_STACK] = "fp", - [PTR_TO_PACKET] = "pkt", - [PTR_TO_PACKET_META] = "pkt_meta", - [PTR_TO_PACKET_END] = "pkt_end", - [PTR_TO_FLOW_KEYS] = "flow_keys", - [PTR_TO_SOCKET] = "sock", - [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", - [PTR_TO_SOCK_COMMON] = "sock_common", - [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", - [PTR_TO_TCP_SOCK] = "tcp_sock", - [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", - [PTR_TO_TP_BUFFER] = "tp_buffer", - [PTR_TO_XDP_SOCK] = "xdp_sock", - [PTR_TO_BTF_ID] = "ptr_", - [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", - [PTR_TO_MEM] = "mem", - [PTR_TO_MEM_OR_NULL] = "mem_or_null", -}; + struct bpf_func_state *state = func(env, reg); + int spi, i, j, id; -static char slot_type_char[] = { - [STACK_INVALID] = '?', - [STACK_SPILL] = 'r', - [STACK_MISC] = 'm', - [STACK_ZERO] = '0', -}; + spi = iter_get_spi(env, reg, nr_slots); + if (spi < 0) + return spi; + + id = acquire_reference(env, insn_idx); + if (id < 0) + return id; + + for (i = 0; i < nr_slots; i++) { + struct bpf_stack_state *slot = &state->stack[spi - i]; + struct bpf_reg_state *st = &slot->spilled_ptr; + + __mark_reg_known_zero(st); + st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ + if (is_kfunc_rcu_protected(meta)) { + if (in_rcu_cs(env)) + st->type |= MEM_RCU; + else + st->type |= PTR_UNTRUSTED; + } + st->live |= REG_LIVE_WRITTEN; + st->ref_obj_id = i == 0 ? id : 0; + st->iter.btf = btf; + st->iter.btf_id = btf_id; + st->iter.state = BPF_ITER_STATE_ACTIVE; + st->iter.depth = 0; -static void print_liveness(struct bpf_verifier_env *env, - enum bpf_reg_liveness live) + for (j = 0; j < BPF_REG_SIZE; j++) + slot->slot_type[j] = STACK_ITER; + + mark_stack_slot_scratched(env, spi - i); + } + + return 0; +} + +static int unmark_stack_slots_iter(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, int nr_slots) { - if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) - verbose(env, "_"); - if (live & REG_LIVE_READ) - verbose(env, "r"); - if (live & REG_LIVE_WRITTEN) - verbose(env, "w"); - if (live & REG_LIVE_DONE) - verbose(env, "D"); + struct bpf_func_state *state = func(env, reg); + int spi, i, j; + + spi = iter_get_spi(env, reg, nr_slots); + if (spi < 0) + return spi; + + for (i = 0; i < nr_slots; i++) { + struct bpf_stack_state *slot = &state->stack[spi - i]; + struct bpf_reg_state *st = &slot->spilled_ptr; + + if (i == 0) + WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); + + __mark_reg_not_init(env, st); + + /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ + st->live |= REG_LIVE_WRITTEN; + + for (j = 0; j < BPF_REG_SIZE; j++) + slot->slot_type[j] = STACK_INVALID; + + mark_stack_slot_scratched(env, spi - i); + } + + return 0; } -static struct bpf_func_state *func(struct bpf_verifier_env *env, - const struct bpf_reg_state *reg) +static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, int nr_slots) { - struct bpf_verifier_state *cur = env->cur_state; + struct bpf_func_state *state = func(env, reg); + int spi, i, j; - return cur->frame[reg->frameno]; + /* For -ERANGE (i.e. spi not falling into allocated stack slots), we + * will do check_mem_access to check and update stack bounds later, so + * return true for that case. + */ + spi = iter_get_spi(env, reg, nr_slots); + if (spi == -ERANGE) + return true; + if (spi < 0) + return false; + + for (i = 0; i < nr_slots; i++) { + struct bpf_stack_state *slot = &state->stack[spi - i]; + + for (j = 0; j < BPF_REG_SIZE; j++) + if (slot->slot_type[j] == STACK_ITER) + return false; + } + + return true; } -const char *kernel_type_name(u32 id) +static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + struct btf *btf, u32 btf_id, int nr_slots) { - return btf_name_by_offset(btf_vmlinux, - btf_type_by_id(btf_vmlinux, id)->name_off); + struct bpf_func_state *state = func(env, reg); + int spi, i, j; + + spi = iter_get_spi(env, reg, nr_slots); + if (spi < 0) + return -EINVAL; + + for (i = 0; i < nr_slots; i++) { + struct bpf_stack_state *slot = &state->stack[spi - i]; + struct bpf_reg_state *st = &slot->spilled_ptr; + + if (st->type & PTR_UNTRUSTED) + return -EPROTO; + /* only main (first) slot has ref_obj_id set */ + if (i == 0 && !st->ref_obj_id) + return -EINVAL; + if (i != 0 && st->ref_obj_id) + return -EINVAL; + if (st->iter.btf != btf || st->iter.btf_id != btf_id) + return -EINVAL; + + for (j = 0; j < BPF_REG_SIZE; j++) + if (slot->slot_type[j] != STACK_ITER) + return -EINVAL; + } + + return 0; } -static void print_verifier_state(struct bpf_verifier_env *env, - const struct bpf_func_state *state) +static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); +static int release_irq_state(struct bpf_verifier_state *state, int id); + +static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, + struct bpf_kfunc_call_arg_meta *meta, + struct bpf_reg_state *reg, int insn_idx) { - const struct bpf_reg_state *reg; - enum bpf_reg_type t; - int i; + struct bpf_func_state *state = func(env, reg); + struct bpf_stack_state *slot; + struct bpf_reg_state *st; + int spi, i, id; - if (state->frameno) - verbose(env, " frame%d:", state->frameno); - for (i = 0; i < MAX_BPF_REG; i++) { - reg = &state->regs[i]; - t = reg->type; - if (t == NOT_INIT) - continue; - verbose(env, " R%d", i); - print_liveness(env, reg->live); - verbose(env, "=%s", reg_type_str[t]); - if (t == SCALAR_VALUE && reg->precise) - verbose(env, "P"); - if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && - tnum_is_const(reg->var_off)) { - /* reg->off should be 0 for SCALAR_VALUE */ - verbose(env, "%lld", reg->var_off.value + reg->off); - } else { - if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL) - verbose(env, "%s", kernel_type_name(reg->btf_id)); - verbose(env, "(id=%d", reg->id); - if (reg_type_may_be_refcounted_or_null(t)) - verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); - if (t != SCALAR_VALUE) - verbose(env, ",off=%d", reg->off); - if (type_is_pkt_pointer(t)) - verbose(env, ",r=%d", reg->range); - else if (t == CONST_PTR_TO_MAP || - t == PTR_TO_MAP_VALUE || - t == PTR_TO_MAP_VALUE_OR_NULL) - verbose(env, ",ks=%d,vs=%d", - reg->map_ptr->key_size, - reg->map_ptr->value_size); - if (tnum_is_const(reg->var_off)) { - /* Typically an immediate SCALAR_VALUE, but - * could be a pointer whose offset is too big - * for reg->off - */ - verbose(env, ",imm=%llx", reg->var_off.value); - } else { - if (reg->smin_value != reg->umin_value && - reg->smin_value != S64_MIN) - verbose(env, ",smin_value=%lld", - (long long)reg->smin_value); - if (reg->smax_value != reg->umax_value && - reg->smax_value != S64_MAX) - verbose(env, ",smax_value=%lld", - (long long)reg->smax_value); - if (reg->umin_value != 0) - verbose(env, ",umin_value=%llu", - (unsigned long long)reg->umin_value); - if (reg->umax_value != U64_MAX) - verbose(env, ",umax_value=%llu", - (unsigned long long)reg->umax_value); - if (!tnum_is_unknown(reg->var_off)) { - char tn_buf[48]; - - tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, ",var_off=%s", tn_buf); - } - if (reg->s32_min_value != reg->smin_value && - reg->s32_min_value != S32_MIN) - verbose(env, ",s32_min_value=%d", - (int)(reg->s32_min_value)); - if (reg->s32_max_value != reg->smax_value && - reg->s32_max_value != S32_MAX) - verbose(env, ",s32_max_value=%d", - (int)(reg->s32_max_value)); - if (reg->u32_min_value != reg->umin_value && - reg->u32_min_value != U32_MIN) - verbose(env, ",u32_min_value=%d", - (int)(reg->u32_min_value)); - if (reg->u32_max_value != reg->umax_value && - reg->u32_max_value != U32_MAX) - verbose(env, ",u32_max_value=%d", - (int)(reg->u32_max_value)); - } - verbose(env, ")"); - } - } - for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { - char types_buf[BPF_REG_SIZE + 1]; - bool valid = false; - int j; + spi = irq_flag_get_spi(env, reg); + if (spi < 0) + return spi; + + id = acquire_irq_state(env, insn_idx); + if (id < 0) + return id; + + slot = &state->stack[spi]; + st = &slot->spilled_ptr; + + __mark_reg_known_zero(st); + st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ + st->live |= REG_LIVE_WRITTEN; + st->ref_obj_id = id; + + for (i = 0; i < BPF_REG_SIZE; i++) + slot->slot_type[i] = STACK_IRQ_FLAG; + + mark_stack_slot_scratched(env, spi); + return 0; +} + +static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + struct bpf_stack_state *slot; + struct bpf_reg_state *st; + int spi, i, err; + + spi = irq_flag_get_spi(env, reg); + if (spi < 0) + return spi; - for (j = 0; j < BPF_REG_SIZE; j++) { - if (state->stack[i].slot_type[j] != STACK_INVALID) - valid = true; - types_buf[j] = slot_type_char[ - state->stack[i].slot_type[j]]; + slot = &state->stack[spi]; + st = &slot->spilled_ptr; + + err = release_irq_state(env->cur_state, st->ref_obj_id); + WARN_ON_ONCE(err && err != -EACCES); + if (err) { + int insn_idx = 0; + + for (int i = 0; i < env->cur_state->acquired_refs; i++) { + if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { + insn_idx = env->cur_state->refs[i].insn_idx; + break; + } } - types_buf[BPF_REG_SIZE] = 0; - if (!valid) - continue; - verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); - print_liveness(env, state->stack[i].spilled_ptr.live); - if (state->stack[i].slot_type[0] == STACK_SPILL) { - reg = &state->stack[i].spilled_ptr; - t = reg->type; - verbose(env, "=%s", reg_type_str[t]); - if (t == SCALAR_VALUE && reg->precise) - verbose(env, "P"); - if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) - verbose(env, "%lld", reg->var_off.value + reg->off); - } else { - verbose(env, "=%s", types_buf); - } - } - if (state->acquired_refs && state->refs[0].id) { - verbose(env, " refs=%d", state->refs[0].id); - for (i = 1; i < state->acquired_refs; i++) - if (state->refs[i].id) - verbose(env, ",%d", state->refs[i].id); - } - verbose(env, "\n"); -} - -#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ -static int copy_##NAME##_state(struct bpf_func_state *dst, \ - const struct bpf_func_state *src) \ -{ \ - if (!src->FIELD) \ - return 0; \ - if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ - /* internal bug, make state invalid to reject the program */ \ - memset(dst, 0, sizeof(*dst)); \ - return -EFAULT; \ - } \ - memcpy(dst->FIELD, src->FIELD, \ - sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ - return 0; \ -} -/* copy_reference_state() */ -COPY_STATE_FN(reference, acquired_refs, refs, 1) -/* copy_stack_state() */ -COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) -#undef COPY_STATE_FN - -#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ -static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ - bool copy_old) \ -{ \ - u32 old_size = state->COUNT; \ - struct bpf_##NAME##_state *new_##FIELD; \ - int slot = size / SIZE; \ - \ - if (size <= old_size || !size) { \ - if (copy_old) \ - return 0; \ - state->COUNT = slot * SIZE; \ - if (!size && old_size) { \ - kfree(state->FIELD); \ - state->FIELD = NULL; \ - } \ - return 0; \ - } \ - new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ - GFP_KERNEL); \ - if (!new_##FIELD) \ - return -ENOMEM; \ - if (copy_old) { \ - if (state->FIELD) \ - memcpy(new_##FIELD, state->FIELD, \ - sizeof(*new_##FIELD) * (old_size / SIZE)); \ - memset(new_##FIELD + old_size / SIZE, 0, \ - sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ - } \ - state->COUNT = slot * SIZE; \ - kfree(state->FIELD); \ - state->FIELD = new_##FIELD; \ - return 0; \ -} -/* realloc_reference_state() */ -REALLOC_STATE_FN(reference, acquired_refs, refs, 1) -/* realloc_stack_state() */ -REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) -#undef REALLOC_STATE_FN - -/* do_check() starts with zero-sized stack in struct bpf_verifier_state to - * make it consume minimal amount of memory. check_stack_write() access from - * the program calls into realloc_func_state() to grow the stack size. - * Note there is a non-zero 'parent' pointer inside bpf_verifier_state - * which realloc_stack_state() copies over. It points to previous - * bpf_verifier_state which is never reallocated. + + verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", + env->cur_state->active_irq_id, insn_idx); + return err; + } + + __mark_reg_not_init(env, st); + + /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ + st->live |= REG_LIVE_WRITTEN; + + for (i = 0; i < BPF_REG_SIZE; i++) + slot->slot_type[i] = STACK_INVALID; + + mark_stack_slot_scratched(env, spi); + return 0; +} + +static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + struct bpf_stack_state *slot; + int spi, i; + + /* For -ERANGE (i.e. spi not falling into allocated stack slots), we + * will do check_mem_access to check and update stack bounds later, so + * return true for that case. + */ + spi = irq_flag_get_spi(env, reg); + if (spi == -ERANGE) + return true; + if (spi < 0) + return false; + + slot = &state->stack[spi]; + + for (i = 0; i < BPF_REG_SIZE; i++) + if (slot->slot_type[i] == STACK_IRQ_FLAG) + return false; + return true; +} + +static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + struct bpf_stack_state *slot; + struct bpf_reg_state *st; + int spi, i; + + spi = irq_flag_get_spi(env, reg); + if (spi < 0) + return -EINVAL; + + slot = &state->stack[spi]; + st = &slot->spilled_ptr; + + if (!st->ref_obj_id) + return -EINVAL; + + for (i = 0; i < BPF_REG_SIZE; i++) + if (slot->slot_type[i] != STACK_IRQ_FLAG) + return -EINVAL; + return 0; +} + +/* Check if given stack slot is "special": + * - spilled register state (STACK_SPILL); + * - dynptr state (STACK_DYNPTR); + * - iter state (STACK_ITER). + * - irq flag state (STACK_IRQ_FLAG) */ -static int realloc_func_state(struct bpf_func_state *state, int stack_size, - int refs_size, bool copy_old) +static bool is_stack_slot_special(const struct bpf_stack_state *stack) { - int err = realloc_reference_state(state, refs_size, copy_old); - if (err) - return err; - return realloc_stack_state(state, stack_size, copy_old); + enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; + + switch (type) { + case STACK_SPILL: + case STACK_DYNPTR: + case STACK_ITER: + case STACK_IRQ_FLAG: + return true; + case STACK_INVALID: + case STACK_MISC: + case STACK_ZERO: + return false; + default: + WARN_ONCE(1, "unknown stack slot type %d\n", type); + return true; + } +} + +/* The reg state of a pointer or a bounded scalar was saved when + * it was spilled to the stack. + */ +static bool is_spilled_reg(const struct bpf_stack_state *stack) +{ + return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; +} + +static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) +{ + return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && + stack->spilled_ptr.type == SCALAR_VALUE; +} + +static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) +{ + return stack->slot_type[0] == STACK_SPILL && + stack->spilled_ptr.type == SCALAR_VALUE; +} + +/* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which + * case they are equivalent, or it's STACK_ZERO, in which case we preserve + * more precise STACK_ZERO. + * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged + * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is + * unnecessary as both are considered equivalent when loading data and pruning, + * in case of unprivileged mode it will be incorrect to allow reads of invalid + * slots. + */ +static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) +{ + if (*stype == STACK_ZERO) + return; + if (*stype == STACK_INVALID) + return; + *stype = STACK_MISC; +} + +static void scrub_spilled_slot(u8 *stype) +{ + if (*stype != STACK_INVALID) + *stype = STACK_MISC; +} + +/* copy array src of length n * size bytes to dst. dst is reallocated if it's too + * small to hold src. This is different from krealloc since we don't want to preserve + * the contents of dst. + * + * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could + * not be allocated. + */ +static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) +{ + size_t alloc_bytes; + void *orig = dst; + size_t bytes; + + if (ZERO_OR_NULL_PTR(src)) + goto out; + + if (unlikely(check_mul_overflow(n, size, &bytes))) + return NULL; + + alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); + dst = krealloc(orig, alloc_bytes, flags); + if (!dst) { + kfree(orig); + return NULL; + } + + memcpy(dst, src, bytes); +out: + return dst ? dst : ZERO_SIZE_PTR; +} + +/* resize an array from old_n items to new_n items. the array is reallocated if it's too + * small to hold new_n items. new items are zeroed out if the array grows. + * + * Contrary to krealloc_array, does not free arr if new_n is zero. + */ +static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) +{ + size_t alloc_size; + void *new_arr; + + if (!new_n || old_n == new_n) + goto out; + + alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); + new_arr = krealloc(arr, alloc_size, GFP_KERNEL); + if (!new_arr) { + kfree(arr); + return NULL; + } + arr = new_arr; + + if (new_n > old_n) + memset(arr + old_n * size, 0, (new_n - old_n) * size); + +out: + return arr ? arr : ZERO_SIZE_PTR; +} + +static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) +{ + dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, + sizeof(struct bpf_reference_state), GFP_KERNEL); + if (!dst->refs) + return -ENOMEM; + + dst->acquired_refs = src->acquired_refs; + dst->active_locks = src->active_locks; + dst->active_preempt_locks = src->active_preempt_locks; + dst->active_rcu_lock = src->active_rcu_lock; + dst->active_irq_id = src->active_irq_id; + return 0; +} + +static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) +{ + size_t n = src->allocated_stack / BPF_REG_SIZE; + + dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), + GFP_KERNEL); + if (!dst->stack) + return -ENOMEM; + + dst->allocated_stack = src->allocated_stack; + return 0; +} + +static int resize_reference_state(struct bpf_verifier_state *state, size_t n) +{ + state->refs = realloc_array(state->refs, state->acquired_refs, n, + sizeof(struct bpf_reference_state)); + if (!state->refs) + return -ENOMEM; + + state->acquired_refs = n; + return 0; +} + +/* Possibly update state->allocated_stack to be at least size bytes. Also + * possibly update the function's high-water mark in its bpf_subprog_info. + */ +static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) +{ + size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; + + /* The stack size is always a multiple of BPF_REG_SIZE. */ + size = round_up(size, BPF_REG_SIZE); + n = size / BPF_REG_SIZE; + + if (old_n >= n) + return 0; + + state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); + if (!state->stack) + return -ENOMEM; + + state->allocated_stack = size; + + /* update known max for given subprogram */ + if (env->subprog_info[state->subprogno].stack_depth < size) + env->subprog_info[state->subprogno].stack_depth = size; + + return 0; } /* Acquire a pointer id from the env and update the state->refs to include @@ -744,69 +1468,146 @@ static int realloc_func_state(struct bpf_func_state *state, int stack_size, * On success, returns a valid pointer id to associate with the register * On failure, returns a negative errno. */ -static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) +static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) { - struct bpf_func_state *state = cur_func(env); + struct bpf_verifier_state *state = env->cur_state; int new_ofs = state->acquired_refs; - int id, err; + int err; - err = realloc_reference_state(state, state->acquired_refs + 1, true); + err = resize_reference_state(state, state->acquired_refs + 1); if (err) - return err; - id = ++env->id_gen; - state->refs[new_ofs].id = id; + return NULL; state->refs[new_ofs].insn_idx = insn_idx; - return id; + return &state->refs[new_ofs]; +} + +static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) +{ + struct bpf_reference_state *s; + + s = acquire_reference_state(env, insn_idx); + if (!s) + return -ENOMEM; + s->type = REF_TYPE_PTR; + s->id = ++env->id_gen; + return s->id; +} + +static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, + int id, void *ptr) +{ + struct bpf_verifier_state *state = env->cur_state; + struct bpf_reference_state *s; + + s = acquire_reference_state(env, insn_idx); + if (!s) + return -ENOMEM; + s->type = type; + s->id = id; + s->ptr = ptr; + + state->active_locks++; + return 0; } -/* release function corresponding to acquire_reference_state(). Idempotent. */ -static int release_reference_state(struct bpf_func_state *state, int ptr_id) +static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) { - int i, last_idx; + struct bpf_verifier_state *state = env->cur_state; + struct bpf_reference_state *s; + + s = acquire_reference_state(env, insn_idx); + if (!s) + return -ENOMEM; + s->type = REF_TYPE_IRQ; + s->id = ++env->id_gen; + + state->active_irq_id = s->id; + return s->id; +} +static void release_reference_state(struct bpf_verifier_state *state, int idx) +{ + int last_idx; + size_t rem; + + /* IRQ state requires the relative ordering of elements remaining the + * same, since it relies on the refs array to behave as a stack, so that + * it can detect out-of-order IRQ restore. Hence use memmove to shift + * the array instead of swapping the final element into the deleted idx. + */ last_idx = state->acquired_refs - 1; + rem = state->acquired_refs - idx - 1; + if (last_idx && idx != last_idx) + memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); + memset(&state->refs[last_idx], 0, sizeof(*state->refs)); + state->acquired_refs--; + return; +} + +static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) +{ + int i; + for (i = 0; i < state->acquired_refs; i++) { - if (state->refs[i].id == ptr_id) { - if (last_idx && i != last_idx) - memcpy(&state->refs[i], &state->refs[last_idx], - sizeof(*state->refs)); - memset(&state->refs[last_idx], 0, sizeof(*state->refs)); - state->acquired_refs--; + if (state->refs[i].type != type) + continue; + if (state->refs[i].id == id && state->refs[i].ptr == ptr) { + release_reference_state(state, i); + state->active_locks--; return 0; } } return -EINVAL; } -static int transfer_reference_state(struct bpf_func_state *dst, - struct bpf_func_state *src) +static int release_irq_state(struct bpf_verifier_state *state, int id) { - int err = realloc_reference_state(dst, src->acquired_refs, false); - if (err) - return err; - err = copy_reference_state(dst, src); - if (err) - return err; - return 0; + u32 prev_id = 0; + int i; + + if (id != state->active_irq_id) + return -EACCES; + + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].type != REF_TYPE_IRQ) + continue; + if (state->refs[i].id == id) { + release_reference_state(state, i); + state->active_irq_id = prev_id; + return 0; + } else { + prev_id = state->refs[i].id; + } + } + return -EINVAL; +} + +static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, + int id, void *ptr) +{ + int i; + + for (i = 0; i < state->acquired_refs; i++) { + struct bpf_reference_state *s = &state->refs[i]; + + if (s->type != type) + continue; + + if (s->id == id && s->ptr == ptr) + return s; + } + return NULL; } static void free_func_state(struct bpf_func_state *state) { if (!state) return; - kfree(state->refs); kfree(state->stack); kfree(state); } -static void clear_jmp_history(struct bpf_verifier_state *state) -{ - kfree(state->jmp_history); - state->jmp_history = NULL; - state->jmp_history_cnt = 0; -} - static void free_verifier_state(struct bpf_verifier_state *state, bool free_self) { @@ -816,7 +1617,7 @@ static void free_verifier_state(struct bpf_verifier_state *state, free_func_state(state->frame[i]); state->frame[i] = NULL; } - clear_jmp_history(state); + kfree(state->refs); if (free_self) kfree(state); } @@ -827,16 +1628,7 @@ static void free_verifier_state(struct bpf_verifier_state *state, static int copy_func_state(struct bpf_func_state *dst, const struct bpf_func_state *src) { - int err; - - err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, - false); - if (err) - return err; - memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); - err = copy_reference_state(dst, src); - if (err) - return err; + memcpy(dst, src, offsetof(struct bpf_func_state, stack)); return copy_stack_state(dst, src); } @@ -844,30 +1636,31 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state, const struct bpf_verifier_state *src) { struct bpf_func_state *dst; - u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; int i, err; - if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { - kfree(dst_state->jmp_history); - dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); - if (!dst_state->jmp_history) - return -ENOMEM; - } - memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); - dst_state->jmp_history_cnt = src->jmp_history_cnt; - - /* if dst has more stack frames then src frame, free them */ + /* if dst has more stack frames then src frame, free them, this is also + * necessary in case of exceptional exits using bpf_throw. + */ for (i = src->curframe + 1; i <= dst_state->curframe; i++) { free_func_state(dst_state->frame[i]); dst_state->frame[i] = NULL; } + err = copy_reference_state(dst_state, src); + if (err) + return err; dst_state->speculative = src->speculative; + dst_state->in_sleepable = src->in_sleepable; dst_state->curframe = src->curframe; - dst_state->active_spin_lock = src->active_spin_lock; dst_state->branches = src->branches; dst_state->parent = src->parent; dst_state->first_insn_idx = src->first_insn_idx; dst_state->last_insn_idx = src->last_insn_idx; + dst_state->insn_hist_start = src->insn_hist_start; + dst_state->insn_hist_end = src->insn_hist_end; + dst_state->dfs_depth = src->dfs_depth; + dst_state->callback_unroll_depth = src->callback_unroll_depth; + dst_state->used_as_loop_entry = src->used_as_loop_entry; + dst_state->may_goto_depth = src->may_goto_depth; for (i = 0; i <= src->curframe; i++) { dst = dst_state->frame[i]; if (!dst) { @@ -883,11 +1676,203 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state, return 0; } +static u32 state_htab_size(struct bpf_verifier_env *env) +{ + return env->prog->len; +} + +static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) +{ + struct bpf_verifier_state *cur = env->cur_state; + struct bpf_func_state *state = cur->frame[cur->curframe]; + + return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; +} + +static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) +{ + int fr; + + if (a->curframe != b->curframe) + return false; + + for (fr = a->curframe; fr >= 0; fr--) + if (a->frame[fr]->callsite != b->frame[fr]->callsite) + return false; + + return true; +} + +/* Open coded iterators allow back-edges in the state graph in order to + * check unbounded loops that iterators. + * + * In is_state_visited() it is necessary to know if explored states are + * part of some loops in order to decide whether non-exact states + * comparison could be used: + * - non-exact states comparison establishes sub-state relation and uses + * read and precision marks to do so, these marks are propagated from + * children states and thus are not guaranteed to be final in a loop; + * - exact states comparison just checks if current and explored states + * are identical (and thus form a back-edge). + * + * Paper "A New Algorithm for Identifying Loops in Decompilation" + * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient + * algorithm for loop structure detection and gives an overview of + * relevant terminology. It also has helpful illustrations. + * + * [1] https://api.semanticscholar.org/CorpusID:15784067 + * + * We use a similar algorithm but because loop nested structure is + * irrelevant for verifier ours is significantly simpler and resembles + * strongly connected components algorithm from Sedgewick's textbook. + * + * Define topmost loop entry as a first node of the loop traversed in a + * depth first search starting from initial state. The goal of the loop + * tracking algorithm is to associate topmost loop entries with states + * derived from these entries. + * + * For each step in the DFS states traversal algorithm needs to identify + * the following situations: + * + * initial initial initial + * | | | + * V V V + * ... ... .---------> hdr + * | | | | + * V V | V + * cur .-> succ | .------... + * | | | | | | + * V | V | V V + * succ '-- cur | ... ... + * | | | + * | V V + * | succ <- cur + * | | + * | V + * | ... + * | | + * '----' + * + * (A) successor state of cur (B) successor state of cur or it's entry + * not yet traversed are in current DFS path, thus cur and succ + * are members of the same outermost loop + * + * initial initial + * | | + * V V + * ... ... + * | | + * V V + * .------... .------... + * | | | | + * V V V V + * .-> hdr ... ... ... + * | | | | | + * | V V V V + * | succ <- cur succ <- cur + * | | | + * | V V + * | ... ... + * | | | + * '----' exit + * + * (C) successor state of cur is a part of some loop but this loop + * does not include cur or successor state is not in a loop at all. + * + * Algorithm could be described as the following python code: + * + * traversed = set() # Set of traversed nodes + * entries = {} # Mapping from node to loop entry + * depths = {} # Depth level assigned to graph node + * path = set() # Current DFS path + * + * # Find outermost loop entry known for n + * def get_loop_entry(n): + * h = entries.get(n, None) + * while h in entries and entries[h] != h: + * h = entries[h] + * return h + * + * # Update n's loop entry if h's outermost entry comes + * # before n's outermost entry in current DFS path. + * def update_loop_entry(n, h): + * n1 = get_loop_entry(n) or n + * h1 = get_loop_entry(h) or h + * if h1 in path and depths[h1] <= depths[n1]: + * entries[n] = h1 + * + * def dfs(n, depth): + * traversed.add(n) + * path.add(n) + * depths[n] = depth + * for succ in G.successors(n): + * if succ not in traversed: + * # Case A: explore succ and update cur's loop entry + * # only if succ's entry is in current DFS path. + * dfs(succ, depth + 1) + * h = get_loop_entry(succ) + * update_loop_entry(n, h) + * else: + * # Case B or C depending on `h1 in path` check in update_loop_entry(). + * update_loop_entry(n, succ) + * path.remove(n) + * + * To adapt this algorithm for use with verifier: + * - use st->branch == 0 as a signal that DFS of succ had been finished + * and cur's loop entry has to be updated (case A), handle this in + * update_branch_counts(); + * - use st->branch > 0 as a signal that st is in the current DFS path; + * - handle cases B and C in is_state_visited(); + * - update topmost loop entry for intermediate states in get_loop_entry(). + */ +static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) +{ + struct bpf_verifier_state *topmost = st->loop_entry, *old; + + while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) + topmost = topmost->loop_entry; + /* Update loop entries for intermediate states to avoid this + * traversal in future get_loop_entry() calls. + */ + while (st && st->loop_entry != topmost) { + old = st->loop_entry; + st->loop_entry = topmost; + st = old; + } + return topmost; +} + +static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) +{ + struct bpf_verifier_state *cur1, *hdr1; + + cur1 = get_loop_entry(cur) ?: cur; + hdr1 = get_loop_entry(hdr) ?: hdr; + /* The head1->branches check decides between cases B and C in + * comment for get_loop_entry(). If hdr1->branches == 0 then + * head's topmost loop entry is not in current DFS path, + * hence 'cur' and 'hdr' are not in the same loop and there is + * no need to update cur->loop_entry. + */ + if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { + cur->loop_entry = hdr; + hdr->used_as_loop_entry = true; + } +} + static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) { while (st) { u32 br = --st->branches; + /* br == 0 signals that DFS exploration for 'st' is finished, + * thus it is necessary to update parent's loop entry if it + * turned out that st is a part of some loop. + * This is a part of 'case A' in get_loop_entry() comment. + */ + if (br == 0 && st->parent && st->loop_entry) + update_loop_entry(st->parent, st->loop_entry); + /* WARN_ON(br > 1) technically makes sense here, * but see comment in push_stack(), hence: */ @@ -944,7 +1929,7 @@ static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, elem->insn_idx = insn_idx; elem->prev_insn_idx = prev_insn_idx; elem->next = env->head; - elem->log_pos = env->log.len_used; + elem->log_pos = env->log.end_pos; env->head = elem; env->stack_size++; err = copy_verifier_state(&elem->st, cur); @@ -982,17 +1967,9 @@ static const int caller_saved[CALLER_SAVED_REGS] = { BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 }; -static void __mark_reg_not_init(const struct bpf_verifier_env *env, - struct bpf_reg_state *reg); - -/* Mark the unknown part of a register (variable offset or scalar value) as - * known to have the value @imm. - */ -static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) +/* This helper doesn't clear reg->id */ +static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) { - /* Clear id, off, and union(map_ptr, range) */ - memset(((u8 *)reg) + sizeof(reg->type), 0, - offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); reg->var_off = tnum_const(imm); reg->smin_value = (s64)imm; reg->smax_value = (s64)imm; @@ -1005,6 +1982,19 @@ static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) reg->u32_max_value = (u32)imm; } +/* Mark the unknown part of a register (variable offset or scalar value) as + * known to have the value @imm. + */ +static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) +{ + /* Clear off and union(map_ptr, range) */ + memset(((u8 *)reg) + sizeof(reg->type), 0, + offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); + reg->id = 0; + reg->ref_obj_id = 0; + ___mark_reg_known(reg, imm); +} + static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) { reg->var_off = tnum_const_subreg(reg->var_off, imm); @@ -1022,10 +2012,14 @@ static void __mark_reg_known_zero(struct bpf_reg_state *reg) __mark_reg_known(reg, 0); } -static void __mark_reg_const_zero(struct bpf_reg_state *reg) +static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) { __mark_reg_known(reg, 0); reg->type = SCALAR_VALUE; + /* all scalars are assumed imprecise initially (unless unprivileged, + * in which case everything is forced to be precise) + */ + reg->precise = !env->bpf_capable; } static void mark_reg_known_zero(struct bpf_verifier_env *env, @@ -1041,6 +2035,60 @@ static void mark_reg_known_zero(struct bpf_verifier_env *env, __mark_reg_known_zero(regs + regno); } +static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, + bool first_slot, int dynptr_id) +{ + /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for + * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply + * set it unconditionally as it is ignored for STACK_DYNPTR anyway. + */ + __mark_reg_known_zero(reg); + reg->type = CONST_PTR_TO_DYNPTR; + /* Give each dynptr a unique id to uniquely associate slices to it. */ + reg->id = dynptr_id; + reg->dynptr.type = type; + reg->dynptr.first_slot = first_slot; +} + +static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) +{ + if (base_type(reg->type) == PTR_TO_MAP_VALUE) { + const struct bpf_map *map = reg->map_ptr; + + if (map->inner_map_meta) { + reg->type = CONST_PTR_TO_MAP; + reg->map_ptr = map->inner_map_meta; + /* transfer reg's id which is unique for every map_lookup_elem + * as UID of the inner map. + */ + if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) + reg->map_uid = reg->id; + if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) + reg->map_uid = reg->id; + } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { + reg->type = PTR_TO_XDP_SOCK; + } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || + map->map_type == BPF_MAP_TYPE_SOCKHASH) { + reg->type = PTR_TO_SOCKET; + } else { + reg->type = PTR_TO_MAP_VALUE; + } + return; + } + + reg->type &= ~PTR_MAYBE_NULL; +} + +static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, + struct btf_field_graph_root *ds_head) +{ + __mark_reg_known_zero(®s[regno]); + regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; + regs[regno].btf = ds_head->btf; + regs[regno].btf_id = ds_head->value_btf_id; + regs[regno].off = ds_head->node_offset; +} + static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) { return type_is_pkt_pointer(reg->type); @@ -1052,6 +2100,12 @@ static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) reg->type == PTR_TO_PACKET_END; } +static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) +{ + return base_type(reg->type) == PTR_TO_MEM && + (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); +} + /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, enum bpf_reg_type which) @@ -1133,69 +2187,252 @@ static void __update_reg_bounds(struct bpf_reg_state *reg) /* Uses signed min/max values to inform unsigned, and vice-versa */ static void __reg32_deduce_bounds(struct bpf_reg_state *reg) { - /* Learn sign from signed bounds. - * If we cannot cross the sign boundary, then signed and unsigned bounds - * are the same, so combine. This works even in the negative case, e.g. - * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. + /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 + * bits to improve our u32/s32 boundaries. + * + * E.g., the case where we have upper 32 bits as zero ([10, 20] in + * u64) is pretty trivial, it's obvious that in u32 we'll also have + * [10, 20] range. But this property holds for any 64-bit range as + * long as upper 32 bits in that entire range of values stay the same. + * + * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] + * in decimal) has the same upper 32 bits throughout all the values in + * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) + * range. + * + * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, + * following the rules outlined below about u64/s64 correspondence + * (which equally applies to u32 vs s32 correspondence). In general it + * depends on actual hexadecimal values of 32-bit range. They can form + * only valid u32, or only valid s32 ranges in some cases. + * + * So we use all these insights to derive bounds for subregisters here. */ - if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { - reg->s32_min_value = reg->u32_min_value = - max_t(u32, reg->s32_min_value, reg->u32_min_value); - reg->s32_max_value = reg->u32_max_value = - min_t(u32, reg->s32_max_value, reg->u32_max_value); - return; + if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { + /* u64 to u32 casting preserves validity of low 32 bits as + * a range, if upper 32 bits are the same + */ + reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); + reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); + + if ((s32)reg->umin_value <= (s32)reg->umax_value) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); + } } - /* Learn sign from unsigned bounds. Signed bounds cross the sign - * boundary, so we must be careful. + if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { + /* low 32 bits should form a proper u32 range */ + if ((u32)reg->smin_value <= (u32)reg->smax_value) { + reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); + reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); + } + /* low 32 bits should form a proper s32 range */ + if ((s32)reg->smin_value <= (s32)reg->smax_value) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); + } + } + /* Special case where upper bits form a small sequence of two + * sequential numbers (in 32-bit unsigned space, so 0xffffffff to + * 0x00000000 is also valid), while lower bits form a proper s32 range + * going from negative numbers to positive numbers. E.g., let's say we + * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). + * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, + * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, + * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). + * Note that it doesn't have to be 0xffffffff going to 0x00000000 in + * upper 32 bits. As a random example, s64 range + * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range + * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. */ - if ((s32)reg->u32_max_value >= 0) { - /* Positive. We can't learn anything from the smin, but smax - * is positive, hence safe. - */ - reg->s32_min_value = reg->u32_min_value; - reg->s32_max_value = reg->u32_max_value = - min_t(u32, reg->s32_max_value, reg->u32_max_value); - } else if ((s32)reg->u32_min_value < 0) { - /* Negative. We can't learn anything from the smax, but smin - * is negative, hence safe. - */ - reg->s32_min_value = reg->u32_min_value = - max_t(u32, reg->s32_min_value, reg->u32_min_value); - reg->s32_max_value = reg->u32_max_value; + if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && + (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); + } + if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && + (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); + } + /* if u32 range forms a valid s32 range (due to matching sign bit), + * try to learn from that + */ + if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); + } + /* If we cannot cross the sign boundary, then signed and unsigned bounds + * are the same, so combine. This works even in the negative case, e.g. + * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. + */ + if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { + reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); + reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); } } static void __reg64_deduce_bounds(struct bpf_reg_state *reg) { - /* Learn sign from signed bounds. - * If we cannot cross the sign boundary, then signed and unsigned bounds + /* If u64 range forms a valid s64 range (due to matching sign bit), + * try to learn from that. Let's do a bit of ASCII art to see when + * this is happening. Let's take u64 range first: + * + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * + * Valid u64 range is formed when umin and umax are anywhere in the + * range [0, U64_MAX], and umin <= umax. u64 case is simple and + * straightforward. Let's see how s64 range maps onto the same range + * of values, annotated below the line for comparison: + * + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * 0 S64_MAX S64_MIN -1 + * + * So s64 values basically start in the middle and they are logically + * contiguous to the right of it, wrapping around from -1 to 0, and + * then finishing as S64_MAX (0x7fffffffffffffff) right before + * S64_MIN. We can try drawing the continuity of u64 vs s64 values + * more visually as mapped to sign-agnostic range of hex values. + * + * u64 start u64 end + * _______________________________________________________________ + * / \ + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * 0 S64_MAX S64_MIN -1 + * / \ + * >------------------------------ -------------------------------> + * s64 continues... s64 end s64 start s64 "midpoint" + * + * What this means is that, in general, we can't always derive + * something new about u64 from any random s64 range, and vice versa. + * + * But we can do that in two particular cases. One is when entire + * u64/s64 range is *entirely* contained within left half of the above + * diagram or when it is *entirely* contained in the right half. I.e.: + * + * |-------------------------------|--------------------------------| + * ^ ^ ^ ^ + * A B C D + * + * [A, B] and [C, D] are contained entirely in their respective halves + * and form valid contiguous ranges as both u64 and s64 values. [A, B] + * will be non-negative both as u64 and s64 (and in fact it will be + * identical ranges no matter the signedness). [C, D] treated as s64 + * will be a range of negative values, while in u64 it will be + * non-negative range of values larger than 0x8000000000000000. + * + * Now, any other range here can't be represented in both u64 and s64 + * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid + * contiguous u64 ranges, but they are discontinuous in s64. [B, C] + * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], + * for example. Similarly, valid s64 range [D, A] (going from negative + * to positive values), would be two separate [D, U64_MAX] and [0, A] + * ranges as u64. Currently reg_state can't represent two segments per + * numeric domain, so in such situations we can only derive maximal + * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). + * + * So we use these facts to derive umin/umax from smin/smax and vice + * versa only if they stay within the same "half". This is equivalent + * to checking sign bit: lower half will have sign bit as zero, upper + * half have sign bit 1. Below in code we simplify this by just + * casting umin/umax as smin/smax and checking if they form valid + * range, and vice versa. Those are equivalent checks. + */ + if ((s64)reg->umin_value <= (s64)reg->umax_value) { + reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); + reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); + } + /* If we cannot cross the sign boundary, then signed and unsigned bounds * are the same, so combine. This works even in the negative case, e.g. * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. */ - if (reg->smin_value >= 0 || reg->smax_value < 0) { - reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, - reg->umin_value); - reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, - reg->umax_value); - return; + if ((u64)reg->smin_value <= (u64)reg->smax_value) { + reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); + reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); } - /* Learn sign from unsigned bounds. Signed bounds cross the sign - * boundary, so we must be careful. +} + +static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) +{ + /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit + * values on both sides of 64-bit range in hope to have tighter range. + * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from + * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. + * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound + * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of + * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a + * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. + * We just need to make sure that derived bounds we are intersecting + * with are well-formed ranges in respective s64 or u64 domain, just + * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. */ - if ((s64)reg->umax_value >= 0) { - /* Positive. We can't learn anything from the smin, but smax - * is positive, hence safe. - */ - reg->smin_value = reg->umin_value; - reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, - reg->umax_value); - } else if ((s64)reg->umin_value < 0) { - /* Negative. We can't learn anything from the smax, but smin - * is negative, hence safe. - */ - reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, - reg->umin_value); - reg->smax_value = reg->umax_value; + __u64 new_umin, new_umax; + __s64 new_smin, new_smax; + + /* u32 -> u64 tightening, it's always well-formed */ + new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; + new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; + reg->umin_value = max_t(u64, reg->umin_value, new_umin); + reg->umax_value = min_t(u64, reg->umax_value, new_umax); + /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ + new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; + new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; + reg->smin_value = max_t(s64, reg->smin_value, new_smin); + reg->smax_value = min_t(s64, reg->smax_value, new_smax); + + /* if s32 can be treated as valid u32 range, we can use it as well */ + if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { + /* s32 -> u64 tightening */ + new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; + new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; + reg->umin_value = max_t(u64, reg->umin_value, new_umin); + reg->umax_value = min_t(u64, reg->umax_value, new_umax); + /* s32 -> s64 tightening */ + new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; + new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; + reg->smin_value = max_t(s64, reg->smin_value, new_smin); + reg->smax_value = min_t(s64, reg->smax_value, new_smax); + } + + /* Here we would like to handle a special case after sign extending load, + * when upper bits for a 64-bit range are all 1s or all 0s. + * + * Upper bits are all 1s when register is in a range: + * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] + * Upper bits are all 0s when register is in a range: + * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] + * Together this forms are continuous range: + * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] + * + * Now, suppose that register range is in fact tighter: + * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) + * Also suppose that it's 32-bit range is positive, + * meaning that lower 32-bits of the full 64-bit register + * are in the range: + * [0x0000_0000, 0x7fff_ffff] (W) + * + * If this happens, then any value in a range: + * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] + * is smaller than a lowest bound of the range (R): + * 0xffff_ffff_8000_0000 + * which means that upper bits of the full 64-bit register + * can't be all 1s, when lower bits are in range (W). + * + * Note that: + * - 0xffff_ffff_8000_0000 == (s64)S32_MIN + * - 0x0000_0000_7fff_ffff == (s64)S32_MAX + * These relations are used in the conditions below. + */ + if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { + reg->smin_value = reg->s32_min_value; + reg->smax_value = reg->s32_max_value; + reg->umin_value = reg->s32_min_value; + reg->umax_value = reg->s32_max_value; + reg->var_off = tnum_intersect(reg->var_off, + tnum_range(reg->smin_value, reg->smax_value)); } } @@ -1203,6 +2440,7 @@ static void __reg_deduce_bounds(struct bpf_reg_state *reg) { __reg32_deduce_bounds(reg); __reg64_deduce_bounds(reg); + __reg_deduce_mixed_bounds(reg); } /* Attempts to improve var_off based on unsigned min/max information */ @@ -1211,112 +2449,130 @@ static void __reg_bound_offset(struct bpf_reg_state *reg) struct tnum var64_off = tnum_intersect(reg->var_off, tnum_range(reg->umin_value, reg->umax_value)); - struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), - tnum_range(reg->u32_min_value, - reg->u32_max_value)); + struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), + tnum_range(reg->u32_min_value, + reg->u32_max_value)); reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); } -static void __reg_assign_32_into_64(struct bpf_reg_state *reg) +static void reg_bounds_sync(struct bpf_reg_state *reg) { - reg->umin_value = reg->u32_min_value; - reg->umax_value = reg->u32_max_value; - /* Attempt to pull 32-bit signed bounds into 64-bit bounds - * but must be positive otherwise set to worse case bounds - * and refine later from tnum. - */ - if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) - reg->smax_value = reg->s32_max_value; - else - reg->smax_value = U32_MAX; - if (reg->s32_min_value >= 0) - reg->smin_value = reg->s32_min_value; - else - reg->smin_value = 0; -} - -static void __reg_combine_32_into_64(struct bpf_reg_state *reg) -{ - /* special case when 64-bit register has upper 32-bit register - * zeroed. Typically happens after zext or <<32, >>32 sequence - * allowing us to use 32-bit bounds directly, - */ - if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { - __reg_assign_32_into_64(reg); - } else { - /* Otherwise the best we can do is push lower 32bit known and - * unknown bits into register (var_off set from jmp logic) - * then learn as much as possible from the 64-bit tnum - * known and unknown bits. The previous smin/smax bounds are - * invalid here because of jmp32 compare so mark them unknown - * so they do not impact tnum bounds calculation. - */ - __mark_reg64_unbounded(reg); - __update_reg_bounds(reg); - } - + /* We might have learned new bounds from the var_off. */ + __update_reg_bounds(reg); + /* We might have learned something about the sign bit. */ + __reg_deduce_bounds(reg); + __reg_deduce_bounds(reg); + /* We might have learned some bits from the bounds. */ + __reg_bound_offset(reg); /* Intersecting with the old var_off might have improved our bounds - * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), + * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), * then new var_off is (0; 0x7f...fc) which improves our umax. */ - __reg_deduce_bounds(reg); - __reg_bound_offset(reg); __update_reg_bounds(reg); } -static bool __reg64_bound_s32(s64 a) +static int reg_bounds_sanity_check(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, const char *ctx) { - if (a > S32_MIN && a < S32_MAX) - return true; - return false; + const char *msg; + + if (reg->umin_value > reg->umax_value || + reg->smin_value > reg->smax_value || + reg->u32_min_value > reg->u32_max_value || + reg->s32_min_value > reg->s32_max_value) { + msg = "range bounds violation"; + goto out; + } + + if (tnum_is_const(reg->var_off)) { + u64 uval = reg->var_off.value; + s64 sval = (s64)uval; + + if (reg->umin_value != uval || reg->umax_value != uval || + reg->smin_value != sval || reg->smax_value != sval) { + msg = "const tnum out of sync with range bounds"; + goto out; + } + } + + if (tnum_subreg_is_const(reg->var_off)) { + u32 uval32 = tnum_subreg(reg->var_off).value; + s32 sval32 = (s32)uval32; + + if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || + reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { + msg = "const subreg tnum out of sync with range bounds"; + goto out; + } + } + + return 0; +out: + verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " + "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", + ctx, msg, reg->umin_value, reg->umax_value, + reg->smin_value, reg->smax_value, + reg->u32_min_value, reg->u32_max_value, + reg->s32_min_value, reg->s32_max_value, + reg->var_off.value, reg->var_off.mask); + if (env->test_reg_invariants) + return -EFAULT; + __mark_reg_unbounded(reg); + return 0; } -static bool __reg64_bound_u32(u64 a) +static bool __reg32_bound_s64(s32 a) { - if (a > U32_MIN && a < U32_MAX) - return true; - return false; + return a >= 0 && a <= S32_MAX; } -static void __reg_combine_64_into_32(struct bpf_reg_state *reg) +static void __reg_assign_32_into_64(struct bpf_reg_state *reg) { - __mark_reg32_unbounded(reg); - - if (__reg64_bound_s32(reg->smin_value)) - reg->s32_min_value = (s32)reg->smin_value; - if (__reg64_bound_s32(reg->smax_value)) - reg->s32_max_value = (s32)reg->smax_value; - if (__reg64_bound_u32(reg->umin_value)) - reg->u32_min_value = (u32)reg->umin_value; - if (__reg64_bound_u32(reg->umax_value)) - reg->u32_max_value = (u32)reg->umax_value; + reg->umin_value = reg->u32_min_value; + reg->umax_value = reg->u32_max_value; - /* Intersecting with the old var_off might have improved our bounds - * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), - * then new var_off is (0; 0x7f...fc) which improves our umax. + /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must + * be positive otherwise set to worse case bounds and refine later + * from tnum. */ - __reg_deduce_bounds(reg); - __reg_bound_offset(reg); - __update_reg_bounds(reg); + if (__reg32_bound_s64(reg->s32_min_value) && + __reg32_bound_s64(reg->s32_max_value)) { + reg->smin_value = reg->s32_min_value; + reg->smax_value = reg->s32_max_value; + } else { + reg->smin_value = 0; + reg->smax_value = U32_MAX; + } } /* Mark a register as having a completely unknown (scalar) value. */ -static void __mark_reg_unknown(const struct bpf_verifier_env *env, - struct bpf_reg_state *reg) +static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) { /* - * Clear type, id, off, and union(map_ptr, range) and + * Clear type, off, and union(map_ptr, range) and * padding between 'type' and union */ memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); reg->type = SCALAR_VALUE; + reg->id = 0; + reg->ref_obj_id = 0; reg->var_off = tnum_unknown; reg->frameno = 0; - reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; + reg->precise = false; __mark_reg_unbounded(reg); } +/* Mark a register as having a completely unknown (scalar) value, + * initialize .precise as true when not bpf capable. + */ +static void __mark_reg_unknown(const struct bpf_verifier_env *env, + struct bpf_reg_state *reg) +{ + __mark_reg_unknown_imprecise(reg); + reg->precise = !env->bpf_capable; +} + static void mark_reg_unknown(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno) { @@ -1330,6 +2586,25 @@ static void mark_reg_unknown(struct bpf_verifier_env *env, __mark_reg_unknown(env, regs + regno); } +static int __mark_reg_s32_range(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, + u32 regno, + s32 s32_min, + s32 s32_max) +{ + struct bpf_reg_state *reg = regs + regno; + + reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); + reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); + + reg->smin_value = max_t(s64, reg->smin_value, s32_min); + reg->smax_value = min_t(s64, reg->smax_value, s32_max); + + reg_bounds_sync(reg); + + return reg_bounds_sanity_check(env, reg, "s32_range"); +} + static void __mark_reg_not_init(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) { @@ -1350,6 +2625,24 @@ static void mark_reg_not_init(struct bpf_verifier_env *env, __mark_reg_not_init(env, regs + regno); } +static void mark_btf_ld_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, u32 regno, + enum bpf_reg_type reg_type, + struct btf *btf, u32 btf_id, + enum bpf_type_flag flag) +{ + if (reg_type == SCALAR_VALUE) { + mark_reg_unknown(env, regs, regno); + return; + } + mark_reg_known_zero(env, regs, regno); + regs[regno].type = PTR_TO_BTF_ID | flag; + regs[regno].btf = btf; + regs[regno].btf_id = btf_id; + if (type_may_be_null(flag)) + regs[regno].id = ++env->id_gen; +} + #define DEF_NOT_SUBREG (0) static void init_reg_state(struct bpf_verifier_env *env, struct bpf_func_state *state) @@ -1370,6 +2663,11 @@ static void init_reg_state(struct bpf_verifier_env *env, regs[BPF_REG_FP].frameno = state->frameno; } +static struct bpf_retval_range retval_range(s32 minval, s32 maxval) +{ + return (struct bpf_retval_range){ minval, maxval }; +} + #define BPF_MAIN_FUNC (-1) static void init_func_state(struct bpf_verifier_env *env, struct bpf_func_state *state, @@ -1378,9 +2676,65 @@ static void init_func_state(struct bpf_verifier_env *env, state->callsite = callsite; state->frameno = frameno; state->subprogno = subprogno; + state->callback_ret_range = retval_range(0, 0); init_reg_state(env, state); + mark_verifier_state_scratched(env); } +/* Similar to push_stack(), but for async callbacks */ +static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, + int insn_idx, int prev_insn_idx, + int subprog, bool is_sleepable) +{ + struct bpf_verifier_stack_elem *elem; + struct bpf_func_state *frame; + + elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); + if (!elem) + goto err; + + elem->insn_idx = insn_idx; + elem->prev_insn_idx = prev_insn_idx; + elem->next = env->head; + elem->log_pos = env->log.end_pos; + env->head = elem; + env->stack_size++; + if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { + verbose(env, + "The sequence of %d jumps is too complex for async cb.\n", + env->stack_size); + goto err; + } + /* Unlike push_stack() do not copy_verifier_state(). + * The caller state doesn't matter. + * This is async callback. It starts in a fresh stack. + * Initialize it similar to do_check_common(). + * But we do need to make sure to not clobber insn_hist, so we keep + * chaining insn_hist_start/insn_hist_end indices as for a normal + * child state. + */ + elem->st.branches = 1; + elem->st.in_sleepable = is_sleepable; + elem->st.insn_hist_start = env->cur_state->insn_hist_end; + elem->st.insn_hist_end = elem->st.insn_hist_start; + frame = kzalloc(sizeof(*frame), GFP_KERNEL); + if (!frame) + goto err; + init_func_state(env, frame, + BPF_MAIN_FUNC /* callsite */, + 0 /* frameno within this callchain */, + subprog /* subprog number within this prog */); + elem->st.frame[0] = frame; + return &elem->st; +err: + free_verifier_state(env->cur_state, true); + env->cur_state = NULL; + /* pop all elements and return */ + while (!pop_stack(env, NULL, NULL, false)); + return NULL; +} + + enum reg_arg_type { SRC_OP, /* register is used as source operand */ DST_OP, /* register is used as destination operand */ @@ -1393,16 +2747,36 @@ static int cmp_subprogs(const void *a, const void *b) ((struct bpf_subprog_info *)b)->start; } +/* Find subprogram that contains instruction at 'off' */ +static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off) +{ + struct bpf_subprog_info *vals = env->subprog_info; + int l, r, m; + + if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) + return NULL; + + l = 0; + r = env->subprog_cnt - 1; + while (l < r) { + m = l + (r - l + 1) / 2; + if (vals[m].start <= off) + l = m; + else + r = m - 1; + } + return &vals[l]; +} + +/* Find subprogram that starts exactly at 'off' */ static int find_subprog(struct bpf_verifier_env *env, int off) { struct bpf_subprog_info *p; - p = bsearch(&off, env->subprog_info, env->subprog_cnt, - sizeof(env->subprog_info[0]), cmp_subprogs); - if (!p) + p = find_containing_subprog(env, off); + if (!p || p->start != off) return -ENOENT; return p - env->subprog_info; - } static int add_subprog(struct bpf_verifier_env *env, int off) @@ -1416,45 +2790,473 @@ static int add_subprog(struct bpf_verifier_env *env, int off) } ret = find_subprog(env, off); if (ret >= 0) - return 0; + return ret; if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { verbose(env, "too many subprograms\n"); return -E2BIG; } + /* determine subprog starts. The end is one before the next starts */ env->subprog_info[env->subprog_cnt++].start = off; sort(env->subprog_info, env->subprog_cnt, sizeof(env->subprog_info[0]), cmp_subprogs, NULL); + return env->subprog_cnt - 1; +} + +static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) +{ + struct bpf_prog_aux *aux = env->prog->aux; + struct btf *btf = aux->btf; + const struct btf_type *t; + u32 main_btf_id, id; + const char *name; + int ret, i; + + /* Non-zero func_info_cnt implies valid btf */ + if (!aux->func_info_cnt) + return 0; + main_btf_id = aux->func_info[0].type_id; + + t = btf_type_by_id(btf, main_btf_id); + if (!t) { + verbose(env, "invalid btf id for main subprog in func_info\n"); + return -EINVAL; + } + + name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); + if (IS_ERR(name)) { + ret = PTR_ERR(name); + /* If there is no tag present, there is no exception callback */ + if (ret == -ENOENT) + ret = 0; + else if (ret == -EEXIST) + verbose(env, "multiple exception callback tags for main subprog\n"); + return ret; + } + + ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); + if (ret < 0) { + verbose(env, "exception callback '%s' could not be found in BTF\n", name); + return ret; + } + id = ret; + t = btf_type_by_id(btf, id); + if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { + verbose(env, "exception callback '%s' must have global linkage\n", name); + return -EINVAL; + } + ret = 0; + for (i = 0; i < aux->func_info_cnt; i++) { + if (aux->func_info[i].type_id != id) + continue; + ret = aux->func_info[i].insn_off; + /* Further func_info and subprog checks will also happen + * later, so assume this is the right insn_off for now. + */ + if (!ret) { + verbose(env, "invalid exception callback insn_off in func_info: 0\n"); + ret = -EINVAL; + } + } + if (!ret) { + verbose(env, "exception callback type id not found in func_info\n"); + ret = -EINVAL; + } + return ret; +} + +#define MAX_KFUNC_DESCS 256 +#define MAX_KFUNC_BTFS 256 + +struct bpf_kfunc_desc { + struct btf_func_model func_model; + u32 func_id; + s32 imm; + u16 offset; + unsigned long addr; +}; + +struct bpf_kfunc_btf { + struct btf *btf; + struct module *module; + u16 offset; +}; + +struct bpf_kfunc_desc_tab { + /* Sorted by func_id (BTF ID) and offset (fd_array offset) during + * verification. JITs do lookups by bpf_insn, where func_id may not be + * available, therefore at the end of verification do_misc_fixups() + * sorts this by imm and offset. + */ + struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; + u32 nr_descs; +}; + +struct bpf_kfunc_btf_tab { + struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; + u32 nr_descs; +}; + +static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) +{ + const struct bpf_kfunc_desc *d0 = a; + const struct bpf_kfunc_desc *d1 = b; + + /* func_id is not greater than BTF_MAX_TYPE */ + return d0->func_id - d1->func_id ?: d0->offset - d1->offset; +} + +static int kfunc_btf_cmp_by_off(const void *a, const void *b) +{ + const struct bpf_kfunc_btf *d0 = a; + const struct bpf_kfunc_btf *d1 = b; + + return d0->offset - d1->offset; +} + +static const struct bpf_kfunc_desc * +find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) +{ + struct bpf_kfunc_desc desc = { + .func_id = func_id, + .offset = offset, + }; + struct bpf_kfunc_desc_tab *tab; + + tab = prog->aux->kfunc_tab; + return bsearch(&desc, tab->descs, tab->nr_descs, + sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); +} + +int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, + u16 btf_fd_idx, u8 **func_addr) +{ + const struct bpf_kfunc_desc *desc; + + desc = find_kfunc_desc(prog, func_id, btf_fd_idx); + if (!desc) + return -EFAULT; + + *func_addr = (u8 *)desc->addr; return 0; } -static int check_subprogs(struct bpf_verifier_env *env) +static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, + s16 offset) +{ + struct bpf_kfunc_btf kf_btf = { .offset = offset }; + struct bpf_kfunc_btf_tab *tab; + struct bpf_kfunc_btf *b; + struct module *mod; + struct btf *btf; + int btf_fd; + + tab = env->prog->aux->kfunc_btf_tab; + b = bsearch(&kf_btf, tab->descs, tab->nr_descs, + sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); + if (!b) { + if (tab->nr_descs == MAX_KFUNC_BTFS) { + verbose(env, "too many different module BTFs\n"); + return ERR_PTR(-E2BIG); + } + + if (bpfptr_is_null(env->fd_array)) { + verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); + return ERR_PTR(-EPROTO); + } + + if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, + offset * sizeof(btf_fd), + sizeof(btf_fd))) + return ERR_PTR(-EFAULT); + + btf = btf_get_by_fd(btf_fd); + if (IS_ERR(btf)) { + verbose(env, "invalid module BTF fd specified\n"); + return btf; + } + + if (!btf_is_module(btf)) { + verbose(env, "BTF fd for kfunc is not a module BTF\n"); + btf_put(btf); + return ERR_PTR(-EINVAL); + } + + mod = btf_try_get_module(btf); + if (!mod) { + btf_put(btf); + return ERR_PTR(-ENXIO); + } + + b = &tab->descs[tab->nr_descs++]; + b->btf = btf; + b->module = mod; + b->offset = offset; + + /* sort() reorders entries by value, so b may no longer point + * to the right entry after this + */ + sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), + kfunc_btf_cmp_by_off, NULL); + } else { + btf = b->btf; + } + + return btf; +} + +void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) +{ + if (!tab) + return; + + while (tab->nr_descs--) { + module_put(tab->descs[tab->nr_descs].module); + btf_put(tab->descs[tab->nr_descs].btf); + } + kfree(tab); +} + +static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) +{ + if (offset) { + if (offset < 0) { + /* In the future, this can be allowed to increase limit + * of fd index into fd_array, interpreted as u16. + */ + verbose(env, "negative offset disallowed for kernel module function call\n"); + return ERR_PTR(-EINVAL); + } + + return __find_kfunc_desc_btf(env, offset); + } + return btf_vmlinux ?: ERR_PTR(-ENOENT); +} + +static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) +{ + const struct btf_type *func, *func_proto; + struct bpf_kfunc_btf_tab *btf_tab; + struct bpf_kfunc_desc_tab *tab; + struct bpf_prog_aux *prog_aux; + struct bpf_kfunc_desc *desc; + const char *func_name; + struct btf *desc_btf; + unsigned long call_imm; + unsigned long addr; + int err; + + prog_aux = env->prog->aux; + tab = prog_aux->kfunc_tab; + btf_tab = prog_aux->kfunc_btf_tab; + if (!tab) { + if (!btf_vmlinux) { + verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); + return -ENOTSUPP; + } + + if (!env->prog->jit_requested) { + verbose(env, "JIT is required for calling kernel function\n"); + return -ENOTSUPP; + } + + if (!bpf_jit_supports_kfunc_call()) { + verbose(env, "JIT does not support calling kernel function\n"); + return -ENOTSUPP; + } + + if (!env->prog->gpl_compatible) { + verbose(env, "cannot call kernel function from non-GPL compatible program\n"); + return -EINVAL; + } + + tab = kzalloc(sizeof(*tab), GFP_KERNEL); + if (!tab) + return -ENOMEM; + prog_aux->kfunc_tab = tab; + } + + /* func_id == 0 is always invalid, but instead of returning an error, be + * conservative and wait until the code elimination pass before returning + * error, so that invalid calls that get pruned out can be in BPF programs + * loaded from userspace. It is also required that offset be untouched + * for such calls. + */ + if (!func_id && !offset) + return 0; + + if (!btf_tab && offset) { + btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); + if (!btf_tab) + return -ENOMEM; + prog_aux->kfunc_btf_tab = btf_tab; + } + + desc_btf = find_kfunc_desc_btf(env, offset); + if (IS_ERR(desc_btf)) { + verbose(env, "failed to find BTF for kernel function\n"); + return PTR_ERR(desc_btf); + } + + if (find_kfunc_desc(env->prog, func_id, offset)) + return 0; + + if (tab->nr_descs == MAX_KFUNC_DESCS) { + verbose(env, "too many different kernel function calls\n"); + return -E2BIG; + } + + func = btf_type_by_id(desc_btf, func_id); + if (!func || !btf_type_is_func(func)) { + verbose(env, "kernel btf_id %u is not a function\n", + func_id); + return -EINVAL; + } + func_proto = btf_type_by_id(desc_btf, func->type); + if (!func_proto || !btf_type_is_func_proto(func_proto)) { + verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", + func_id); + return -EINVAL; + } + + func_name = btf_name_by_offset(desc_btf, func->name_off); + addr = kallsyms_lookup_name(func_name); + if (!addr) { + verbose(env, "cannot find address for kernel function %s\n", + func_name); + return -EINVAL; + } + specialize_kfunc(env, func_id, offset, &addr); + + if (bpf_jit_supports_far_kfunc_call()) { + call_imm = func_id; + } else { + call_imm = BPF_CALL_IMM(addr); + /* Check whether the relative offset overflows desc->imm */ + if ((unsigned long)(s32)call_imm != call_imm) { + verbose(env, "address of kernel function %s is out of range\n", + func_name); + return -EINVAL; + } + } + + if (bpf_dev_bound_kfunc_id(func_id)) { + err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); + if (err) + return err; + } + + desc = &tab->descs[tab->nr_descs++]; + desc->func_id = func_id; + desc->imm = call_imm; + desc->offset = offset; + desc->addr = addr; + err = btf_distill_func_proto(&env->log, desc_btf, + func_proto, func_name, + &desc->func_model); + if (!err) + sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), + kfunc_desc_cmp_by_id_off, NULL); + return err; +} + +static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) +{ + const struct bpf_kfunc_desc *d0 = a; + const struct bpf_kfunc_desc *d1 = b; + + if (d0->imm != d1->imm) + return d0->imm < d1->imm ? -1 : 1; + if (d0->offset != d1->offset) + return d0->offset < d1->offset ? -1 : 1; + return 0; +} + +static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) +{ + struct bpf_kfunc_desc_tab *tab; + + tab = prog->aux->kfunc_tab; + if (!tab) + return; + + sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), + kfunc_desc_cmp_by_imm_off, NULL); +} + +bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) +{ + return !!prog->aux->kfunc_tab; +} + +const struct btf_func_model * +bpf_jit_find_kfunc_model(const struct bpf_prog *prog, + const struct bpf_insn *insn) +{ + const struct bpf_kfunc_desc desc = { + .imm = insn->imm, + .offset = insn->off, + }; + const struct bpf_kfunc_desc *res; + struct bpf_kfunc_desc_tab *tab; + + tab = prog->aux->kfunc_tab; + res = bsearch(&desc, tab->descs, tab->nr_descs, + sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); + + return res ? &res->func_model : NULL; +} + +static int add_subprog_and_kfunc(struct bpf_verifier_env *env) { - int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; struct bpf_subprog_info *subprog = env->subprog_info; + int i, ret, insn_cnt = env->prog->len, ex_cb_insn; struct bpf_insn *insn = env->prog->insnsi; - int insn_cnt = env->prog->len; /* Add entry function. */ ret = add_subprog(env, 0); - if (ret < 0) + if (ret) return ret; - /* determine subprog starts. The end is one before the next starts */ - for (i = 0; i < insn_cnt; i++) { - if (insn[i].code != (BPF_JMP | BPF_CALL)) - continue; - if (insn[i].src_reg != BPF_PSEUDO_CALL) + for (i = 0; i < insn_cnt; i++, insn++) { + if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && + !bpf_pseudo_kfunc_call(insn)) continue; + if (!env->bpf_capable) { - verbose(env, - "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); + verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); return -EPERM; } - ret = add_subprog(env, i + insn[i].imm + 1); + + if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) + ret = add_subprog(env, i + insn->imm + 1); + else + ret = add_kfunc_call(env, insn->imm, insn->off); + if (ret < 0) return ret; } + ret = bpf_find_exception_callback_insn_off(env); + if (ret < 0) + return ret; + ex_cb_insn = ret; + + /* If ex_cb_insn > 0, this means that the main program has a subprog + * marked using BTF decl tag to serve as the exception callback. + */ + if (ex_cb_insn) { + ret = add_subprog(env, ex_cb_insn); + if (ret < 0) + return ret; + for (i = 1; i < env->subprog_cnt; i++) { + if (env->subprog_info[i].start != ex_cb_insn) + continue; + env->exception_callback_subprog = i; + mark_subprog_exc_cb(env, i); + break; + } + } + /* Add a fake 'exit' subprog which could simplify subprog iteration * logic. 'subprog_cnt' should not be increased. */ @@ -1464,17 +3266,39 @@ static int check_subprogs(struct bpf_verifier_env *env) for (i = 0; i < env->subprog_cnt; i++) verbose(env, "func#%d @%d\n", i, subprog[i].start); + return 0; +} + +static int check_subprogs(struct bpf_verifier_env *env) +{ + int i, subprog_start, subprog_end, off, cur_subprog = 0; + struct bpf_subprog_info *subprog = env->subprog_info; + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + /* now check that all jumps are within the same subprog */ subprog_start = subprog[cur_subprog].start; subprog_end = subprog[cur_subprog + 1].start; for (i = 0; i < insn_cnt; i++) { u8 code = insn[i].code; + if (code == (BPF_JMP | BPF_CALL) && + insn[i].src_reg == 0 && + insn[i].imm == BPF_FUNC_tail_call) { + subprog[cur_subprog].has_tail_call = true; + subprog[cur_subprog].tail_call_reachable = true; + } + if (BPF_CLASS(code) == BPF_LD && + (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) + subprog[cur_subprog].has_ld_abs = true; if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) goto next; if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) goto next; - off = i + insn[i].off + 1; + if (code == (BPF_JMP32 | BPF_JA)) + off = i + insn[i].imm + 1; + else + off = i + insn[i].off + 1; if (off < subprog_start || off >= subprog_end) { verbose(env, "jump out of range from insn %d to %d\n", i, off); return -EINVAL; @@ -1483,9 +3307,10 @@ next: if (i == subprog_end - 1) { /* to avoid fall-through from one subprog into another * the last insn of the subprog should be either exit - * or unconditional jump back + * or unconditional jump back or bpf_throw call */ if (code != (BPF_JMP | BPF_EXIT) && + code != (BPF_JMP32 | BPF_JA) && code != (BPF_JMP | BPF_JA)) { verbose(env, "last insn is not an exit or jmp\n"); return -EINVAL; @@ -1515,7 +3340,7 @@ static int mark_reg_read(struct bpf_verifier_env *env, break; if (parent->live & REG_LIVE_DONE) { verbose(env, "verifier BUG type %s var_off %lld off %d\n", - reg_type_str[parent->type], + reg_type_str(env, parent->type), parent->var_off.value, parent->off); return -EFAULT; } @@ -1550,6 +3375,60 @@ static int mark_reg_read(struct bpf_verifier_env *env, return 0; } +static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + int spi, int nr_slots) +{ + struct bpf_func_state *state = func(env, reg); + int err, i; + + for (i = 0; i < nr_slots; i++) { + struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; + + err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); + if (err) + return err; + + mark_stack_slot_scratched(env, spi - i); + } + return 0; +} + +static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + int spi; + + /* For CONST_PTR_TO_DYNPTR, it must have already been done by + * check_reg_arg in check_helper_call and mark_btf_func_reg_size in + * check_kfunc_call. + */ + if (reg->type == CONST_PTR_TO_DYNPTR) + return 0; + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + /* Caller ensures dynptr is valid and initialized, which means spi is in + * bounds and spi is the first dynptr slot. Simply mark stack slot as + * read. + */ + return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); +} + +static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + int spi, int nr_slots) +{ + return mark_stack_slot_obj_read(env, reg, spi, nr_slots); +} + +static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + int spi; + + spi = irq_flag_get_spi(env, reg); + if (spi < 0) + return spi; + return mark_stack_slot_obj_read(env, reg, spi, 1); +} + /* This function is supposed to be used by the following 32-bit optimization * code only. It returns TRUE if the source or destination register operates * on 64-bit, otherwise return FALSE. @@ -1586,8 +3465,10 @@ static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, } } + if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) + return false; + if (class == BPF_ALU64 || class == BPF_JMP || - /* BPF_END always use BPF_ALU class. */ (class == BPF_ALU && op == BPF_END && insn->imm == 64)) return true; @@ -1596,13 +3477,17 @@ static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, if (class == BPF_LDX) { if (t != SRC_OP) - return BPF_SIZE(code) == BPF_DW; + return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; /* LDX source must be ptr. */ return true; } if (class == BPF_STX) { - if (reg->type != SCALAR_VALUE) + /* BPF_STX (including atomic variants) has multiple source + * operands, one of which is a ptr. Check whether the caller is + * asking about it. + */ + if (t == SRC_OP && reg->type != SCALAR_VALUE) return true; return BPF_SIZE(code) == BPF_DW; } @@ -1634,22 +3519,39 @@ static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, return true; } -/* Return TRUE if INSN doesn't have explicit value define. */ -static bool insn_no_def(struct bpf_insn *insn) -{ - u8 class = BPF_CLASS(insn->code); - - return (class == BPF_JMP || class == BPF_JMP32 || - class == BPF_STX || class == BPF_ST); +/* Return the regno defined by the insn, or -1. */ +static int insn_def_regno(const struct bpf_insn *insn) +{ + switch (BPF_CLASS(insn->code)) { + case BPF_JMP: + case BPF_JMP32: + case BPF_ST: + return -1; + case BPF_STX: + if ((BPF_MODE(insn->code) == BPF_ATOMIC || + BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) && + (insn->imm & BPF_FETCH)) { + if (insn->imm == BPF_CMPXCHG) + return BPF_REG_0; + else + return insn->src_reg; + } else { + return -1; + } + default: + return insn->dst_reg; + } } /* Return TRUE if INSN has defined any 32-bit value explicitly. */ static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) { - if (insn_no_def(insn)) + int dst_reg = insn_def_regno(insn); + + if (dst_reg == -1) return false; - return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); + return !is_reg64(env, insn, dst_reg, NULL, DST_OP); } static void mark_insn_zext(struct bpf_verifier_env *env, @@ -1665,13 +3567,11 @@ static void mark_insn_zext(struct bpf_verifier_env *env, reg->subreg_def = DEF_NOT_SUBREG; } -static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, - enum reg_arg_type t) +static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, + enum reg_arg_type t) { - struct bpf_verifier_state *vstate = env->cur_state; - struct bpf_func_state *state = vstate->frame[vstate->curframe]; struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; - struct bpf_reg_state *reg, *regs = state->regs; + struct bpf_reg_state *reg; bool rw64; if (regno >= MAX_BPF_REG) { @@ -1679,6 +3579,8 @@ static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, return -EINVAL; } + mark_reg_scratched(env, regno); + reg = ®s[regno]; rw64 = is_reg64(env, insn, regno, reg, t); if (t == SRC_OP) { @@ -1710,49 +3612,424 @@ static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, return 0; } +static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, + enum reg_arg_type t) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + + return __check_reg_arg(env, state->regs, regno, t); +} + +static int insn_stack_access_flags(int frameno, int spi) +{ + return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; +} + +static int insn_stack_access_spi(int insn_flags) +{ + return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; +} + +static int insn_stack_access_frameno(int insn_flags) +{ + return insn_flags & INSN_F_FRAMENO_MASK; +} + +static void mark_jmp_point(struct bpf_verifier_env *env, int idx) +{ + env->insn_aux_data[idx].jmp_point = true; +} + +static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) +{ + return env->insn_aux_data[insn_idx].jmp_point; +} + +#define LR_FRAMENO_BITS 3 +#define LR_SPI_BITS 6 +#define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) +#define LR_SIZE_BITS 4 +#define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) +#define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) +#define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) +#define LR_SPI_OFF LR_FRAMENO_BITS +#define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) +#define LINKED_REGS_MAX 6 + +struct linked_reg { + u8 frameno; + union { + u8 spi; + u8 regno; + }; + bool is_reg; +}; + +struct linked_regs { + int cnt; + struct linked_reg entries[LINKED_REGS_MAX]; +}; + +static struct linked_reg *linked_regs_push(struct linked_regs *s) +{ + if (s->cnt < LINKED_REGS_MAX) + return &s->entries[s->cnt++]; + + return NULL; +} + +/* Use u64 as a vector of 6 10-bit values, use first 4-bits to track + * number of elements currently in stack. + * Pack one history entry for linked registers as 10 bits in the following format: + * - 3-bits frameno + * - 6-bits spi_or_reg + * - 1-bit is_reg + */ +static u64 linked_regs_pack(struct linked_regs *s) +{ + u64 val = 0; + int i; + + for (i = 0; i < s->cnt; ++i) { + struct linked_reg *e = &s->entries[i]; + u64 tmp = 0; + + tmp |= e->frameno; + tmp |= e->spi << LR_SPI_OFF; + tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; + + val <<= LR_ENTRY_BITS; + val |= tmp; + } + val <<= LR_SIZE_BITS; + val |= s->cnt; + return val; +} + +static void linked_regs_unpack(u64 val, struct linked_regs *s) +{ + int i; + + s->cnt = val & LR_SIZE_MASK; + val >>= LR_SIZE_BITS; + + for (i = 0; i < s->cnt; ++i) { + struct linked_reg *e = &s->entries[i]; + + e->frameno = val & LR_FRAMENO_MASK; + e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; + e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; + val >>= LR_ENTRY_BITS; + } +} + /* for any branch, call, exit record the history of jmps in the given state */ -static int push_jmp_history(struct bpf_verifier_env *env, - struct bpf_verifier_state *cur) +static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, + int insn_flags, u64 linked_regs) { - u32 cnt = cur->jmp_history_cnt; - struct bpf_idx_pair *p; + struct bpf_insn_hist_entry *p; + size_t alloc_size; + + /* combine instruction flags if we already recorded this instruction */ + if (env->cur_hist_ent) { + /* atomic instructions push insn_flags twice, for READ and + * WRITE sides, but they should agree on stack slot + */ + WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && + (env->cur_hist_ent->flags & insn_flags) != insn_flags, + "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", + env->insn_idx, env->cur_hist_ent->flags, insn_flags); + env->cur_hist_ent->flags |= insn_flags; + WARN_ONCE(env->cur_hist_ent->linked_regs != 0, + "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n", + env->insn_idx, env->cur_hist_ent->linked_regs); + env->cur_hist_ent->linked_regs = linked_regs; + return 0; + } + + if (cur->insn_hist_end + 1 > env->insn_hist_cap) { + alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p)); + p = kvrealloc(env->insn_hist, alloc_size, GFP_USER); + if (!p) + return -ENOMEM; + env->insn_hist = p; + env->insn_hist_cap = alloc_size / sizeof(*p); + } + + p = &env->insn_hist[cur->insn_hist_end]; + p->idx = env->insn_idx; + p->prev_idx = env->prev_insn_idx; + p->flags = insn_flags; + p->linked_regs = linked_regs; + + cur->insn_hist_end++; + env->cur_hist_ent = p; - cnt++; - p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); - if (!p) - return -ENOMEM; - p[cnt - 1].idx = env->insn_idx; - p[cnt - 1].prev_idx = env->prev_insn_idx; - cur->jmp_history = p; - cur->jmp_history_cnt = cnt; return 0; } +static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env, + u32 hist_start, u32 hist_end, int insn_idx) +{ + if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx) + return &env->insn_hist[hist_end - 1]; + return NULL; +} + /* Backtrack one insn at a time. If idx is not at the top of recorded * history then previous instruction came from straight line execution. + * Return -ENOENT if we exhausted all instructions within given state. + * + * It's legal to have a bit of a looping with the same starting and ending + * insn index within the same state, e.g.: 3->4->5->3, so just because current + * instruction index is the same as state's first_idx doesn't mean we are + * done. If there is still some jump history left, we should keep going. We + * need to take into account that we might have a jump history between given + * state's parent and itself, due to checkpointing. In this case, we'll have + * history entry recording a jump from last instruction of parent state and + * first instruction of given state. */ -static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, - u32 *history) +static int get_prev_insn_idx(const struct bpf_verifier_env *env, + struct bpf_verifier_state *st, + int insn_idx, u32 hist_start, u32 *hist_endp) { - u32 cnt = *history; + u32 hist_end = *hist_endp; + u32 cnt = hist_end - hist_start; + + if (insn_idx == st->first_insn_idx) { + if (cnt == 0) + return -ENOENT; + if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx) + return -ENOENT; + } - if (cnt && st->jmp_history[cnt - 1].idx == i) { - i = st->jmp_history[cnt - 1].prev_idx; - (*history)--; + if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) { + (*hist_endp)--; + return env->insn_hist[hist_end - 1].prev_idx; } else { - i--; + return insn_idx - 1; } - return i; } +static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) +{ + const struct btf_type *func; + struct btf *desc_btf; + + if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) + return NULL; + + desc_btf = find_kfunc_desc_btf(data, insn->off); + if (IS_ERR(desc_btf)) + return "<error>"; + + func = btf_type_by_id(desc_btf, insn->imm); + return btf_name_by_offset(desc_btf, func->name_off); +} + +static inline void bt_init(struct backtrack_state *bt, u32 frame) +{ + bt->frame = frame; +} + +static inline void bt_reset(struct backtrack_state *bt) +{ + struct bpf_verifier_env *env = bt->env; + + memset(bt, 0, sizeof(*bt)); + bt->env = env; +} + +static inline u32 bt_empty(struct backtrack_state *bt) +{ + u64 mask = 0; + int i; + + for (i = 0; i <= bt->frame; i++) + mask |= bt->reg_masks[i] | bt->stack_masks[i]; + + return mask == 0; +} + +static inline int bt_subprog_enter(struct backtrack_state *bt) +{ + if (bt->frame == MAX_CALL_FRAMES - 1) { + verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); + WARN_ONCE(1, "verifier backtracking bug"); + return -EFAULT; + } + bt->frame++; + return 0; +} + +static inline int bt_subprog_exit(struct backtrack_state *bt) +{ + if (bt->frame == 0) { + verbose(bt->env, "BUG subprog exit from frame 0\n"); + WARN_ONCE(1, "verifier backtracking bug"); + return -EFAULT; + } + bt->frame--; + return 0; +} + +static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) +{ + bt->reg_masks[frame] |= 1 << reg; +} + +static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) +{ + bt->reg_masks[frame] &= ~(1 << reg); +} + +static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) +{ + bt_set_frame_reg(bt, bt->frame, reg); +} + +static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) +{ + bt_clear_frame_reg(bt, bt->frame, reg); +} + +static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) +{ + bt->stack_masks[frame] |= 1ull << slot; +} + +static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) +{ + bt->stack_masks[frame] &= ~(1ull << slot); +} + +static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) +{ + return bt->reg_masks[frame]; +} + +static inline u32 bt_reg_mask(struct backtrack_state *bt) +{ + return bt->reg_masks[bt->frame]; +} + +static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) +{ + return bt->stack_masks[frame]; +} + +static inline u64 bt_stack_mask(struct backtrack_state *bt) +{ + return bt->stack_masks[bt->frame]; +} + +static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) +{ + return bt->reg_masks[bt->frame] & (1 << reg); +} + +static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) +{ + return bt->reg_masks[frame] & (1 << reg); +} + +static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) +{ + return bt->stack_masks[frame] & (1ull << slot); +} + +/* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ +static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) +{ + DECLARE_BITMAP(mask, 64); + bool first = true; + int i, n; + + buf[0] = '\0'; + + bitmap_from_u64(mask, reg_mask); + for_each_set_bit(i, mask, 32) { + n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); + first = false; + buf += n; + buf_sz -= n; + if (buf_sz < 0) + break; + } +} +/* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ +static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) +{ + DECLARE_BITMAP(mask, 64); + bool first = true; + int i, n; + + buf[0] = '\0'; + + bitmap_from_u64(mask, stack_mask); + for_each_set_bit(i, mask, 64) { + n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); + first = false; + buf += n; + buf_sz -= n; + if (buf_sz < 0) + break; + } +} + +/* If any register R in hist->linked_regs is marked as precise in bt, + * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. + */ +static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist) +{ + struct linked_regs linked_regs; + bool some_precise = false; + int i; + + if (!hist || hist->linked_regs == 0) + return; + + linked_regs_unpack(hist->linked_regs, &linked_regs); + for (i = 0; i < linked_regs.cnt; ++i) { + struct linked_reg *e = &linked_regs.entries[i]; + + if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || + (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { + some_precise = true; + break; + } + } + + if (!some_precise) + return; + + for (i = 0; i < linked_regs.cnt; ++i) { + struct linked_reg *e = &linked_regs.entries[i]; + + if (e->is_reg) + bt_set_frame_reg(bt, e->frameno, e->regno); + else + bt_set_frame_slot(bt, e->frameno, e->spi); + } +} + +static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); + /* For given verifier state backtrack_insn() is called from the last insn to * the first insn. Its purpose is to compute a bitmask of registers and * stack slots that needs precision in the parent verifier state. + * + * @idx is an index of the instruction we are currently processing; + * @subseq_idx is an index of the subsequent instruction that: + * - *would be* executed next, if jump history is viewed in forward order; + * - *was* processed previously during backtracking. */ -static int backtrack_insn(struct bpf_verifier_env *env, int idx, - u32 *reg_mask, u64 *stack_mask) +static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, + struct bpf_insn_hist_entry *hist, struct backtrack_state *bt) { const struct bpf_insn_cbs cbs = { + .cb_call = disasm_kfunc_name, .cb_print = verbose, .private_data = env, }; @@ -1760,29 +4037,45 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, u8 class = BPF_CLASS(insn->code); u8 opcode = BPF_OP(insn->code); u8 mode = BPF_MODE(insn->code); - u32 dreg = 1u << insn->dst_reg; - u32 sreg = 1u << insn->src_reg; - u32 spi; + u32 dreg = insn->dst_reg; + u32 sreg = insn->src_reg; + u32 spi, i, fr; if (insn->code == 0) return 0; - if (env->log.level & BPF_LOG_LEVEL) { - verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); + if (env->log.level & BPF_LOG_LEVEL2) { + fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); + verbose(env, "mark_precise: frame%d: regs=%s ", + bt->frame, env->tmp_str_buf); + fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); + verbose(env, "stack=%s before ", env->tmp_str_buf); verbose(env, "%d: ", idx); print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); } + /* If there is a history record that some registers gained range at this insn, + * propagate precision marks to those registers, so that bt_is_reg_set() + * accounts for these registers. + */ + bt_sync_linked_regs(bt, hist); + if (class == BPF_ALU || class == BPF_ALU64) { - if (!(*reg_mask & dreg)) + if (!bt_is_reg_set(bt, dreg)) return 0; - if (opcode == BPF_MOV) { + if (opcode == BPF_END || opcode == BPF_NEG) { + /* sreg is reserved and unused + * dreg still need precision before this insn + */ + return 0; + } else if (opcode == BPF_MOV) { if (BPF_SRC(insn->code) == BPF_X) { - /* dreg = sreg + /* dreg = sreg or dreg = (s8, s16, s32)sreg * dreg needs precision after this insn * sreg needs precision before this insn */ - *reg_mask &= ~dreg; - *reg_mask |= sreg; + bt_clear_reg(bt, dreg); + if (sreg != BPF_REG_FP) + bt_set_reg(bt, sreg); } else { /* dreg = K * dreg needs precision after this insn. @@ -1790,7 +4083,7 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, * as precise=true in this verifier state. * No further markings in parent are necessary */ - *reg_mask &= ~dreg; + bt_clear_reg(bt, dreg); } } else { if (BPF_SRC(insn->code) == BPF_X) { @@ -1798,15 +4091,16 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, * both dreg and sreg need precision * before this insn */ - *reg_mask |= sreg; + if (sreg != BPF_REG_FP) + bt_set_reg(bt, sreg); } /* else dreg += K * dreg still needs precision before this insn */ } } else if (class == BPF_LDX) { - if (!(*reg_mask & dreg)) + if (!bt_is_reg_set(bt, dreg)) return 0; - *reg_mask &= ~dreg; + bt_clear_reg(bt, dreg); /* scalars can only be spilled into stack w/o losing precision. * Load from any other memory can be zero extended. @@ -1814,66 +4108,197 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, * by 'precise' mark in corresponding register of this state. * No further tracking necessary. */ - if (insn->src_reg != BPF_REG_FP) - return 0; - if (BPF_SIZE(insn->code) != BPF_DW) + if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) return 0; - /* dreg = *(u64 *)[fp - off] was a fill from the stack. * that [fp - off] slot contains scalar that needs to be * tracked with precision */ - spi = (-insn->off - 1) / BPF_REG_SIZE; - if (spi >= 64) { - verbose(env, "BUG spi %d\n", spi); - WARN_ONCE(1, "verifier backtracking bug"); - return -EFAULT; - } - *stack_mask |= 1ull << spi; + spi = insn_stack_access_spi(hist->flags); + fr = insn_stack_access_frameno(hist->flags); + bt_set_frame_slot(bt, fr, spi); } else if (class == BPF_STX || class == BPF_ST) { - if (*reg_mask & dreg) + if (bt_is_reg_set(bt, dreg)) /* stx & st shouldn't be using _scalar_ dst_reg * to access memory. It means backtracking * encountered a case of pointer subtraction. */ return -ENOTSUPP; /* scalars can only be spilled into stack */ - if (insn->dst_reg != BPF_REG_FP) + if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) return 0; - if (BPF_SIZE(insn->code) != BPF_DW) + spi = insn_stack_access_spi(hist->flags); + fr = insn_stack_access_frameno(hist->flags); + if (!bt_is_frame_slot_set(bt, fr, spi)) return 0; - spi = (-insn->off - 1) / BPF_REG_SIZE; - if (spi >= 64) { - verbose(env, "BUG spi %d\n", spi); - WARN_ONCE(1, "verifier backtracking bug"); - return -EFAULT; - } - if (!(*stack_mask & (1ull << spi))) - return 0; - *stack_mask &= ~(1ull << spi); + bt_clear_frame_slot(bt, fr, spi); if (class == BPF_STX) - *reg_mask |= sreg; + bt_set_reg(bt, sreg); } else if (class == BPF_JMP || class == BPF_JMP32) { - if (opcode == BPF_CALL) { - if (insn->src_reg == BPF_PSEUDO_CALL) + if (bpf_pseudo_call(insn)) { + int subprog_insn_idx, subprog; + + subprog_insn_idx = idx + insn->imm + 1; + subprog = find_subprog(env, subprog_insn_idx); + if (subprog < 0) + return -EFAULT; + + if (subprog_is_global(env, subprog)) { + /* check that jump history doesn't have any + * extra instructions from subprog; the next + * instruction after call to global subprog + * should be literally next instruction in + * caller program + */ + WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); + /* r1-r5 are invalidated after subprog call, + * so for global func call it shouldn't be set + * anymore + */ + if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { + verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); + WARN_ONCE(1, "verifier backtracking bug"); + return -EFAULT; + } + /* global subprog always sets R0 */ + bt_clear_reg(bt, BPF_REG_0); + return 0; + } else { + /* static subprog call instruction, which + * means that we are exiting current subprog, + * so only r1-r5 could be still requested as + * precise, r0 and r6-r10 or any stack slot in + * the current frame should be zero by now + */ + if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { + verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); + WARN_ONCE(1, "verifier backtracking bug"); + return -EFAULT; + } + /* we are now tracking register spills correctly, + * so any instance of leftover slots is a bug + */ + if (bt_stack_mask(bt) != 0) { + verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); + WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); + return -EFAULT; + } + /* propagate r1-r5 to the caller */ + for (i = BPF_REG_1; i <= BPF_REG_5; i++) { + if (bt_is_reg_set(bt, i)) { + bt_clear_reg(bt, i); + bt_set_frame_reg(bt, bt->frame - 1, i); + } + } + if (bt_subprog_exit(bt)) + return -EFAULT; + return 0; + } + } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { + /* exit from callback subprog to callback-calling helper or + * kfunc call. Use idx/subseq_idx check to discern it from + * straight line code backtracking. + * Unlike the subprog call handling above, we shouldn't + * propagate precision of r1-r5 (if any requested), as they are + * not actually arguments passed directly to callback subprogs + */ + if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { + verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); + WARN_ONCE(1, "verifier backtracking bug"); + return -EFAULT; + } + if (bt_stack_mask(bt) != 0) { + verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); + WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); + return -EFAULT; + } + /* clear r1-r5 in callback subprog's mask */ + for (i = BPF_REG_1; i <= BPF_REG_5; i++) + bt_clear_reg(bt, i); + if (bt_subprog_exit(bt)) + return -EFAULT; + return 0; + } else if (opcode == BPF_CALL) { + /* kfunc with imm==0 is invalid and fixup_kfunc_call will + * catch this error later. Make backtracking conservative + * with ENOTSUPP. + */ + if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) return -ENOTSUPP; /* regular helper call sets R0 */ - *reg_mask &= ~1; - if (*reg_mask & 0x3f) { + bt_clear_reg(bt, BPF_REG_0); + if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { /* if backtracing was looking for registers R1-R5 * they should have been found already. */ - verbose(env, "BUG regs %x\n", *reg_mask); + verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); WARN_ONCE(1, "verifier backtracking bug"); return -EFAULT; } } else if (opcode == BPF_EXIT) { - return -ENOTSUPP; + bool r0_precise; + + /* Backtracking to a nested function call, 'idx' is a part of + * the inner frame 'subseq_idx' is a part of the outer frame. + * In case of a regular function call, instructions giving + * precision to registers R1-R5 should have been found already. + * In case of a callback, it is ok to have R1-R5 marked for + * backtracking, as these registers are set by the function + * invoking callback. + */ + if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) + for (i = BPF_REG_1; i <= BPF_REG_5; i++) + bt_clear_reg(bt, i); + if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { + verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); + WARN_ONCE(1, "verifier backtracking bug"); + return -EFAULT; + } + + /* BPF_EXIT in subprog or callback always returns + * right after the call instruction, so by checking + * whether the instruction at subseq_idx-1 is subprog + * call or not we can distinguish actual exit from + * *subprog* from exit from *callback*. In the former + * case, we need to propagate r0 precision, if + * necessary. In the former we never do that. + */ + r0_precise = subseq_idx - 1 >= 0 && + bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && + bt_is_reg_set(bt, BPF_REG_0); + + bt_clear_reg(bt, BPF_REG_0); + if (bt_subprog_enter(bt)) + return -EFAULT; + + if (r0_precise) + bt_set_reg(bt, BPF_REG_0); + /* r6-r9 and stack slots will stay set in caller frame + * bitmasks until we return back from callee(s) + */ + return 0; + } else if (BPF_SRC(insn->code) == BPF_X) { + if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) + return 0; + /* dreg <cond> sreg + * Both dreg and sreg need precision before + * this insn. If only sreg was marked precise + * before it would be equally necessary to + * propagate it to dreg. + */ + bt_set_reg(bt, dreg); + bt_set_reg(bt, sreg); + } else if (BPF_SRC(insn->code) == BPF_K) { + /* dreg <cond> K + * Only dreg still needs precision before + * this insn, so for the K-based conditional + * there is nothing new to be marked. + */ } } else if (class == BPF_LD) { - if (!(*reg_mask & dreg)) + if (!bt_is_reg_set(bt, dreg)) return 0; - *reg_mask &= ~dreg; + bt_clear_reg(bt, dreg); /* It's ld_imm64 or ld_abs or ld_ind. * For ld_imm64 no further tracking of precision * into parent is necessary @@ -1882,6 +4307,10 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, /* to be analyzed */ return -ENOTSUPP; } + /* Propagate precision marks to linked registers, to account for + * registers marked as precise in this function. + */ + bt_sync_linked_regs(bt, hist); return 0; } @@ -1944,110 +4373,256 @@ static void mark_all_scalars_precise(struct bpf_verifier_env *env, struct bpf_reg_state *reg; int i, j; + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", + st->curframe); + } + /* big hammer: mark all scalars precise in this path. * pop_stack may still get !precise scalars. + * We also skip current state and go straight to first parent state, + * because precision markings in current non-checkpointed state are + * not needed. See why in the comment in __mark_chain_precision below. */ - for (; st; st = st->parent) + for (st = st->parent; st; st = st->parent) { for (i = 0; i <= st->curframe; i++) { func = st->frame[i]; for (j = 0; j < BPF_REG_FP; j++) { reg = &func->regs[j]; - if (reg->type != SCALAR_VALUE) + if (reg->type != SCALAR_VALUE || reg->precise) continue; reg->precise = true; + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", + i, j); + } } for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { - if (func->stack[j].slot_type[0] != STACK_SPILL) + if (!is_spilled_reg(&func->stack[j])) continue; reg = &func->stack[j].spilled_ptr; - if (reg->type != SCALAR_VALUE) + if (reg->type != SCALAR_VALUE || reg->precise) continue; reg->precise = true; + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", + i, -(j + 1) * 8); + } } } + } } -static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, - int spi) +static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) { + struct bpf_func_state *func; + struct bpf_reg_state *reg; + int i, j; + + for (i = 0; i <= st->curframe; i++) { + func = st->frame[i]; + for (j = 0; j < BPF_REG_FP; j++) { + reg = &func->regs[j]; + if (reg->type != SCALAR_VALUE) + continue; + reg->precise = false; + } + for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { + if (!is_spilled_reg(&func->stack[j])) + continue; + reg = &func->stack[j].spilled_ptr; + if (reg->type != SCALAR_VALUE) + continue; + reg->precise = false; + } + } +} + +/* + * __mark_chain_precision() backtracks BPF program instruction sequence and + * chain of verifier states making sure that register *regno* (if regno >= 0) + * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked + * SCALARS, as well as any other registers and slots that contribute to + * a tracked state of given registers/stack slots, depending on specific BPF + * assembly instructions (see backtrack_insns() for exact instruction handling + * logic). This backtracking relies on recorded insn_hist and is able to + * traverse entire chain of parent states. This process ends only when all the + * necessary registers/slots and their transitive dependencies are marked as + * precise. + * + * One important and subtle aspect is that precise marks *do not matter* in + * the currently verified state (current state). It is important to understand + * why this is the case. + * + * First, note that current state is the state that is not yet "checkpointed", + * i.e., it is not yet put into env->explored_states, and it has no children + * states as well. It's ephemeral, and can end up either a) being discarded if + * compatible explored state is found at some point or BPF_EXIT instruction is + * reached or b) checkpointed and put into env->explored_states, branching out + * into one or more children states. + * + * In the former case, precise markings in current state are completely + * ignored by state comparison code (see regsafe() for details). Only + * checkpointed ("old") state precise markings are important, and if old + * state's register/slot is precise, regsafe() assumes current state's + * register/slot as precise and checks value ranges exactly and precisely. If + * states turn out to be compatible, current state's necessary precise + * markings and any required parent states' precise markings are enforced + * after the fact with propagate_precision() logic, after the fact. But it's + * important to realize that in this case, even after marking current state + * registers/slots as precise, we immediately discard current state. So what + * actually matters is any of the precise markings propagated into current + * state's parent states, which are always checkpointed (due to b) case above). + * As such, for scenario a) it doesn't matter if current state has precise + * markings set or not. + * + * Now, for the scenario b), checkpointing and forking into child(ren) + * state(s). Note that before current state gets to checkpointing step, any + * processed instruction always assumes precise SCALAR register/slot + * knowledge: if precise value or range is useful to prune jump branch, BPF + * verifier takes this opportunity enthusiastically. Similarly, when + * register's value is used to calculate offset or memory address, exact + * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to + * what we mentioned above about state comparison ignoring precise markings + * during state comparison, BPF verifier ignores and also assumes precise + * markings *at will* during instruction verification process. But as verifier + * assumes precision, it also propagates any precision dependencies across + * parent states, which are not yet finalized, so can be further restricted + * based on new knowledge gained from restrictions enforced by their children + * states. This is so that once those parent states are finalized, i.e., when + * they have no more active children state, state comparison logic in + * is_state_visited() would enforce strict and precise SCALAR ranges, if + * required for correctness. + * + * To build a bit more intuition, note also that once a state is checkpointed, + * the path we took to get to that state is not important. This is crucial + * property for state pruning. When state is checkpointed and finalized at + * some instruction index, it can be correctly and safely used to "short + * circuit" any *compatible* state that reaches exactly the same instruction + * index. I.e., if we jumped to that instruction from a completely different + * code path than original finalized state was derived from, it doesn't + * matter, current state can be discarded because from that instruction + * forward having a compatible state will ensure we will safely reach the + * exit. States describe preconditions for further exploration, but completely + * forget the history of how we got here. + * + * This also means that even if we needed precise SCALAR range to get to + * finalized state, but from that point forward *that same* SCALAR register is + * never used in a precise context (i.e., it's precise value is not needed for + * correctness), it's correct and safe to mark such register as "imprecise" + * (i.e., precise marking set to false). This is what we rely on when we do + * not set precise marking in current state. If no child state requires + * precision for any given SCALAR register, it's safe to dictate that it can + * be imprecise. If any child state does require this register to be precise, + * we'll mark it precise later retroactively during precise markings + * propagation from child state to parent states. + * + * Skipping precise marking setting in current state is a mild version of + * relying on the above observation. But we can utilize this property even + * more aggressively by proactively forgetting any precise marking in the + * current state (which we inherited from the parent state), right before we + * checkpoint it and branch off into new child state. This is done by + * mark_all_scalars_imprecise() to hopefully get more permissive and generic + * finalized states which help in short circuiting more future states. + */ +static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) +{ + struct backtrack_state *bt = &env->bt; struct bpf_verifier_state *st = env->cur_state; int first_idx = st->first_insn_idx; int last_idx = env->insn_idx; + int subseq_idx = -1; struct bpf_func_state *func; struct bpf_reg_state *reg; - u32 reg_mask = regno >= 0 ? 1u << regno : 0; - u64 stack_mask = spi >= 0 ? 1ull << spi : 0; bool skip_first = true; - bool new_marks = false; - int i, err; + int i, fr, err; if (!env->bpf_capable) return 0; - func = st->frame[st->curframe]; + /* set frame number from which we are starting to backtrack */ + bt_init(bt, env->cur_state->curframe); + + /* Do sanity checks against current state of register and/or stack + * slot, but don't set precise flag in current state, as precision + * tracking in the current state is unnecessary. + */ + func = st->frame[bt->frame]; if (regno >= 0) { reg = &func->regs[regno]; if (reg->type != SCALAR_VALUE) { WARN_ONCE(1, "backtracing misuse"); return -EFAULT; } - if (!reg->precise) - new_marks = true; - else - reg_mask = 0; - reg->precise = true; + bt_set_reg(bt, regno); } - while (spi >= 0) { - if (func->stack[spi].slot_type[0] != STACK_SPILL) { - stack_mask = 0; - break; - } - reg = &func->stack[spi].spilled_ptr; - if (reg->type != SCALAR_VALUE) { - stack_mask = 0; - break; - } - if (!reg->precise) - new_marks = true; - else - stack_mask = 0; - reg->precise = true; - break; - } - - if (!new_marks) - return 0; - if (!reg_mask && !stack_mask) + if (bt_empty(bt)) return 0; + for (;;) { DECLARE_BITMAP(mask, 64); - u32 history = st->jmp_history_cnt; + u32 hist_start = st->insn_hist_start; + u32 hist_end = st->insn_hist_end; + struct bpf_insn_hist_entry *hist; + + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", + bt->frame, last_idx, first_idx, subseq_idx); + } + + if (last_idx < 0) { + /* we are at the entry into subprog, which + * is expected for global funcs, but only if + * requested precise registers are R1-R5 + * (which are global func's input arguments) + */ + if (st->curframe == 0 && + st->frame[0]->subprogno > 0 && + st->frame[0]->callsite == BPF_MAIN_FUNC && + bt_stack_mask(bt) == 0 && + (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { + bitmap_from_u64(mask, bt_reg_mask(bt)); + for_each_set_bit(i, mask, 32) { + reg = &st->frame[0]->regs[i]; + bt_clear_reg(bt, i); + if (reg->type == SCALAR_VALUE) + reg->precise = true; + } + return 0; + } + + verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", + st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); + WARN_ONCE(1, "verifier backtracking bug"); + return -EFAULT; + } - if (env->log.level & BPF_LOG_LEVEL) - verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); for (i = last_idx;;) { if (skip_first) { err = 0; skip_first = false; } else { - err = backtrack_insn(env, i, ®_mask, &stack_mask); + hist = get_insn_hist_entry(env, hist_start, hist_end, i); + err = backtrack_insn(env, i, subseq_idx, hist, bt); } if (err == -ENOTSUPP) { - mark_all_scalars_precise(env, st); + mark_all_scalars_precise(env, env->cur_state); + bt_reset(bt); return 0; } else if (err) { return err; } - if (!reg_mask && !stack_mask) + if (bt_empty(bt)) /* Found assignment(s) into tracked register in this state. * Since this state is already marked, just return. * Nothing to be tracked further in the parent state. */ return 0; - if (i == first_idx) + subseq_idx = i; + i = get_prev_insn_idx(env, st, i, hist_start, &hist_end); + if (i == -ENOENT) break; - i = get_prev_insn_idx(st, i, &history); if (i >= env->prog->len) { /* This can happen if backtracking reached insn 0 * and there are still reg_mask or stack_mask @@ -2064,86 +4639,89 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, if (!st) break; - new_marks = false; - func = st->frame[st->curframe]; - bitmap_from_u64(mask, reg_mask); - for_each_set_bit(i, mask, 32) { - reg = &func->regs[i]; - if (reg->type != SCALAR_VALUE) { - reg_mask &= ~(1u << i); - continue; - } - if (!reg->precise) - new_marks = true; - reg->precise = true; - } - - bitmap_from_u64(mask, stack_mask); - for_each_set_bit(i, mask, 64) { - if (i >= func->allocated_stack / BPF_REG_SIZE) { - /* the sequence of instructions: - * 2: (bf) r3 = r10 - * 3: (7b) *(u64 *)(r3 -8) = r0 - * 4: (79) r4 = *(u64 *)(r10 -8) - * doesn't contain jmps. It's backtracked - * as a single block. - * During backtracking insn 3 is not recognized as - * stack access, so at the end of backtracking - * stack slot fp-8 is still marked in stack_mask. - * However the parent state may not have accessed - * fp-8 and it's "unallocated" stack space. - * In such case fallback to conservative. - */ - mark_all_scalars_precise(env, st); - return 0; + for (fr = bt->frame; fr >= 0; fr--) { + func = st->frame[fr]; + bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); + for_each_set_bit(i, mask, 32) { + reg = &func->regs[i]; + if (reg->type != SCALAR_VALUE) { + bt_clear_frame_reg(bt, fr, i); + continue; + } + if (reg->precise) + bt_clear_frame_reg(bt, fr, i); + else + reg->precise = true; } - if (func->stack[i].slot_type[0] != STACK_SPILL) { - stack_mask &= ~(1ull << i); - continue; + bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); + for_each_set_bit(i, mask, 64) { + if (i >= func->allocated_stack / BPF_REG_SIZE) { + verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", + i, func->allocated_stack / BPF_REG_SIZE); + WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); + return -EFAULT; + } + + if (!is_spilled_scalar_reg(&func->stack[i])) { + bt_clear_frame_slot(bt, fr, i); + continue; + } + reg = &func->stack[i].spilled_ptr; + if (reg->precise) + bt_clear_frame_slot(bt, fr, i); + else + reg->precise = true; } - reg = &func->stack[i].spilled_ptr; - if (reg->type != SCALAR_VALUE) { - stack_mask &= ~(1ull << i); - continue; + if (env->log.level & BPF_LOG_LEVEL2) { + fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, + bt_frame_reg_mask(bt, fr)); + verbose(env, "mark_precise: frame%d: parent state regs=%s ", + fr, env->tmp_str_buf); + fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, + bt_frame_stack_mask(bt, fr)); + verbose(env, "stack=%s: ", env->tmp_str_buf); + print_verifier_state(env, st, fr, true); } - if (!reg->precise) - new_marks = true; - reg->precise = true; - } - if (env->log.level & BPF_LOG_LEVEL) { - print_verifier_state(env, func); - verbose(env, "parent %s regs=%x stack=%llx marks\n", - new_marks ? "didn't have" : "already had", - reg_mask, stack_mask); } - if (!reg_mask && !stack_mask) - break; - if (!new_marks) - break; + if (bt_empty(bt)) + return 0; + subseq_idx = first_idx; last_idx = st->last_insn_idx; first_idx = st->first_insn_idx; } + + /* if we still have requested precise regs or slots, we missed + * something (e.g., stack access through non-r10 register), so + * fallback to marking all precise + */ + if (!bt_empty(bt)) { + mark_all_scalars_precise(env, env->cur_state); + bt_reset(bt); + } + return 0; } -static int mark_chain_precision(struct bpf_verifier_env *env, int regno) +int mark_chain_precision(struct bpf_verifier_env *env, int regno) { - return __mark_chain_precision(env, regno, -1); + return __mark_chain_precision(env, regno); } -static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) +/* mark_chain_precision_batch() assumes that env->bt is set in the caller to + * desired reg and stack masks across all relevant frames + */ +static int mark_chain_precision_batch(struct bpf_verifier_env *env) { - return __mark_chain_precision(env, -1, spi); + return __mark_chain_precision(env, -1); } static bool is_spillable_regtype(enum bpf_reg_type type) { - switch (type) { + switch (base_type(type)) { case PTR_TO_MAP_VALUE: - case PTR_TO_MAP_VALUE_OR_NULL: case PTR_TO_STACK: case PTR_TO_CTX: case PTR_TO_PACKET: @@ -2152,14 +4730,15 @@ static bool is_spillable_regtype(enum bpf_reg_type type) case PTR_TO_FLOW_KEYS: case CONST_PTR_TO_MAP: case PTR_TO_SOCKET: - case PTR_TO_SOCKET_OR_NULL: case PTR_TO_SOCK_COMMON: - case PTR_TO_SOCK_COMMON_OR_NULL: case PTR_TO_TCP_SOCK: - case PTR_TO_TCP_SOCK_OR_NULL: case PTR_TO_XDP_SOCK: case PTR_TO_BTF_ID: - case PTR_TO_BTF_ID_OR_NULL: + case PTR_TO_BUF: + case PTR_TO_MEM: + case PTR_TO_FUNC: + case PTR_TO_MAP_KEY: + case PTR_TO_ARENA: return true; default: return false; @@ -2172,9 +4751,17 @@ static bool register_is_null(struct bpf_reg_state *reg) return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); } -static bool register_is_const(struct bpf_reg_state *reg) +/* check if register is a constant scalar value */ +static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) { - return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); + return reg->type == SCALAR_VALUE && + tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); +} + +/* assuming is_reg_const() is true, return constant value of a register */ +static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) +{ + return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; } static bool __is_pointer_value(bool allow_ptr_leaks, @@ -2186,39 +4773,116 @@ static bool __is_pointer_value(bool allow_ptr_leaks, return reg->type != SCALAR_VALUE; } -static void save_register_state(struct bpf_func_state *state, - int spi, struct bpf_reg_state *reg) +static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, + struct bpf_reg_state *src_reg) +{ + if (src_reg->type != SCALAR_VALUE) + return; + + if (src_reg->id & BPF_ADD_CONST) { + /* + * The verifier is processing rX = rY insn and + * rY->id has special linked register already. + * Cleared it, since multiple rX += const are not supported. + */ + src_reg->id = 0; + src_reg->off = 0; + } + + if (!src_reg->id && !tnum_is_const(src_reg->var_off)) + /* Ensure that src_reg has a valid ID that will be copied to + * dst_reg and then will be used by sync_linked_regs() to + * propagate min/max range. + */ + src_reg->id = ++env->id_gen; +} + +/* Copy src state preserving dst->parent and dst->live fields */ +static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) +{ + struct bpf_reg_state *parent = dst->parent; + enum bpf_reg_liveness live = dst->live; + + *dst = *src; + dst->parent = parent; + dst->live = live; +} + +static void save_register_state(struct bpf_verifier_env *env, + struct bpf_func_state *state, + int spi, struct bpf_reg_state *reg, + int size) { int i; - state->stack[spi].spilled_ptr = *reg; - state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; + copy_register_state(&state->stack[spi].spilled_ptr, reg); + if (size == BPF_REG_SIZE) + state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; - for (i = 0; i < BPF_REG_SIZE; i++) - state->stack[spi].slot_type[i] = STACK_SPILL; + for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) + state->stack[spi].slot_type[i - 1] = STACK_SPILL; + + /* size < 8 bytes spill */ + for (; i; i--) + mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); +} + +static bool is_bpf_st_mem(struct bpf_insn *insn) +{ + return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; +} + +static int get_reg_width(struct bpf_reg_state *reg) +{ + return fls64(reg->umax_value); +} + +/* See comment for mark_fastcall_pattern_for_call() */ +static void check_fastcall_stack_contract(struct bpf_verifier_env *env, + struct bpf_func_state *state, int insn_idx, int off) +{ + struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; + struct bpf_insn_aux_data *aux = env->insn_aux_data; + int i; + + if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) + return; + /* access to the region [max_stack_depth .. fastcall_stack_off) + * from something that is not a part of the fastcall pattern, + * disable fastcall rewrites for current subprogram by setting + * fastcall_stack_off to a value smaller than any possible offset. + */ + subprog->fastcall_stack_off = S16_MIN; + /* reset fastcall aux flags within subprogram, + * happens at most once per subprogram + */ + for (i = subprog->start; i < (subprog + 1)->start; ++i) { + aux[i].fastcall_spills_num = 0; + aux[i].fastcall_pattern = 0; + } } -/* check_stack_read/write functions track spill/fill of registers, +/* check_stack_{read,write}_fixed_off functions track spill/fill of registers, * stack boundary and alignment are checked in check_mem_access() */ -static int check_stack_write(struct bpf_verifier_env *env, - struct bpf_func_state *state, /* func where register points to */ - int off, int size, int value_regno, int insn_idx) +static int check_stack_write_fixed_off(struct bpf_verifier_env *env, + /* stack frame we're writing to */ + struct bpf_func_state *state, + int off, int size, int value_regno, + int insn_idx) { struct bpf_func_state *cur; /* state of the current function */ int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; - u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; + struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; struct bpf_reg_state *reg = NULL; + int insn_flags = insn_stack_access_flags(state->frameno, spi); - err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), - state->acquired_refs, true); - if (err) - return err; /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, * so it's aligned access and [off, off + size) are within stack limits */ if (!env->allow_ptr_leaks && - state->stack[spi].slot_type[0] == STACK_SPILL && + is_spilled_reg(&state->stack[spi]) && + !is_spilled_scalar_reg(&state->stack[spi]) && size != BPF_REG_SIZE) { verbose(env, "attempt to corrupt spilled pointer on stack\n"); return -EACCES; @@ -2227,21 +4891,47 @@ static int check_stack_write(struct bpf_verifier_env *env, cur = env->cur_state->frame[env->cur_state->curframe]; if (value_regno >= 0) reg = &cur->regs[value_regno]; + if (!env->bypass_spec_v4) { + bool sanitize = reg && is_spillable_regtype(reg->type); - if (reg && size == BPF_REG_SIZE && register_is_const(reg) && - !register_is_null(reg) && env->bpf_capable) { - if (dst_reg != BPF_REG_FP) { - /* The backtracking logic can only recognize explicit - * stack slot address like [fp - 8]. Other spill of - * scalar via different register has to be conervative. - * Backtrack from here and mark all registers as precise - * that contributed into 'reg' being a constant. - */ - err = mark_chain_precision(env, value_regno); - if (err) - return err; + for (i = 0; i < size; i++) { + u8 type = state->stack[spi].slot_type[i]; + + if (type != STACK_MISC && type != STACK_ZERO) { + sanitize = true; + break; + } } - save_register_state(state, spi, reg); + + if (sanitize) + env->insn_aux_data[insn_idx].sanitize_stack_spill = true; + } + + err = destroy_if_dynptr_stack_slot(env, state, spi); + if (err) + return err; + + check_fastcall_stack_contract(env, state, insn_idx, off); + mark_stack_slot_scratched(env, spi); + if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { + bool reg_value_fits; + + reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; + /* Make sure that reg had an ID to build a relation on spill. */ + if (reg_value_fits) + assign_scalar_id_before_mov(env, reg); + save_register_state(env, state, spi, reg, size); + /* Break the relation on a narrowing spill. */ + if (!reg_value_fits) + state->stack[spi].spilled_ptr.id = 0; + } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && + env->bpf_capable) { + struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; + + memset(tmp_reg, 0, sizeof(*tmp_reg)); + __mark_reg_known(tmp_reg, insn->imm); + tmp_reg->type = SCALAR_VALUE; + save_register_state(env, state, spi, tmp_reg, size); } else if (reg && is_spillable_regtype(reg->type)) { /* register containing pointer is being spilled into stack */ if (size != BPF_REG_SIZE) { @@ -2249,57 +4939,20 @@ static int check_stack_write(struct bpf_verifier_env *env, verbose(env, "invalid size of register spill\n"); return -EACCES; } - if (state != cur && reg->type == PTR_TO_STACK) { verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); return -EINVAL; } - - if (!env->bypass_spec_v4) { - bool sanitize = false; - - if (state->stack[spi].slot_type[0] == STACK_SPILL && - register_is_const(&state->stack[spi].spilled_ptr)) - sanitize = true; - for (i = 0; i < BPF_REG_SIZE; i++) - if (state->stack[spi].slot_type[i] == STACK_MISC) { - sanitize = true; - break; - } - if (sanitize) { - int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; - int soff = (-spi - 1) * BPF_REG_SIZE; - - /* detected reuse of integer stack slot with a pointer - * which means either llvm is reusing stack slot or - * an attacker is trying to exploit CVE-2018-3639 - * (speculative store bypass) - * Have to sanitize that slot with preemptive - * store of zero. - */ - if (*poff && *poff != soff) { - /* disallow programs where single insn stores - * into two different stack slots, since verifier - * cannot sanitize them - */ - verbose(env, - "insn %d cannot access two stack slots fp%d and fp%d", - insn_idx, *poff, soff); - return -EINVAL; - } - *poff = soff; - } - } - save_register_state(state, spi, reg); + save_register_state(env, state, spi, reg, size); } else { u8 type = STACK_MISC; /* regular write of data into stack destroys any spilled ptr */ state->stack[spi].spilled_ptr.type = NOT_INIT; - /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ - if (state->stack[spi].slot_type[0] == STACK_SPILL) + /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ + if (is_stack_slot_special(&state->stack[spi])) for (i = 0; i < BPF_REG_SIZE; i++) - state->stack[spi].slot_type[i] = STACK_MISC; + scrub_spilled_slot(&state->stack[spi].slot_type[i]); /* only mark the slot as written if all 8 bytes were written * otherwise read propagation may incorrectly stop too soon @@ -2313,8 +4966,14 @@ static int check_stack_write(struct bpf_verifier_env *env, state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; /* when we zero initialize stack slots mark them as such */ - if (reg && register_is_null(reg)) { - /* backtracking doesn't work for STACK_ZERO yet. */ + if ((reg && register_is_null(reg)) || + (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { + /* STACK_ZERO case happened because register spill + * wasn't properly aligned at the stack slot boundary, + * so it's not a register spill anymore; force + * originating register to be precise to make + * STACK_ZERO correct for subsequent states + */ err = mark_chain_precision(env, value_regno); if (err) return err; @@ -2323,61 +4982,289 @@ static int check_stack_write(struct bpf_verifier_env *env, /* Mark slots affected by this stack write. */ for (i = 0; i < size; i++) - state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = - type; + state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; + insn_flags = 0; /* not a register spill */ } + + if (insn_flags) + return push_insn_history(env, env->cur_state, insn_flags, 0); return 0; } -static int check_stack_read(struct bpf_verifier_env *env, - struct bpf_func_state *reg_state /* func where register points to */, - int off, int size, int value_regno) +/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is + * known to contain a variable offset. + * This function checks whether the write is permitted and conservatively + * tracks the effects of the write, considering that each stack slot in the + * dynamic range is potentially written to. + * + * 'off' includes 'regno->off'. + * 'value_regno' can be -1, meaning that an unknown value is being written to + * the stack. + * + * Spilled pointers in range are not marked as written because we don't know + * what's going to be actually written. This means that read propagation for + * future reads cannot be terminated by this write. + * + * For privileged programs, uninitialized stack slots are considered + * initialized by this write (even though we don't know exactly what offsets + * are going to be written to). The idea is that we don't want the verifier to + * reject future reads that access slots written to through variable offsets. + */ +static int check_stack_write_var_off(struct bpf_verifier_env *env, + /* func where register points to */ + struct bpf_func_state *state, + int ptr_regno, int off, int size, + int value_regno, int insn_idx) +{ + struct bpf_func_state *cur; /* state of the current function */ + int min_off, max_off; + int i, err; + struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; + struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; + bool writing_zero = false; + /* set if the fact that we're writing a zero is used to let any + * stack slots remain STACK_ZERO + */ + bool zero_used = false; + + cur = env->cur_state->frame[env->cur_state->curframe]; + ptr_reg = &cur->regs[ptr_regno]; + min_off = ptr_reg->smin_value + off; + max_off = ptr_reg->smax_value + off + size; + if (value_regno >= 0) + value_reg = &cur->regs[value_regno]; + if ((value_reg && register_is_null(value_reg)) || + (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) + writing_zero = true; + + for (i = min_off; i < max_off; i++) { + int spi; + + spi = __get_spi(i); + err = destroy_if_dynptr_stack_slot(env, state, spi); + if (err) + return err; + } + + check_fastcall_stack_contract(env, state, insn_idx, min_off); + /* Variable offset writes destroy any spilled pointers in range. */ + for (i = min_off; i < max_off; i++) { + u8 new_type, *stype; + int slot, spi; + + slot = -i - 1; + spi = slot / BPF_REG_SIZE; + stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; + mark_stack_slot_scratched(env, spi); + + if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { + /* Reject the write if range we may write to has not + * been initialized beforehand. If we didn't reject + * here, the ptr status would be erased below (even + * though not all slots are actually overwritten), + * possibly opening the door to leaks. + * + * We do however catch STACK_INVALID case below, and + * only allow reading possibly uninitialized memory + * later for CAP_PERFMON, as the write may not happen to + * that slot. + */ + verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", + insn_idx, i); + return -EINVAL; + } + + /* If writing_zero and the spi slot contains a spill of value 0, + * maintain the spill type. + */ + if (writing_zero && *stype == STACK_SPILL && + is_spilled_scalar_reg(&state->stack[spi])) { + struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; + + if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { + zero_used = true; + continue; + } + } + + /* Erase all other spilled pointers. */ + state->stack[spi].spilled_ptr.type = NOT_INIT; + + /* Update the slot type. */ + new_type = STACK_MISC; + if (writing_zero && *stype == STACK_ZERO) { + new_type = STACK_ZERO; + zero_used = true; + } + /* If the slot is STACK_INVALID, we check whether it's OK to + * pretend that it will be initialized by this write. The slot + * might not actually be written to, and so if we mark it as + * initialized future reads might leak uninitialized memory. + * For privileged programs, we will accept such reads to slots + * that may or may not be written because, if we're reject + * them, the error would be too confusing. + */ + if (*stype == STACK_INVALID && !env->allow_uninit_stack) { + verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", + insn_idx, i); + return -EINVAL; + } + *stype = new_type; + } + if (zero_used) { + /* backtracking doesn't work for STACK_ZERO yet. */ + err = mark_chain_precision(env, value_regno); + if (err) + return err; + } + return 0; +} + +/* When register 'dst_regno' is assigned some values from stack[min_off, + * max_off), we set the register's type according to the types of the + * respective stack slots. If all the stack values are known to be zeros, then + * so is the destination reg. Otherwise, the register is considered to be + * SCALAR. This function does not deal with register filling; the caller must + * ensure that all spilled registers in the stack range have been marked as + * read. + */ +static void mark_reg_stack_read(struct bpf_verifier_env *env, + /* func where src register points to */ + struct bpf_func_state *ptr_state, + int min_off, int max_off, int dst_regno) { struct bpf_verifier_state *vstate = env->cur_state; struct bpf_func_state *state = vstate->frame[vstate->curframe]; - int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; - struct bpf_reg_state *reg; + int i, slot, spi; u8 *stype; + int zeros = 0; - if (reg_state->allocated_stack <= slot) { - verbose(env, "invalid read from stack off %d+0 size %d\n", - off, size); - return -EACCES; + for (i = min_off; i < max_off; i++) { + slot = -i - 1; + spi = slot / BPF_REG_SIZE; + mark_stack_slot_scratched(env, spi); + stype = ptr_state->stack[spi].slot_type; + if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) + break; + zeros++; + } + if (zeros == max_off - min_off) { + /* Any access_size read into register is zero extended, + * so the whole register == const_zero. + */ + __mark_reg_const_zero(env, &state->regs[dst_regno]); + } else { + /* have read misc data from the stack */ + mark_reg_unknown(env, state->regs, dst_regno); } + state->regs[dst_regno].live |= REG_LIVE_WRITTEN; +} + +/* Read the stack at 'off' and put the results into the register indicated by + * 'dst_regno'. It handles reg filling if the addressed stack slot is a + * spilled reg. + * + * 'dst_regno' can be -1, meaning that the read value is not going to a + * register. + * + * The access is assumed to be within the current stack bounds. + */ +static int check_stack_read_fixed_off(struct bpf_verifier_env *env, + /* func where src register points to */ + struct bpf_func_state *reg_state, + int off, int size, int dst_regno) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; + struct bpf_reg_state *reg; + u8 *stype, type; + int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); + stype = reg_state->stack[spi].slot_type; reg = ®_state->stack[spi].spilled_ptr; - if (stype[0] == STACK_SPILL) { - if (size != BPF_REG_SIZE) { + mark_stack_slot_scratched(env, spi); + check_fastcall_stack_contract(env, state, env->insn_idx, off); + + if (is_spilled_reg(®_state->stack[spi])) { + u8 spill_size = 1; + + for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) + spill_size++; + + if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { if (reg->type != SCALAR_VALUE) { verbose_linfo(env, env->insn_idx, "; "); verbose(env, "invalid size of register fill\n"); return -EACCES; } - if (value_regno >= 0) { - mark_reg_unknown(env, state->regs, value_regno); - state->regs[value_regno].live |= REG_LIVE_WRITTEN; - } + mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); - return 0; - } - for (i = 1; i < BPF_REG_SIZE; i++) { - if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { - verbose(env, "corrupted spill memory\n"); - return -EACCES; - } - } + if (dst_regno < 0) + return 0; + + if (size <= spill_size && + bpf_stack_narrow_access_ok(off, size, spill_size)) { + /* The earlier check_reg_arg() has decided the + * subreg_def for this insn. Save it first. + */ + s32 subreg_def = state->regs[dst_regno].subreg_def; + + copy_register_state(&state->regs[dst_regno], reg); + state->regs[dst_regno].subreg_def = subreg_def; - if (value_regno >= 0) { + /* Break the relation on a narrowing fill. + * coerce_reg_to_size will adjust the boundaries. + */ + if (get_reg_width(reg) > size * BITS_PER_BYTE) + state->regs[dst_regno].id = 0; + } else { + int spill_cnt = 0, zero_cnt = 0; + + for (i = 0; i < size; i++) { + type = stype[(slot - i) % BPF_REG_SIZE]; + if (type == STACK_SPILL) { + spill_cnt++; + continue; + } + if (type == STACK_MISC) + continue; + if (type == STACK_ZERO) { + zero_cnt++; + continue; + } + if (type == STACK_INVALID && env->allow_uninit_stack) + continue; + verbose(env, "invalid read from stack off %d+%d size %d\n", + off, i, size); + return -EACCES; + } + + if (spill_cnt == size && + tnum_is_const(reg->var_off) && reg->var_off.value == 0) { + __mark_reg_const_zero(env, &state->regs[dst_regno]); + /* this IS register fill, so keep insn_flags */ + } else if (zero_cnt == size) { + /* similarly to mark_reg_stack_read(), preserve zeroes */ + __mark_reg_const_zero(env, &state->regs[dst_regno]); + insn_flags = 0; /* not restoring original register state */ + } else { + mark_reg_unknown(env, state->regs, dst_regno); + insn_flags = 0; /* not restoring original register state */ + } + } + state->regs[dst_regno].live |= REG_LIVE_WRITTEN; + } else if (dst_regno >= 0) { /* restore register state from stack */ - state->regs[value_regno] = *reg; + copy_register_state(&state->regs[dst_regno], reg); /* mark reg as written since spilled pointer state likely * has its liveness marks cleared by is_state_visited() * which resets stack/reg liveness for state transitions */ - state->regs[value_regno].live |= REG_LIVE_WRITTEN; + state->regs[dst_regno].live |= REG_LIVE_WRITTEN; } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { - /* If value_regno==-1, the caller is asking us whether + /* If dst_regno==-1, the caller is asking us whether * it is acceptable to use this value as a SCALAR_VALUE * (e.g. for XADD). * We must not allow unprivileged callers to do that @@ -2389,70 +5276,167 @@ static int check_stack_read(struct bpf_verifier_env *env, } mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); } else { - int zeros = 0; - for (i = 0; i < size; i++) { - if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) + type = stype[(slot - i) % BPF_REG_SIZE]; + if (type == STACK_MISC) continue; - if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { - zeros++; + if (type == STACK_ZERO) + continue; + if (type == STACK_INVALID && env->allow_uninit_stack) continue; - } verbose(env, "invalid read from stack off %d+%d size %d\n", off, i, size); return -EACCES; } mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); - if (value_regno >= 0) { - if (zeros == size) { - /* any size read into register is zero extended, - * so the whole register == const_zero - */ - __mark_reg_const_zero(&state->regs[value_regno]); - /* backtracking doesn't support STACK_ZERO yet, - * so mark it precise here, so that later - * backtracking can stop here. - * Backtracking may not need this if this register - * doesn't participate in pointer adjustment. - * Forward propagation of precise flag is not - * necessary either. This mark is only to stop - * backtracking. Any register that contributed - * to const 0 was marked precise before spill. - */ - state->regs[value_regno].precise = true; - } else { - /* have read misc data from the stack */ - mark_reg_unknown(env, state->regs, value_regno); - } - state->regs[value_regno].live |= REG_LIVE_WRITTEN; - } + if (dst_regno >= 0) + mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); + insn_flags = 0; /* we are not restoring spilled register */ } + if (insn_flags) + return push_insn_history(env, env->cur_state, insn_flags, 0); return 0; } -static int check_stack_access(struct bpf_verifier_env *env, - const struct bpf_reg_state *reg, - int off, int size) +enum bpf_access_src { + ACCESS_DIRECT = 1, /* the access is performed by an instruction */ + ACCESS_HELPER = 2, /* the access is performed by a helper */ +}; + +static int check_stack_range_initialized(struct bpf_verifier_env *env, + int regno, int off, int access_size, + bool zero_size_allowed, + enum bpf_access_type type, + struct bpf_call_arg_meta *meta); + +static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) { - /* Stack accesses must be at a fixed offset, so that we - * can determine what type of data were returned. See - * check_stack_read(). + return cur_regs(env) + regno; +} + +/* Read the stack at 'ptr_regno + off' and put the result into the register + * 'dst_regno'. + * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), + * but not its variable offset. + * 'size' is assumed to be <= reg size and the access is assumed to be aligned. + * + * As opposed to check_stack_read_fixed_off, this function doesn't deal with + * filling registers (i.e. reads of spilled register cannot be detected when + * the offset is not fixed). We conservatively mark 'dst_regno' as containing + * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable + * offset; for a fixed offset check_stack_read_fixed_off should be used + * instead. + */ +static int check_stack_read_var_off(struct bpf_verifier_env *env, + int ptr_regno, int off, int size, int dst_regno) +{ + /* The state of the source register. */ + struct bpf_reg_state *reg = reg_state(env, ptr_regno); + struct bpf_func_state *ptr_state = func(env, reg); + int err; + int min_off, max_off; + + /* Note that we pass a NULL meta, so raw access will not be permitted. */ - if (!tnum_is_const(reg->var_off)) { + err = check_stack_range_initialized(env, ptr_regno, off, size, + false, BPF_READ, NULL); + if (err) + return err; + + min_off = reg->smin_value + off; + max_off = reg->smax_value + off; + mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); + check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); + return 0; +} + +/* check_stack_read dispatches to check_stack_read_fixed_off or + * check_stack_read_var_off. + * + * The caller must ensure that the offset falls within the allocated stack + * bounds. + * + * 'dst_regno' is a register which will receive the value from the stack. It + * can be -1, meaning that the read value is not going to a register. + */ +static int check_stack_read(struct bpf_verifier_env *env, + int ptr_regno, int off, int size, + int dst_regno) +{ + struct bpf_reg_state *reg = reg_state(env, ptr_regno); + struct bpf_func_state *state = func(env, reg); + int err; + /* Some accesses are only permitted with a static offset. */ + bool var_off = !tnum_is_const(reg->var_off); + + /* The offset is required to be static when reads don't go to a + * register, in order to not leak pointers (see + * check_stack_read_fixed_off). + */ + if (dst_regno < 0 && var_off) { char tn_buf[48]; tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, "variable stack access var_off=%s off=%d size=%d\n", + verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", tn_buf, off, size); return -EACCES; } - - if (off >= 0 || off < -MAX_BPF_STACK) { - verbose(env, "invalid stack off=%d size=%d\n", off, size); - return -EACCES; + /* Variable offset is prohibited for unprivileged mode for simplicity + * since it requires corresponding support in Spectre masking for stack + * ALU. See also retrieve_ptr_limit(). The check in + * check_stack_access_for_ptr_arithmetic() called by + * adjust_ptr_min_max_vals() prevents users from creating stack pointers + * with variable offsets, therefore no check is required here. Further, + * just checking it here would be insufficient as speculative stack + * writes could still lead to unsafe speculative behaviour. + */ + if (!var_off) { + off += reg->var_off.value; + err = check_stack_read_fixed_off(env, state, off, size, + dst_regno); + } else { + /* Variable offset stack reads need more conservative handling + * than fixed offset ones. Note that dst_regno >= 0 on this + * branch. + */ + err = check_stack_read_var_off(env, ptr_regno, off, size, + dst_regno); } + return err; +} - return 0; + +/* check_stack_write dispatches to check_stack_write_fixed_off or + * check_stack_write_var_off. + * + * 'ptr_regno' is the register used as a pointer into the stack. + * 'off' includes 'ptr_regno->off', but not its variable offset (if any). + * 'value_regno' is the register whose value we're writing to the stack. It can + * be -1, meaning that we're not writing from a register. + * + * The caller must ensure that the offset falls within the maximum stack size. + */ +static int check_stack_write(struct bpf_verifier_env *env, + int ptr_regno, int off, int size, + int value_regno, int insn_idx) +{ + struct bpf_reg_state *reg = reg_state(env, ptr_regno); + struct bpf_func_state *state = func(env, reg); + int err; + + if (tnum_is_const(reg->var_off)) { + off += reg->var_off.value; + err = check_stack_write_fixed_off(env, state, off, size, + value_regno, insn_idx); + } else { + /* Variable offset stack reads need more conservative handling + * than fixed offset ones. + */ + err = check_stack_write_var_off(env, state, + ptr_regno, off, size, + value_regno, insn_idx); + } + return err; } static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, @@ -2490,6 +5474,10 @@ static int __check_mem_access(struct bpf_verifier_env *env, int regno, reg = &cur_regs(env)[regno]; switch (reg->type) { + case PTR_TO_MAP_KEY: + verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", + mem_size, off, size); + break; case PTR_TO_MAP_VALUE: verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", mem_size, off, size); @@ -2522,11 +5510,8 @@ static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, /* We may have adjusted the register pointing to memory region, so we * need to try adding each of min_value and max_value to off * to make sure our theoretical access will be safe. - */ - if (env->log.level & BPF_LOG_LEVEL) - print_verifier_state(env, state); - - /* The minimum value is only important with signed + * + * The minimum value is only important with signed * comparisons where we can't assume the floor of a * value is 0. If we are using signed variables for our * index'es we need to make sure that whatever we use @@ -2568,36 +5553,345 @@ static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, return 0; } +static int __check_ptr_off_reg(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, int regno, + bool fixed_off_ok) +{ + /* Access to this pointer-typed register or passing it to a helper + * is only allowed in its original, unmodified form. + */ + + if (reg->off < 0) { + verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", + reg_type_str(env, reg->type), regno, reg->off); + return -EACCES; + } + + if (!fixed_off_ok && reg->off) { + verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", + reg_type_str(env, reg->type), regno, reg->off); + return -EACCES; + } + + if (!tnum_is_const(reg->var_off) || reg->var_off.value) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "variable %s access var_off=%s disallowed\n", + reg_type_str(env, reg->type), tn_buf); + return -EACCES; + } + + return 0; +} + +static int check_ptr_off_reg(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, int regno) +{ + return __check_ptr_off_reg(env, reg, regno, false); +} + +static int map_kptr_match_type(struct bpf_verifier_env *env, + struct btf_field *kptr_field, + struct bpf_reg_state *reg, u32 regno) +{ + const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); + int perm_flags; + const char *reg_name = ""; + + if (btf_is_kernel(reg->btf)) { + perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; + + /* Only unreferenced case accepts untrusted pointers */ + if (kptr_field->type == BPF_KPTR_UNREF) + perm_flags |= PTR_UNTRUSTED; + } else { + perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; + if (kptr_field->type == BPF_KPTR_PERCPU) + perm_flags |= MEM_PERCPU; + } + + if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) + goto bad_type; + + /* We need to verify reg->type and reg->btf, before accessing reg->btf */ + reg_name = btf_type_name(reg->btf, reg->btf_id); + + /* For ref_ptr case, release function check should ensure we get one + * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the + * normal store of unreferenced kptr, we must ensure var_off is zero. + * Since ref_ptr cannot be accessed directly by BPF insns, checks for + * reg->off and reg->ref_obj_id are not needed here. + */ + if (__check_ptr_off_reg(env, reg, regno, true)) + return -EACCES; + + /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and + * we also need to take into account the reg->off. + * + * We want to support cases like: + * + * struct foo { + * struct bar br; + * struct baz bz; + * }; + * + * struct foo *v; + * v = func(); // PTR_TO_BTF_ID + * val->foo = v; // reg->off is zero, btf and btf_id match type + * val->bar = &v->br; // reg->off is still zero, but we need to retry with + * // first member type of struct after comparison fails + * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked + * // to match type + * + * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off + * is zero. We must also ensure that btf_struct_ids_match does not walk + * the struct to match type against first member of struct, i.e. reject + * second case from above. Hence, when type is BPF_KPTR_REF, we set + * strict mode to true for type match. + */ + if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, + kptr_field->kptr.btf, kptr_field->kptr.btf_id, + kptr_field->type != BPF_KPTR_UNREF)) + goto bad_type; + return 0; +bad_type: + verbose(env, "invalid kptr access, R%d type=%s%s ", regno, + reg_type_str(env, reg->type), reg_name); + verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); + if (kptr_field->type == BPF_KPTR_UNREF) + verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), + targ_name); + else + verbose(env, "\n"); + return -EINVAL; +} + +static bool in_sleepable(struct bpf_verifier_env *env) +{ + return env->prog->sleepable || + (env->cur_state && env->cur_state->in_sleepable); +} + +/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() + * can dereference RCU protected pointers and result is PTR_TRUSTED. + */ +static bool in_rcu_cs(struct bpf_verifier_env *env) +{ + return env->cur_state->active_rcu_lock || + env->cur_state->active_locks || + !in_sleepable(env); +} + +/* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ +BTF_SET_START(rcu_protected_types) +#ifdef CONFIG_NET +BTF_ID(struct, prog_test_ref_kfunc) +#endif +#ifdef CONFIG_CGROUPS +BTF_ID(struct, cgroup) +#endif +#ifdef CONFIG_BPF_JIT +BTF_ID(struct, bpf_cpumask) +#endif +BTF_ID(struct, task_struct) +#ifdef CONFIG_CRYPTO +BTF_ID(struct, bpf_crypto_ctx) +#endif +BTF_SET_END(rcu_protected_types) + +static bool rcu_protected_object(const struct btf *btf, u32 btf_id) +{ + if (!btf_is_kernel(btf)) + return true; + return btf_id_set_contains(&rcu_protected_types, btf_id); +} + +static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) +{ + struct btf_struct_meta *meta; + + if (btf_is_kernel(kptr_field->kptr.btf)) + return NULL; + + meta = btf_find_struct_meta(kptr_field->kptr.btf, + kptr_field->kptr.btf_id); + + return meta ? meta->record : NULL; +} + +static bool rcu_safe_kptr(const struct btf_field *field) +{ + const struct btf_field_kptr *kptr = &field->kptr; + + return field->type == BPF_KPTR_PERCPU || + (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); +} + +static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) +{ + struct btf_record *rec; + u32 ret; + + ret = PTR_MAYBE_NULL; + if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { + ret |= MEM_RCU; + if (kptr_field->type == BPF_KPTR_PERCPU) + ret |= MEM_PERCPU; + else if (!btf_is_kernel(kptr_field->kptr.btf)) + ret |= MEM_ALLOC; + + rec = kptr_pointee_btf_record(kptr_field); + if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) + ret |= NON_OWN_REF; + } else { + ret |= PTR_UNTRUSTED; + } + + return ret; +} + +static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, + struct btf_field *field) +{ + struct bpf_reg_state *reg; + const struct btf_type *t; + + t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); + mark_reg_known_zero(env, cur_regs(env), regno); + reg = reg_state(env, regno); + reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; + reg->mem_size = t->size; + reg->id = ++env->id_gen; + + return 0; +} + +static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, + int value_regno, int insn_idx, + struct btf_field *kptr_field) +{ + struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; + int class = BPF_CLASS(insn->code); + struct bpf_reg_state *val_reg; + + /* Things we already checked for in check_map_access and caller: + * - Reject cases where variable offset may touch kptr + * - size of access (must be BPF_DW) + * - tnum_is_const(reg->var_off) + * - kptr_field->offset == off + reg->var_off.value + */ + /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ + if (BPF_MODE(insn->code) != BPF_MEM) { + verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); + return -EACCES; + } + + /* We only allow loading referenced kptr, since it will be marked as + * untrusted, similar to unreferenced kptr. + */ + if (class != BPF_LDX && + (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { + verbose(env, "store to referenced kptr disallowed\n"); + return -EACCES; + } + if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { + verbose(env, "store to uptr disallowed\n"); + return -EACCES; + } + + if (class == BPF_LDX) { + if (kptr_field->type == BPF_UPTR) + return mark_uptr_ld_reg(env, value_regno, kptr_field); + + /* We can simply mark the value_regno receiving the pointer + * value from map as PTR_TO_BTF_ID, with the correct type. + */ + mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, + kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); + } else if (class == BPF_STX) { + val_reg = reg_state(env, value_regno); + if (!register_is_null(val_reg) && + map_kptr_match_type(env, kptr_field, val_reg, value_regno)) + return -EACCES; + } else if (class == BPF_ST) { + if (insn->imm) { + verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", + kptr_field->offset); + return -EACCES; + } + } else { + verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); + return -EACCES; + } + return 0; +} + /* check read/write into a map element with possible variable offset */ static int check_map_access(struct bpf_verifier_env *env, u32 regno, - int off, int size, bool zero_size_allowed) + int off, int size, bool zero_size_allowed, + enum bpf_access_src src) { struct bpf_verifier_state *vstate = env->cur_state; struct bpf_func_state *state = vstate->frame[vstate->curframe]; struct bpf_reg_state *reg = &state->regs[regno]; struct bpf_map *map = reg->map_ptr; - int err; + struct btf_record *rec; + int err, i; err = check_mem_region_access(env, regno, off, size, map->value_size, zero_size_allowed); if (err) return err; - if (map_value_has_spin_lock(map)) { - u32 lock = map->spin_lock_off; + if (IS_ERR_OR_NULL(map->record)) + return 0; + rec = map->record; + for (i = 0; i < rec->cnt; i++) { + struct btf_field *field = &rec->fields[i]; + u32 p = field->offset; - /* if any part of struct bpf_spin_lock can be touched by - * load/store reject this program. - * To check that [x1, x2) overlaps with [y1, y2) + /* If any part of a field can be touched by load/store, reject + * this program. To check that [x1, x2) overlaps with [y1, y2), * it is sufficient to check x1 < y2 && y1 < x2. */ - if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && - lock < reg->umax_value + off + size) { - verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); - return -EACCES; + if (reg->smin_value + off < p + field->size && + p < reg->umax_value + off + size) { + switch (field->type) { + case BPF_KPTR_UNREF: + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + case BPF_UPTR: + if (src != ACCESS_DIRECT) { + verbose(env, "%s cannot be accessed indirectly by helper\n", + btf_field_type_name(field->type)); + return -EACCES; + } + if (!tnum_is_const(reg->var_off)) { + verbose(env, "%s access cannot have variable offset\n", + btf_field_type_name(field->type)); + return -EACCES; + } + if (p != off + reg->var_off.value) { + verbose(env, "%s access misaligned expected=%u off=%llu\n", + btf_field_type_name(field->type), + p, off + reg->var_off.value); + return -EACCES; + } + if (size != bpf_size_to_bytes(BPF_DW)) { + verbose(env, "%s access size must be BPF_DW\n", + btf_field_type_name(field->type)); + return -EACCES; + } + break; + default: + verbose(env, "%s cannot be accessed directly by load/store\n", + btf_field_type_name(field->type)); + return -EACCES; + } } } - return err; + return 0; } #define MAX_PACKET_OFF 0xffff @@ -2606,7 +5900,9 @@ static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, const struct bpf_call_arg_meta *meta, enum bpf_access_type t) { - switch (env->prog->type) { + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + + switch (prog_type) { /* Program types only with direct read access go here! */ case BPF_PROG_TYPE_LWT_IN: case BPF_PROG_TYPE_LWT_OUT: @@ -2616,7 +5912,7 @@ static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, case BPF_PROG_TYPE_CGROUP_SKB: if (t == BPF_WRITE) return false; - /* fallthrough */ + fallthrough; /* Program types with direct read + write access go here! */ case BPF_PROG_TYPE_SCHED_CLS: @@ -2662,7 +5958,9 @@ static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, regno); return -EACCES; } - err = __check_mem_access(env, regno, off, size, reg->range, + + err = reg->range < 0 ? -EINVAL : + __check_mem_access(env, regno, off, size, reg->range, zero_size_allowed); if (err) { verbose(env, "R%d offset is outside of the packet\n", regno); @@ -2685,11 +5983,13 @@ static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, enum bpf_access_type t, enum bpf_reg_type *reg_type, - u32 *btf_id) + struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx) { struct bpf_insn_access_aux info = { .reg_type = *reg_type, .log = &env->log, + .is_retval = false, + .is_ldsx = is_ldsx, }; if (env->ops->is_valid_access && @@ -2702,11 +6002,14 @@ static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, * type of narrower access. */ *reg_type = info.reg_type; + *is_retval = info.is_retval; - if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) + if (base_type(*reg_type) == PTR_TO_BTF_ID) { + *btf = info.btf; *btf_id = info.btf_id; - else + } else { env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; + } /* remember the offset of last byte accessed in ctx */ if (env->prog->aux->max_ctx_offset < off + size) env->prog->aux->max_ctx_offset = off + size; @@ -2769,16 +6072,11 @@ static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, } verbose(env, "R%d invalid %s access off=%d size=%d\n", - regno, reg_type_str[reg->type], off, size); + regno, reg_type_str(env, reg->type), off, size); return -EACCES; } -static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) -{ - return cur_regs(env) + regno; -} - static bool is_pointer_value(struct bpf_verifier_env *env, int regno) { return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); @@ -2813,6 +6111,56 @@ static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) return reg->type == PTR_TO_FLOW_KEYS; } +static bool is_arena_reg(struct bpf_verifier_env *env, int regno) +{ + const struct bpf_reg_state *reg = reg_state(env, regno); + + return reg->type == PTR_TO_ARENA; +} + +static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { +#ifdef CONFIG_NET + [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], + [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], + [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], +#endif + [CONST_PTR_TO_MAP] = btf_bpf_map_id, +}; + +static bool is_trusted_reg(const struct bpf_reg_state *reg) +{ + /* A referenced register is always trusted. */ + if (reg->ref_obj_id) + return true; + + /* Types listed in the reg2btf_ids are always trusted */ + if (reg2btf_ids[base_type(reg->type)] && + !bpf_type_has_unsafe_modifiers(reg->type)) + return true; + + /* If a register is not referenced, it is trusted if it has the + * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the + * other type modifiers may be safe, but we elect to take an opt-in + * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are + * not. + * + * Eventually, we should make PTR_TRUSTED the single source of truth + * for whether a register is trusted. + */ + return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && + !bpf_type_has_unsafe_modifiers(reg->type); +} + +static bool is_rcu_reg(const struct bpf_reg_state *reg) +{ + return reg->type & MEM_RCU; +} + +static void clear_trusted_flags(enum bpf_type_flag *flag) +{ + *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); +} + static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int off, int size, bool strict) @@ -2889,6 +6237,9 @@ static int check_ptr_alignment(struct bpf_verifier_env *env, case PTR_TO_FLOW_KEYS: pointer_desc = "flow keys "; break; + case PTR_TO_MAP_KEY: + pointer_desc = "key "; + break; case PTR_TO_MAP_VALUE: pointer_desc = "value "; break; @@ -2897,8 +6248,8 @@ static int check_ptr_alignment(struct bpf_verifier_env *env, break; case PTR_TO_STACK: pointer_desc = "stack "; - /* The stack spill tracking logic in check_stack_write() - * and check_stack_read() relies on stack accesses being + /* The stack spill tracking logic in check_stack_write_fixed_off() + * and check_stack_read_fixed_off() relies on stack accesses being * aligned. */ strict = true; @@ -2915,6 +6266,8 @@ static int check_ptr_alignment(struct bpf_verifier_env *env, case PTR_TO_XDP_SOCK: pointer_desc = "xdp_sock "; break; + case PTR_TO_ARENA: + return 0; default: break; } @@ -2922,18 +6275,43 @@ static int check_ptr_alignment(struct bpf_verifier_env *env, strict); } -static int update_stack_depth(struct bpf_verifier_env *env, - const struct bpf_func_state *func, - int off) +static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) { - u16 stack = env->subprog_info[func->subprogno].stack_depth; + if (!bpf_jit_supports_private_stack()) + return NO_PRIV_STACK; - if (stack >= -off) - return 0; + /* bpf_prog_check_recur() checks all prog types that use bpf trampoline + * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked + * explicitly. + */ + switch (prog->type) { + case BPF_PROG_TYPE_KPROBE: + case BPF_PROG_TYPE_TRACEPOINT: + case BPF_PROG_TYPE_PERF_EVENT: + case BPF_PROG_TYPE_RAW_TRACEPOINT: + return PRIV_STACK_ADAPTIVE; + case BPF_PROG_TYPE_TRACING: + case BPF_PROG_TYPE_LSM: + case BPF_PROG_TYPE_STRUCT_OPS: + if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) + return PRIV_STACK_ADAPTIVE; + fallthrough; + default: + break; + } - /* update known max for given subprogram */ - env->subprog_info[func->subprogno].stack_depth = -off; - return 0; + return NO_PRIV_STACK; +} + +static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) +{ + if (env->prog->jit_requested) + return round_up(stack_depth, 16); + + /* round up to 32-bytes, since this is granularity + * of interpreter stack size + */ + return round_up(max_t(u32, stack_depth, 1), 32); } /* starting from main bpf function walk all instructions of the function @@ -2942,43 +6320,133 @@ static int update_stack_depth(struct bpf_verifier_env *env, * Since recursion is prevented by check_cfg() this algorithm * only needs a local stack of MAX_CALL_FRAMES to remember callsites */ -static int check_max_stack_depth(struct bpf_verifier_env *env) +static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, + bool priv_stack_supported) { - int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; struct bpf_subprog_info *subprog = env->subprog_info; struct bpf_insn *insn = env->prog->insnsi; + int depth = 0, frame = 0, i, subprog_end, subprog_depth; + bool tail_call_reachable = false; int ret_insn[MAX_CALL_FRAMES]; int ret_prog[MAX_CALL_FRAMES]; + int j; + i = subprog[idx].start; + if (!priv_stack_supported) + subprog[idx].priv_stack_mode = NO_PRIV_STACK; process_func: - /* round up to 32-bytes, since this is granularity - * of interpreter stack size + /* protect against potential stack overflow that might happen when + * bpf2bpf calls get combined with tailcalls. Limit the caller's stack + * depth for such case down to 256 so that the worst case scenario + * would result in 8k stack size (32 which is tailcall limit * 256 = + * 8k). + * + * To get the idea what might happen, see an example: + * func1 -> sub rsp, 128 + * subfunc1 -> sub rsp, 256 + * tailcall1 -> add rsp, 256 + * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) + * subfunc2 -> sub rsp, 64 + * subfunc22 -> sub rsp, 128 + * tailcall2 -> add rsp, 128 + * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) + * + * tailcall will unwind the current stack frame but it will not get rid + * of caller's stack as shown on the example above. */ - depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); - if (depth > MAX_BPF_STACK) { - verbose(env, "combined stack size of %d calls is %d. Too large\n", - frame + 1, depth); + if (idx && subprog[idx].has_tail_call && depth >= 256) { + verbose(env, + "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", + depth); return -EACCES; } + + subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); + if (priv_stack_supported) { + /* Request private stack support only if the subprog stack + * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to + * avoid jit penalty if the stack usage is small. + */ + if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && + subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) + subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; + } + + if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { + if (subprog_depth > MAX_BPF_STACK) { + verbose(env, "stack size of subprog %d is %d. Too large\n", + idx, subprog_depth); + return -EACCES; + } + } else { + depth += subprog_depth; + if (depth > MAX_BPF_STACK) { + verbose(env, "combined stack size of %d calls is %d. Too large\n", + frame + 1, depth); + return -EACCES; + } + } continue_func: subprog_end = subprog[idx + 1].start; for (; i < subprog_end; i++) { - if (insn[i].code != (BPF_JMP | BPF_CALL)) - continue; - if (insn[i].src_reg != BPF_PSEUDO_CALL) + int next_insn, sidx; + + if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { + bool err = false; + + if (!is_bpf_throw_kfunc(insn + i)) + continue; + if (subprog[idx].is_cb) + err = true; + for (int c = 0; c < frame && !err; c++) { + if (subprog[ret_prog[c]].is_cb) { + err = true; + break; + } + } + if (!err) + continue; + verbose(env, + "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", + i, idx); + return -EINVAL; + } + + if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) continue; /* remember insn and function to return to */ ret_insn[frame] = i + 1; ret_prog[frame] = idx; /* find the callee */ - i = i + insn[i].imm + 1; - idx = find_subprog(env, i); - if (idx < 0) { + next_insn = i + insn[i].imm + 1; + sidx = find_subprog(env, next_insn); + if (sidx < 0) { WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", - i); + next_insn); return -EFAULT; } + if (subprog[sidx].is_async_cb) { + if (subprog[sidx].has_tail_call) { + verbose(env, "verifier bug. subprog has tail_call and async cb\n"); + return -EFAULT; + } + /* async callbacks don't increase bpf prog stack size unless called directly */ + if (!bpf_pseudo_call(insn + i)) + continue; + if (subprog[sidx].is_exception_cb) { + verbose(env, "insn %d cannot call exception cb directly\n", i); + return -EINVAL; + } + } + i = next_insn; + idx = sidx; + if (!priv_stack_supported) + subprog[idx].priv_stack_mode = NO_PRIV_STACK; + + if (subprog[idx].has_tail_call) + tail_call_reachable = true; + frame++; if (frame >= MAX_CALL_FRAMES) { verbose(env, "the call stack of %d frames is too deep !\n", @@ -2987,18 +6455,79 @@ continue_func: } goto process_func; } + /* if tail call got detected across bpf2bpf calls then mark each of the + * currently present subprog frames as tail call reachable subprogs; + * this info will be utilized by JIT so that we will be preserving the + * tail call counter throughout bpf2bpf calls combined with tailcalls + */ + if (tail_call_reachable) + for (j = 0; j < frame; j++) { + if (subprog[ret_prog[j]].is_exception_cb) { + verbose(env, "cannot tail call within exception cb\n"); + return -EINVAL; + } + subprog[ret_prog[j]].tail_call_reachable = true; + } + if (subprog[0].tail_call_reachable) + env->prog->aux->tail_call_reachable = true; + /* end of for() loop means the last insn of the 'subprog' * was reached. Doesn't matter whether it was JA or EXIT */ if (frame == 0) return 0; - depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); + if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) + depth -= round_up_stack_depth(env, subprog[idx].stack_depth); frame--; i = ret_insn[frame]; idx = ret_prog[frame]; goto continue_func; } +static int check_max_stack_depth(struct bpf_verifier_env *env) +{ + enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; + struct bpf_subprog_info *si = env->subprog_info; + bool priv_stack_supported; + int ret; + + for (int i = 0; i < env->subprog_cnt; i++) { + if (si[i].has_tail_call) { + priv_stack_mode = NO_PRIV_STACK; + break; + } + } + + if (priv_stack_mode == PRIV_STACK_UNKNOWN) + priv_stack_mode = bpf_enable_priv_stack(env->prog); + + /* All async_cb subprogs use normal kernel stack. If a particular + * subprog appears in both main prog and async_cb subtree, that + * subprog will use normal kernel stack to avoid potential nesting. + * The reverse subprog traversal ensures when main prog subtree is + * checked, the subprogs appearing in async_cb subtrees are already + * marked as using normal kernel stack, so stack size checking can + * be done properly. + */ + for (int i = env->subprog_cnt - 1; i >= 0; i--) { + if (!i || si[i].is_async_cb) { + priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; + ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); + if (ret < 0) + return ret; + } + } + + for (int i = 0; i < env->subprog_cnt; i++) { + if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { + env->prog->aux->jits_use_priv_stack = true; + break; + } + } + + return 0; +} + #ifndef CONFIG_BPF_JIT_ALWAYS_ON static int get_callee_stack_depth(struct bpf_verifier_env *env, const struct bpf_insn *insn, int idx) @@ -3015,24 +6544,24 @@ static int get_callee_stack_depth(struct bpf_verifier_env *env, } #endif -int check_ctx_reg(struct bpf_verifier_env *env, - const struct bpf_reg_state *reg, int regno) +static int __check_buffer_access(struct bpf_verifier_env *env, + const char *buf_info, + const struct bpf_reg_state *reg, + int regno, int off, int size) { - /* Access to ctx or passing it to a helper is only allowed in - * its original, unmodified form. - */ - - if (reg->off) { - verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", - regno, reg->off); + if (off < 0) { + verbose(env, + "R%d invalid %s buffer access: off=%d, size=%d\n", + regno, buf_info, off, size); return -EACCES; } - if (!tnum_is_const(reg->var_off) || reg->var_off.value) { char tn_buf[48]; tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); + verbose(env, + "R%d invalid variable buffer offset: off=%d, var_off=%s\n", + regno, off, tn_buf); return -EACCES; } @@ -3043,27 +6572,37 @@ static int check_tp_buffer_access(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int regno, int off, int size) { - if (off < 0) { - verbose(env, - "R%d invalid tracepoint buffer access: off=%d, size=%d", - regno, off, size); - return -EACCES; - } - if (!tnum_is_const(reg->var_off) || reg->var_off.value) { - char tn_buf[48]; + int err; + + err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); + if (err) + return err; - tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, - "R%d invalid variable buffer offset: off=%d, var_off=%s", - regno, off, tn_buf); - return -EACCES; - } if (off + size > env->prog->aux->max_tp_access) env->prog->aux->max_tp_access = off + size; return 0; } +static int check_buffer_access(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + int regno, int off, int size, + bool zero_size_allowed, + u32 *max_access) +{ + const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; + int err; + + err = __check_buffer_access(env, buf_info, reg, regno, off, size); + if (err) + return err; + + if (off + size > *max_access) + *max_access = off + size; + + return 0; +} + /* BPF architecture zero extends alu32 ops into 64-bit registesr */ static void zext_32_to_64(struct bpf_reg_state *reg) { @@ -3097,17 +6636,177 @@ static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) * values are also truncated so we push 64-bit bounds into * 32-bit bounds. Above were truncated < 32-bits already. */ - if (size >= 4) + if (size < 4) + __mark_reg32_unbounded(reg); + + reg_bounds_sync(reg); +} + +static void set_sext64_default_val(struct bpf_reg_state *reg, int size) +{ + if (size == 1) { + reg->smin_value = reg->s32_min_value = S8_MIN; + reg->smax_value = reg->s32_max_value = S8_MAX; + } else if (size == 2) { + reg->smin_value = reg->s32_min_value = S16_MIN; + reg->smax_value = reg->s32_max_value = S16_MAX; + } else { + /* size == 4 */ + reg->smin_value = reg->s32_min_value = S32_MIN; + reg->smax_value = reg->s32_max_value = S32_MAX; + } + reg->umin_value = reg->u32_min_value = 0; + reg->umax_value = U64_MAX; + reg->u32_max_value = U32_MAX; + reg->var_off = tnum_unknown; +} + +static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) +{ + s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; + u64 top_smax_value, top_smin_value; + u64 num_bits = size * 8; + + if (tnum_is_const(reg->var_off)) { + u64_cval = reg->var_off.value; + if (size == 1) + reg->var_off = tnum_const((s8)u64_cval); + else if (size == 2) + reg->var_off = tnum_const((s16)u64_cval); + else + /* size == 4 */ + reg->var_off = tnum_const((s32)u64_cval); + + u64_cval = reg->var_off.value; + reg->smax_value = reg->smin_value = u64_cval; + reg->umax_value = reg->umin_value = u64_cval; + reg->s32_max_value = reg->s32_min_value = u64_cval; + reg->u32_max_value = reg->u32_min_value = u64_cval; + return; + } + + top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; + top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; + + if (top_smax_value != top_smin_value) + goto out; + + /* find the s64_min and s64_min after sign extension */ + if (size == 1) { + init_s64_max = (s8)reg->smax_value; + init_s64_min = (s8)reg->smin_value; + } else if (size == 2) { + init_s64_max = (s16)reg->smax_value; + init_s64_min = (s16)reg->smin_value; + } else { + init_s64_max = (s32)reg->smax_value; + init_s64_min = (s32)reg->smin_value; + } + + s64_max = max(init_s64_max, init_s64_min); + s64_min = min(init_s64_max, init_s64_min); + + /* both of s64_max/s64_min positive or negative */ + if ((s64_max >= 0) == (s64_min >= 0)) { + reg->s32_min_value = reg->smin_value = s64_min; + reg->s32_max_value = reg->smax_value = s64_max; + reg->u32_min_value = reg->umin_value = s64_min; + reg->u32_max_value = reg->umax_value = s64_max; + reg->var_off = tnum_range(s64_min, s64_max); + return; + } + +out: + set_sext64_default_val(reg, size); +} + +static void set_sext32_default_val(struct bpf_reg_state *reg, int size) +{ + if (size == 1) { + reg->s32_min_value = S8_MIN; + reg->s32_max_value = S8_MAX; + } else { + /* size == 2 */ + reg->s32_min_value = S16_MIN; + reg->s32_max_value = S16_MAX; + } + reg->u32_min_value = 0; + reg->u32_max_value = U32_MAX; + reg->var_off = tnum_subreg(tnum_unknown); +} + +static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) +{ + s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; + u32 top_smax_value, top_smin_value; + u32 num_bits = size * 8; + + if (tnum_is_const(reg->var_off)) { + u32_val = reg->var_off.value; + if (size == 1) + reg->var_off = tnum_const((s8)u32_val); + else + reg->var_off = tnum_const((s16)u32_val); + + u32_val = reg->var_off.value; + reg->s32_min_value = reg->s32_max_value = u32_val; + reg->u32_min_value = reg->u32_max_value = u32_val; return; - __reg_combine_64_into_32(reg); + } + + top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; + top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; + + if (top_smax_value != top_smin_value) + goto out; + + /* find the s32_min and s32_min after sign extension */ + if (size == 1) { + init_s32_max = (s8)reg->s32_max_value; + init_s32_min = (s8)reg->s32_min_value; + } else { + /* size == 2 */ + init_s32_max = (s16)reg->s32_max_value; + init_s32_min = (s16)reg->s32_min_value; + } + s32_max = max(init_s32_max, init_s32_min); + s32_min = min(init_s32_max, init_s32_min); + + if ((s32_min >= 0) == (s32_max >= 0)) { + reg->s32_min_value = s32_min; + reg->s32_max_value = s32_max; + reg->u32_min_value = (u32)s32_min; + reg->u32_max_value = (u32)s32_max; + reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); + return; + } + +out: + set_sext32_default_val(reg, size); } static bool bpf_map_is_rdonly(const struct bpf_map *map) { - return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; + /* A map is considered read-only if the following condition are true: + * + * 1) BPF program side cannot change any of the map content. The + * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map + * and was set at map creation time. + * 2) The map value(s) have been initialized from user space by a + * loader and then "frozen", such that no new map update/delete + * operations from syscall side are possible for the rest of + * the map's lifetime from that point onwards. + * 3) Any parallel/pending map update/delete operations from syscall + * side have been completed. Only after that point, it's safe to + * assume that map value(s) are immutable. + */ + return (map->map_flags & BPF_F_RDONLY_PROG) && + READ_ONCE(map->frozen) && + !bpf_map_write_active(map); } -static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) +static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, + bool is_ldsx) { void *ptr; u64 addr; @@ -3120,13 +6819,13 @@ static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) switch (size) { case sizeof(u8): - *val = (u64)*(u8 *)ptr; + *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; break; case sizeof(u16): - *val = (u64)*(u16 *)ptr; + *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; break; case sizeof(u32): - *val = (u64)*(u32 *)ptr; + *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; break; case sizeof(u64): *val = *(u64 *)ptr; @@ -3137,6 +6836,122 @@ static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) return 0; } +#define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) +#define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) +#define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) +#define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) + +/* + * Allow list few fields as RCU trusted or full trusted. + * This logic doesn't allow mix tagging and will be removed once GCC supports + * btf_type_tag. + */ + +/* RCU trusted: these fields are trusted in RCU CS and never NULL */ +BTF_TYPE_SAFE_RCU(struct task_struct) { + const cpumask_t *cpus_ptr; + struct css_set __rcu *cgroups; + struct task_struct __rcu *real_parent; + struct task_struct *group_leader; +}; + +BTF_TYPE_SAFE_RCU(struct cgroup) { + /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ + struct kernfs_node *kn; +}; + +BTF_TYPE_SAFE_RCU(struct css_set) { + struct cgroup *dfl_cgrp; +}; + +/* RCU trusted: these fields are trusted in RCU CS and can be NULL */ +BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { + struct file __rcu *exe_file; +}; + +/* skb->sk, req->sk are not RCU protected, but we mark them as such + * because bpf prog accessible sockets are SOCK_RCU_FREE. + */ +BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { + struct sock *sk; +}; + +BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { + struct sock *sk; +}; + +/* full trusted: these fields are trusted even outside of RCU CS and never NULL */ +BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { + struct seq_file *seq; +}; + +BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { + struct bpf_iter_meta *meta; + struct task_struct *task; +}; + +BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { + struct file *file; +}; + +BTF_TYPE_SAFE_TRUSTED(struct file) { + struct inode *f_inode; +}; + +BTF_TYPE_SAFE_TRUSTED(struct dentry) { + /* no negative dentry-s in places where bpf can see it */ + struct inode *d_inode; +}; + +BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { + struct sock *sk; +}; + +static bool type_is_rcu(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const char *field_name, u32 btf_id) +{ + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); + + return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); +} + +static bool type_is_rcu_or_null(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const char *field_name, u32 btf_id) +{ + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); + + return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); +} + +static bool type_is_trusted(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const char *field_name, u32 btf_id) +{ + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); + + return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); +} + +static bool type_is_trusted_or_null(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const char *field_name, u32 btf_id) +{ + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); + + return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, + "__safe_trusted_or_null"); +} + static int check_ptr_to_btf_access(struct bpf_verifier_env *env, struct bpf_reg_state *regs, int regno, int off, int size, @@ -3144,11 +6959,25 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env, int value_regno) { struct bpf_reg_state *reg = regs + regno; - const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); - const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); - u32 btf_id; + const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); + const char *tname = btf_name_by_offset(reg->btf, t->name_off); + const char *field_name = NULL; + enum bpf_type_flag flag = 0; + u32 btf_id = 0; int ret; + if (!env->allow_ptr_leaks) { + verbose(env, + "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", + tname); + return -EPERM; + } + if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { + verbose(env, + "Cannot access kernel 'struct %s' from non-GPL compatible program\n", + tname); + return -EINVAL; + } if (off < 0) { verbose(env, "R%d is ptr_%s invalid negative access: off=%d\n", @@ -3165,35 +6994,273 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env, return -EACCES; } - if (env->ops->btf_struct_access) { - ret = env->ops->btf_struct_access(&env->log, t, off, size, - atype, &btf_id); + if (reg->type & MEM_USER) { + verbose(env, + "R%d is ptr_%s access user memory: off=%d\n", + regno, tname, off); + return -EACCES; + } + + if (reg->type & MEM_PERCPU) { + verbose(env, + "R%d is ptr_%s access percpu memory: off=%d\n", + regno, tname, off); + return -EACCES; + } + + if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { + if (!btf_is_kernel(reg->btf)) { + verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); + return -EFAULT; + } + ret = env->ops->btf_struct_access(&env->log, reg, off, size); } else { - if (atype != BPF_READ) { + /* Writes are permitted with default btf_struct_access for + * program allocated objects (which always have ref_obj_id > 0), + * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. + */ + if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { verbose(env, "only read is supported\n"); return -EACCES; } - ret = btf_struct_access(&env->log, t, off, size, atype, - &btf_id); + if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && + !(reg->type & MEM_RCU) && !reg->ref_obj_id) { + verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); + return -EFAULT; + } + + ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); } if (ret < 0) return ret; - if (atype == BPF_READ && value_regno >= 0) { - if (ret == SCALAR_VALUE) { - mark_reg_unknown(env, regs, value_regno); - return 0; + if (ret != PTR_TO_BTF_ID) { + /* just mark; */ + + } else if (type_flag(reg->type) & PTR_UNTRUSTED) { + /* If this is an untrusted pointer, all pointers formed by walking it + * also inherit the untrusted flag. + */ + flag = PTR_UNTRUSTED; + + } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { + /* By default any pointer obtained from walking a trusted pointer is no + * longer trusted, unless the field being accessed has explicitly been + * marked as inheriting its parent's state of trust (either full or RCU). + * For example: + * 'cgroups' pointer is untrusted if task->cgroups dereference + * happened in a sleepable program outside of bpf_rcu_read_lock() + * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). + * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. + * + * A regular RCU-protected pointer with __rcu tag can also be deemed + * trusted if we are in an RCU CS. Such pointer can be NULL. + */ + if (type_is_trusted(env, reg, field_name, btf_id)) { + flag |= PTR_TRUSTED; + } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { + flag |= PTR_TRUSTED | PTR_MAYBE_NULL; + } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { + if (type_is_rcu(env, reg, field_name, btf_id)) { + /* ignore __rcu tag and mark it MEM_RCU */ + flag |= MEM_RCU; + } else if (flag & MEM_RCU || + type_is_rcu_or_null(env, reg, field_name, btf_id)) { + /* __rcu tagged pointers can be NULL */ + flag |= MEM_RCU | PTR_MAYBE_NULL; + + /* We always trust them */ + if (type_is_rcu_or_null(env, reg, field_name, btf_id) && + flag & PTR_UNTRUSTED) + flag &= ~PTR_UNTRUSTED; + } else if (flag & (MEM_PERCPU | MEM_USER)) { + /* keep as-is */ + } else { + /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ + clear_trusted_flags(&flag); + } + } else { + /* + * If not in RCU CS or MEM_RCU pointer can be NULL then + * aggressively mark as untrusted otherwise such + * pointers will be plain PTR_TO_BTF_ID without flags + * and will be allowed to be passed into helpers for + * compat reasons. + */ + flag = PTR_UNTRUSTED; } - mark_reg_known_zero(env, regs, value_regno); - regs[value_regno].type = PTR_TO_BTF_ID; - regs[value_regno].btf_id = btf_id; + } else { + /* Old compat. Deprecated */ + clear_trusted_flags(&flag); } + if (atype == BPF_READ && value_regno >= 0) + mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); + + return 0; +} + +static int check_ptr_to_map_access(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, + int regno, int off, int size, + enum bpf_access_type atype, + int value_regno) +{ + struct bpf_reg_state *reg = regs + regno; + struct bpf_map *map = reg->map_ptr; + struct bpf_reg_state map_reg; + enum bpf_type_flag flag = 0; + const struct btf_type *t; + const char *tname; + u32 btf_id; + int ret; + + if (!btf_vmlinux) { + verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); + return -ENOTSUPP; + } + + if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { + verbose(env, "map_ptr access not supported for map type %d\n", + map->map_type); + return -ENOTSUPP; + } + + t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); + tname = btf_name_by_offset(btf_vmlinux, t->name_off); + + if (!env->allow_ptr_leaks) { + verbose(env, + "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", + tname); + return -EPERM; + } + + if (off < 0) { + verbose(env, "R%d is %s invalid negative access: off=%d\n", + regno, tname, off); + return -EACCES; + } + + if (atype != BPF_READ) { + verbose(env, "only read from %s is supported\n", tname); + return -EACCES; + } + + /* Simulate access to a PTR_TO_BTF_ID */ + memset(&map_reg, 0, sizeof(map_reg)); + mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); + ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); + if (ret < 0) + return ret; + + if (value_regno >= 0) + mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); + + return 0; +} + +/* Check that the stack access at the given offset is within bounds. The + * maximum valid offset is -1. + * + * The minimum valid offset is -MAX_BPF_STACK for writes, and + * -state->allocated_stack for reads. + */ +static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, + s64 off, + struct bpf_func_state *state, + enum bpf_access_type t) +{ + int min_valid_off; + + if (t == BPF_WRITE || env->allow_uninit_stack) + min_valid_off = -MAX_BPF_STACK; + else + min_valid_off = -state->allocated_stack; + + if (off < min_valid_off || off > -1) + return -EACCES; return 0; } +/* Check that the stack access at 'regno + off' falls within the maximum stack + * bounds. + * + * 'off' includes `regno->offset`, but not its dynamic part (if any). + */ +static int check_stack_access_within_bounds( + struct bpf_verifier_env *env, + int regno, int off, int access_size, + enum bpf_access_type type) +{ + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = regs + regno; + struct bpf_func_state *state = func(env, reg); + s64 min_off, max_off; + int err; + char *err_extra; + + if (type == BPF_READ) + err_extra = " read from"; + else + err_extra = " write to"; + + if (tnum_is_const(reg->var_off)) { + min_off = (s64)reg->var_off.value + off; + max_off = min_off + access_size; + } else { + if (reg->smax_value >= BPF_MAX_VAR_OFF || + reg->smin_value <= -BPF_MAX_VAR_OFF) { + verbose(env, "invalid unbounded variable-offset%s stack R%d\n", + err_extra, regno); + return -EACCES; + } + min_off = reg->smin_value + off; + max_off = reg->smax_value + off + access_size; + } + + err = check_stack_slot_within_bounds(env, min_off, state, type); + if (!err && max_off > 0) + err = -EINVAL; /* out of stack access into non-negative offsets */ + if (!err && access_size < 0) + /* access_size should not be negative (or overflow an int); others checks + * along the way should have prevented such an access. + */ + err = -EFAULT; /* invalid negative access size; integer overflow? */ + + if (err) { + if (tnum_is_const(reg->var_off)) { + verbose(env, "invalid%s stack R%d off=%d size=%d\n", + err_extra, regno, off, access_size); + } else { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", + err_extra, regno, tn_buf, off, access_size); + } + return err; + } + + /* Note that there is no stack access with offset zero, so the needed stack + * size is -min_off, not -min_off+1. + */ + return grow_stack_state(env, state, -min_off /* size */); +} + +static bool get_func_retval_range(struct bpf_prog *prog, + struct bpf_retval_range *range) +{ + if (prog->type == BPF_PROG_TYPE_LSM && + prog->expected_attach_type == BPF_LSM_MAC && + !bpf_lsm_get_retval_range(prog, range)) { + return true; + } + return false; +} + /* check whether memory at (regno + off) is accessible for t = (read | write) * if t==write, value_regno is a register which value is stored into memory * if t==read, value_regno is a register which will receive the value from memory @@ -3202,11 +7269,10 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env, */ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, int bpf_size, enum bpf_access_type t, - int value_regno, bool strict_alignment_once) + int value_regno, bool strict_alignment_once, bool is_ldsx) { struct bpf_reg_state *regs = cur_regs(env); struct bpf_reg_state *reg = regs + regno; - struct bpf_func_state *state; int size, err = 0; size = bpf_size_to_bytes(bpf_size); @@ -3221,7 +7287,21 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn /* for access checks, reg->off is just part of off */ off += reg->off; - if (reg->type == PTR_TO_MAP_VALUE) { + if (reg->type == PTR_TO_MAP_KEY) { + if (t == BPF_WRITE) { + verbose(env, "write to change key R%d not allowed\n", regno); + return -EACCES; + } + + err = check_mem_region_access(env, regno, off, size, + reg->map_ptr->key_size, false); + if (err) + return err; + if (value_regno >= 0) + mark_reg_unknown(env, regs, value_regno); + } else if (reg->type == PTR_TO_MAP_VALUE) { + struct btf_field *kptr_field = NULL; + if (t == BPF_WRITE && value_regno >= 0 && is_pointer_value(env, value_regno)) { verbose(env, "R%d leaks addr into map\n", value_regno); @@ -3230,8 +7310,15 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn err = check_map_access_type(env, regno, off, size, t); if (err) return err; - err = check_map_access(env, regno, off, size, false); - if (!err && t == BPF_READ && value_regno >= 0) { + err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); + if (err) + return err; + if (tnum_is_const(reg->var_off)) + kptr_field = btf_record_find(reg->map_ptr->record, + off + reg->var_off.value, BPF_KPTR | BPF_UPTR); + if (kptr_field) { + err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); + } else if (t == BPF_READ && value_regno >= 0) { struct bpf_map *map = reg->map_ptr; /* if map is read-only, track its contents as scalars */ @@ -3242,7 +7329,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn u64 val = 0; err = bpf_map_direct_read(map, map_off, size, - &val); + &val, is_ldsx); if (err) return err; @@ -3252,18 +7339,36 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn mark_reg_unknown(env, regs, value_regno); } } - } else if (reg->type == PTR_TO_MEM) { + } else if (base_type(reg->type) == PTR_TO_MEM) { + bool rdonly_mem = type_is_rdonly_mem(reg->type); + + if (type_may_be_null(reg->type)) { + verbose(env, "R%d invalid mem access '%s'\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + + if (t == BPF_WRITE && rdonly_mem) { + verbose(env, "R%d cannot write into %s\n", + regno, reg_type_str(env, reg->type)); + return -EACCES; + } + if (t == BPF_WRITE && value_regno >= 0 && is_pointer_value(env, value_regno)) { verbose(env, "R%d leaks addr into mem\n", value_regno); return -EACCES; } + err = check_mem_region_access(env, regno, off, size, reg->mem_size, false); - if (!err && t == BPF_READ && value_regno >= 0) + if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) mark_reg_unknown(env, regs, value_regno); } else if (reg->type == PTR_TO_CTX) { + bool is_retval = false; + struct bpf_retval_range range; enum bpf_reg_type reg_type = SCALAR_VALUE; + struct btf *btf = NULL; u32 btf_id = 0; if (t == BPF_WRITE && value_regno >= 0 && @@ -3272,11 +7377,12 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn return -EACCES; } - err = check_ctx_reg(env, reg, regno); + err = check_ptr_off_reg(env, reg, regno); if (err < 0) return err; - err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); + err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, + &btf_id, &is_retval, is_ldsx); if (err) verbose_linfo(env, insn_idx, "; "); if (!err && t == BPF_READ && value_regno >= 0) { @@ -3285,11 +7391,18 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn * case, we know the offset is zero. */ if (reg_type == SCALAR_VALUE) { - mark_reg_unknown(env, regs, value_regno); + if (is_retval && get_func_retval_range(env->prog, &range)) { + err = __mark_reg_s32_range(env, regs, value_regno, + range.minval, range.maxval); + if (err) + return err; + } else { + mark_reg_unknown(env, regs, value_regno); + } } else { mark_reg_known_zero(env, regs, value_regno); - if (reg_type_may_be_null(reg_type)) + if (type_may_be_null(reg_type)) regs[value_regno].id = ++env->id_gen; /* A load of ctx field could have different * actual load size with the one encoded in the @@ -3297,30 +7410,26 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn * a sub-register. */ regs[value_regno].subreg_def = DEF_NOT_SUBREG; - if (reg_type == PTR_TO_BTF_ID || - reg_type == PTR_TO_BTF_ID_OR_NULL) + if (base_type(reg_type) == PTR_TO_BTF_ID) { + regs[value_regno].btf = btf; regs[value_regno].btf_id = btf_id; + } } regs[value_regno].type = reg_type; } } else if (reg->type == PTR_TO_STACK) { - off += reg->var_off.value; - err = check_stack_access(env, reg, off, size); - if (err) - return err; - - state = func(env, reg); - err = update_stack_depth(env, state, off); + /* Basic bounds checks. */ + err = check_stack_access_within_bounds(env, regno, off, size, t); if (err) return err; - if (t == BPF_WRITE) - err = check_stack_write(env, state, off, size, - value_regno, insn_idx); - else - err = check_stack_read(env, state, off, size, + if (t == BPF_READ) + err = check_stack_read(env, regno, off, size, value_regno); + else + err = check_stack_write(env, regno, off, size, + value_regno, insn_idx); } else if (reg_is_pkt_pointer(reg)) { if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { verbose(env, "cannot write into packet\n"); @@ -3349,7 +7458,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn } else if (type_is_sk_pointer(reg->type)) { if (t == BPF_WRITE) { verbose(env, "R%d cannot write into %s\n", - regno, reg_type_str[reg->type]); + regno, reg_type_str(env, reg->type)); return -EACCES; } err = check_sock_access(env, insn_idx, regno, off, size, t); @@ -3359,30 +7468,80 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn err = check_tp_buffer_access(env, reg, regno, off, size); if (!err && t == BPF_READ && value_regno >= 0) mark_reg_unknown(env, regs, value_regno); - } else if (reg->type == PTR_TO_BTF_ID) { + } else if (base_type(reg->type) == PTR_TO_BTF_ID && + !type_may_be_null(reg->type)) { err = check_ptr_to_btf_access(env, regs, regno, off, size, t, value_regno); + } else if (reg->type == CONST_PTR_TO_MAP) { + err = check_ptr_to_map_access(env, regs, regno, off, size, t, + value_regno); + } else if (base_type(reg->type) == PTR_TO_BUF) { + bool rdonly_mem = type_is_rdonly_mem(reg->type); + u32 *max_access; + + if (rdonly_mem) { + if (t == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", + regno, reg_type_str(env, reg->type)); + return -EACCES; + } + max_access = &env->prog->aux->max_rdonly_access; + } else { + max_access = &env->prog->aux->max_rdwr_access; + } + + err = check_buffer_access(env, reg, regno, off, size, false, + max_access); + + if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) + mark_reg_unknown(env, regs, value_regno); + } else if (reg->type == PTR_TO_ARENA) { + if (t == BPF_READ && value_regno >= 0) + mark_reg_unknown(env, regs, value_regno); } else { verbose(env, "R%d invalid mem access '%s'\n", regno, - reg_type_str[reg->type]); + reg_type_str(env, reg->type)); return -EACCES; } if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && regs[value_regno].type == SCALAR_VALUE) { - /* b/h/w load zero-extends, mark upper bits as known 0 */ - coerce_reg_to_size(®s[value_regno], size); + if (!is_ldsx) + /* b/h/w load zero-extends, mark upper bits as known 0 */ + coerce_reg_to_size(®s[value_regno], size); + else + coerce_reg_to_size_sx(®s[value_regno], size); } return err; } -static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) +static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, + bool allow_trust_mismatch); + +static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) { + int load_reg; int err; - if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || - insn->imm != 0) { - verbose(env, "BPF_XADD uses reserved fields\n"); + switch (insn->imm) { + case BPF_ADD: + case BPF_ADD | BPF_FETCH: + case BPF_AND: + case BPF_AND | BPF_FETCH: + case BPF_OR: + case BPF_OR | BPF_FETCH: + case BPF_XOR: + case BPF_XOR | BPF_FETCH: + case BPF_XCHG: + case BPF_CMPXCHG: + break; + default: + verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); + return -EINVAL; + } + + if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { + verbose(env, "invalid atomic operand size\n"); return -EINVAL; } @@ -3396,6 +7555,20 @@ static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_ins if (err) return err; + if (insn->imm == BPF_CMPXCHG) { + /* Check comparison of R0 with memory location */ + const u32 aux_reg = BPF_REG_0; + + err = check_reg_arg(env, aux_reg, SRC_OP); + if (err) + return err; + + if (is_pointer_value(env, aux_reg)) { + verbose(env, "R%d leaks addr into mem\n", aux_reg); + return -EACCES; + } + } + if (is_pointer_value(env, insn->src_reg)) { verbose(env, "R%d leaks addr into mem\n", insn->src_reg); return -EACCES; @@ -3404,79 +7577,94 @@ static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_ins if (is_ctx_reg(env, insn->dst_reg) || is_pkt_reg(env, insn->dst_reg) || is_flow_key_reg(env, insn->dst_reg) || - is_sk_reg(env, insn->dst_reg)) { - verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", + is_sk_reg(env, insn->dst_reg) || + (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { + verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", insn->dst_reg, - reg_type_str[reg_state(env, insn->dst_reg)->type]); + reg_type_str(env, reg_state(env, insn->dst_reg)->type)); return -EACCES; } - /* check whether atomic_add can read the memory */ + if (insn->imm & BPF_FETCH) { + if (insn->imm == BPF_CMPXCHG) + load_reg = BPF_REG_0; + else + load_reg = insn->src_reg; + + /* check and record load of old value */ + err = check_reg_arg(env, load_reg, DST_OP); + if (err) + return err; + } else { + /* This instruction accesses a memory location but doesn't + * actually load it into a register. + */ + load_reg = -1; + } + + /* Check whether we can read the memory, with second call for fetch + * case to simulate the register fill. + */ err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, - BPF_SIZE(insn->code), BPF_READ, -1, true); + BPF_SIZE(insn->code), BPF_READ, -1, true, false); + if (!err && load_reg >= 0) + err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_READ, load_reg, + true, false); if (err) return err; - /* check whether atomic_add can write into the same memory */ - return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, - BPF_SIZE(insn->code), BPF_WRITE, -1, true); -} - -static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, - int off, int access_size, - bool zero_size_allowed) -{ - struct bpf_reg_state *reg = reg_state(env, regno); - - if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || - access_size < 0 || (access_size == 0 && !zero_size_allowed)) { - if (tnum_is_const(reg->var_off)) { - verbose(env, "invalid stack type R%d off=%d access_size=%d\n", - regno, off, access_size); - } else { - char tn_buf[48]; - - tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", - regno, tn_buf, access_size); - } - return -EACCES; + if (is_arena_reg(env, insn->dst_reg)) { + err = save_aux_ptr_type(env, PTR_TO_ARENA, false); + if (err) + return err; } + /* Check whether we can write into the same memory. */ + err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); + if (err) + return err; return 0; } -/* when register 'regno' is passed into function that will read 'access_size' - * bytes from that pointer, make sure that it's within stack boundary - * and all elements of stack are initialized. - * Unlike most pointer bounds-checking functions, this one doesn't take an - * 'off' argument, so it has to add in reg->off itself. +/* When register 'regno' is used to read the stack (either directly or through + * a helper function) make sure that it's within stack boundary and, depending + * on the access type and privileges, that all elements of the stack are + * initialized. + * + * 'off' includes 'regno->off', but not its dynamic part (if any). + * + * All registers that have been spilled on the stack in the slots within the + * read offsets are marked as read. */ -static int check_stack_boundary(struct bpf_verifier_env *env, int regno, - int access_size, bool zero_size_allowed, - struct bpf_call_arg_meta *meta) +static int check_stack_range_initialized( + struct bpf_verifier_env *env, int regno, int off, + int access_size, bool zero_size_allowed, + enum bpf_access_type type, struct bpf_call_arg_meta *meta) { struct bpf_reg_state *reg = reg_state(env, regno); struct bpf_func_state *state = func(env, reg); int err, min_off, max_off, i, j, slot, spi; + /* Some accesses can write anything into the stack, others are + * read-only. + */ + bool clobber = false; - if (reg->type != PTR_TO_STACK) { - /* Allow zero-byte read from NULL, regardless of pointer type */ - if (zero_size_allowed && access_size == 0 && - register_is_null(reg)) - return 0; - - verbose(env, "R%d type=%s expected=%s\n", regno, - reg_type_str[reg->type], - reg_type_str[PTR_TO_STACK]); + if (access_size == 0 && !zero_size_allowed) { + verbose(env, "invalid zero-sized read\n"); return -EACCES; } + if (type == BPF_WRITE) + clobber = true; + + err = check_stack_access_within_bounds(env, regno, off, access_size, type); + if (err) + return err; + + if (tnum_is_const(reg->var_off)) { - min_off = max_off = reg->var_off.value + reg->off; - err = __check_stack_boundary(env, regno, min_off, access_size, - zero_size_allowed); - if (err) - return err; + min_off = max_off = reg->var_off.value + off; } else { /* Variable offset is prohibited for unprivileged mode for * simplicity since it requires corresponding support in @@ -3487,7 +7675,7 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, char tn_buf[48]; tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", + verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", regno, tn_buf); return -EACCES; } @@ -3500,31 +7688,36 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, if (meta && meta->raw_mode) meta = NULL; - if (reg->smax_value >= BPF_MAX_VAR_OFF || - reg->smax_value <= -BPF_MAX_VAR_OFF) { - verbose(env, "R%d unbounded indirect variable offset stack access\n", - regno); - return -EACCES; - } - min_off = reg->smin_value + reg->off; - max_off = reg->smax_value + reg->off; - err = __check_stack_boundary(env, regno, min_off, access_size, - zero_size_allowed); - if (err) { - verbose(env, "R%d min value is outside of stack bound\n", - regno); - return err; - } - err = __check_stack_boundary(env, regno, max_off, access_size, - zero_size_allowed); - if (err) { - verbose(env, "R%d max value is outside of stack bound\n", - regno); - return err; - } + min_off = reg->smin_value + off; + max_off = reg->smax_value + off; } if (meta && meta->raw_mode) { + /* Ensure we won't be overwriting dynptrs when simulating byte + * by byte access in check_helper_call using meta.access_size. + * This would be a problem if we have a helper in the future + * which takes: + * + * helper(uninit_mem, len, dynptr) + * + * Now, uninint_mem may overlap with dynptr pointer. Hence, it + * may end up writing to dynptr itself when touching memory from + * arg 1. This can be relaxed on a case by case basis for known + * safe cases, but reject due to the possibilitiy of aliasing by + * default. + */ + for (i = min_off; i < max_off + access_size; i++) { + int stack_off = -i - 1; + + spi = __get_spi(i); + /* raw_mode may write past allocated_stack */ + if (state->allocated_stack <= stack_off) + continue; + if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { + verbose(env, "potential write to dynptr at off=%d disallowed\n", i); + return -EACCES; + } + } meta->access_size = access_size; meta->regno = regno; return 0; @@ -3535,39 +7728,43 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, slot = -i - 1; spi = slot / BPF_REG_SIZE; - if (state->allocated_stack <= slot) - goto err; + if (state->allocated_stack <= slot) { + verbose(env, "verifier bug: allocated_stack too small\n"); + return -EFAULT; + } + stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; if (*stype == STACK_MISC) goto mark; - if (*stype == STACK_ZERO) { - /* helper can write anything into the stack */ - *stype = STACK_MISC; + if ((*stype == STACK_ZERO) || + (*stype == STACK_INVALID && env->allow_uninit_stack)) { + if (clobber) { + /* helper can write anything into the stack */ + *stype = STACK_MISC; + } goto mark; } - if (state->stack[spi].slot_type[0] == STACK_SPILL && - state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) - goto mark; - - if (state->stack[spi].slot_type[0] == STACK_SPILL && - state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { - __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); - for (j = 0; j < BPF_REG_SIZE; j++) - state->stack[spi].slot_type[j] = STACK_MISC; + if (is_spilled_reg(&state->stack[spi]) && + (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || + env->allow_ptr_leaks)) { + if (clobber) { + __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); + for (j = 0; j < BPF_REG_SIZE; j++) + scrub_spilled_slot(&state->stack[spi].slot_type[j]); + } goto mark; } -err: if (tnum_is_const(reg->var_off)) { - verbose(env, "invalid indirect read from stack off %d+%d size %d\n", - min_off, i - min_off, access_size); + verbose(env, "invalid read from stack R%d off %d+%d size %d\n", + regno, min_off, i - min_off, access_size); } else { char tn_buf[48]; tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", - tn_buf, i - min_off, access_size); + verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", + regno, tn_buf, i - min_off, access_size); } return -EACCES; mark: @@ -3577,56 +7774,238 @@ mark: mark_reg_read(env, &state->stack[spi].spilled_ptr, state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); + /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not + * be sure that whether stack slot is written to or not. Hence, + * we must still conservatively propagate reads upwards even if + * helper may write to the entire memory range. + */ } - return update_stack_depth(env, state, min_off); + return 0; } static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, - int access_size, bool zero_size_allowed, + int access_size, enum bpf_access_type access_type, + bool zero_size_allowed, struct bpf_call_arg_meta *meta) { struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + u32 *max_access; - switch (reg->type) { + switch (base_type(reg->type)) { case PTR_TO_PACKET: case PTR_TO_PACKET_META: return check_packet_access(env, regno, reg->off, access_size, zero_size_allowed); + case PTR_TO_MAP_KEY: + if (access_type == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + return check_mem_region_access(env, regno, reg->off, access_size, + reg->map_ptr->key_size, false); case PTR_TO_MAP_VALUE: - if (check_map_access_type(env, regno, reg->off, access_size, - meta && meta->raw_mode ? BPF_WRITE : - BPF_READ)) + if (check_map_access_type(env, regno, reg->off, access_size, access_type)) return -EACCES; return check_map_access(env, regno, reg->off, access_size, - zero_size_allowed); + zero_size_allowed, ACCESS_HELPER); case PTR_TO_MEM: + if (type_is_rdonly_mem(reg->type)) { + if (access_type == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + } return check_mem_region_access(env, regno, reg->off, access_size, reg->mem_size, zero_size_allowed); - default: /* scalar_value|ptr_to_stack or invalid ptr */ - return check_stack_boundary(env, regno, access_size, - zero_size_allowed, meta); + case PTR_TO_BUF: + if (type_is_rdonly_mem(reg->type)) { + if (access_type == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + + max_access = &env->prog->aux->max_rdonly_access; + } else { + max_access = &env->prog->aux->max_rdwr_access; + } + return check_buffer_access(env, reg, regno, reg->off, + access_size, zero_size_allowed, + max_access); + case PTR_TO_STACK: + return check_stack_range_initialized( + env, + regno, reg->off, access_size, + zero_size_allowed, access_type, meta); + case PTR_TO_BTF_ID: + return check_ptr_to_btf_access(env, regs, regno, reg->off, + access_size, BPF_READ, -1); + case PTR_TO_CTX: + /* in case the function doesn't know how to access the context, + * (because we are in a program of type SYSCALL for example), we + * can not statically check its size. + * Dynamically check it now. + */ + if (!env->ops->convert_ctx_access) { + int offset = access_size - 1; + + /* Allow zero-byte read from PTR_TO_CTX */ + if (access_size == 0) + return zero_size_allowed ? 0 : -EACCES; + + return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, + access_type, -1, false, false); + } + + fallthrough; + default: /* scalar_value or invalid ptr */ + /* Allow zero-byte read from NULL, regardless of pointer type */ + if (zero_size_allowed && access_size == 0 && + register_is_null(reg)) + return 0; + + verbose(env, "R%d type=%s ", regno, + reg_type_str(env, reg->type)); + verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); + return -EACCES; } } +/* verify arguments to helpers or kfuncs consisting of a pointer and an access + * size. + * + * @regno is the register containing the access size. regno-1 is the register + * containing the pointer. + */ +static int check_mem_size_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + enum bpf_access_type access_type, + bool zero_size_allowed, + struct bpf_call_arg_meta *meta) +{ + int err; + + /* This is used to refine r0 return value bounds for helpers + * that enforce this value as an upper bound on return values. + * See do_refine_retval_range() for helpers that can refine + * the return value. C type of helper is u32 so we pull register + * bound from umax_value however, if negative verifier errors + * out. Only upper bounds can be learned because retval is an + * int type and negative retvals are allowed. + */ + meta->msize_max_value = reg->umax_value; + + /* The register is SCALAR_VALUE; the access check happens using + * its boundaries. For unprivileged variable accesses, disable + * raw mode so that the program is required to initialize all + * the memory that the helper could just partially fill up. + */ + if (!tnum_is_const(reg->var_off)) + meta = NULL; + + if (reg->smin_value < 0) { + verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", + regno); + return -EACCES; + } + + if (reg->umin_value == 0 && !zero_size_allowed) { + verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", + regno, reg->umin_value, reg->umax_value); + return -EACCES; + } + + if (reg->umax_value >= BPF_MAX_VAR_SIZ) { + verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", + regno); + return -EACCES; + } + err = check_helper_mem_access(env, regno - 1, reg->umax_value, + access_type, zero_size_allowed, meta); + if (!err) + err = mark_chain_precision(env, regno); + return err; +} + +static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + u32 regno, u32 mem_size) +{ + bool may_be_null = type_may_be_null(reg->type); + struct bpf_reg_state saved_reg; + int err; + + if (register_is_null(reg)) + return 0; + + /* Assuming that the register contains a value check if the memory + * access is safe. Temporarily save and restore the register's state as + * the conversion shouldn't be visible to a caller. + */ + if (may_be_null) { + saved_reg = *reg; + mark_ptr_not_null_reg(reg); + } + + err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); + err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); + + if (may_be_null) + *reg = saved_reg; + + return err; +} + +static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + u32 regno) +{ + struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; + bool may_be_null = type_may_be_null(mem_reg->type); + struct bpf_reg_state saved_reg; + struct bpf_call_arg_meta meta; + int err; + + WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); + + memset(&meta, 0, sizeof(meta)); + + if (may_be_null) { + saved_reg = *mem_reg; + mark_ptr_not_null_reg(mem_reg); + } + + err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); + err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); + + if (may_be_null) + *mem_reg = saved_reg; + + return err; +} + /* Implementation details: - * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL + * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. + * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. * Two bpf_map_lookups (even with the same key) will have different reg->id. - * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after - * value_or_null->value transition, since the verifier only cares about - * the range of access to valid map value pointer and doesn't care about actual - * address of the map element. + * Two separate bpf_obj_new will also have different reg->id. + * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier + * clears reg->id after value_or_null->value transition, since the verifier only + * cares about the range of access to valid map value pointer and doesn't care + * about actual address of the map element. * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps * reg->id > 0 after value_or_null->value transition. By doing so * two bpf_map_lookups will be considered two different pointers that - * point to different bpf_spin_locks. + * point to different bpf_spin_locks. Likewise for pointers to allocated objects + * returned from bpf_obj_new. * The verifier allows taking only one bpf_spin_lock at a time to avoid * dead-locks. * Since only one bpf_spin_lock is allowed the checks are simpler than * reg_is_refcounted() logic. The verifier needs to remember only * one spin_lock instead of array of acquired_refs. - * cur_state->active_spin_lock remembers which map value element got locked - * and clears it after bpf_spin_unlock. + * env->cur_state->active_locks remembers which map value element or allocated + * object got locked and clears it after bpf_spin_unlock. */ static int process_spin_lock(struct bpf_verifier_env *env, int regno, bool is_lock) @@ -3634,71 +8013,630 @@ static int process_spin_lock(struct bpf_verifier_env *env, int regno, struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; struct bpf_verifier_state *cur = env->cur_state; bool is_const = tnum_is_const(reg->var_off); - struct bpf_map *map = reg->map_ptr; u64 val = reg->var_off.value; + struct bpf_map *map = NULL; + struct btf *btf = NULL; + struct btf_record *rec; + int err; - if (reg->type != PTR_TO_MAP_VALUE) { - verbose(env, "R%d is not a pointer to map_value\n", regno); - return -EINVAL; - } if (!is_const) { verbose(env, "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", regno); return -EINVAL; } - if (!map->btf) { - verbose(env, - "map '%s' has to have BTF in order to use bpf_spin_lock\n", - map->name); - return -EINVAL; - } - if (!map_value_has_spin_lock(map)) { - if (map->spin_lock_off == -E2BIG) - verbose(env, - "map '%s' has more than one 'struct bpf_spin_lock'\n", - map->name); - else if (map->spin_lock_off == -ENOENT) - verbose(env, - "map '%s' doesn't have 'struct bpf_spin_lock'\n", - map->name); - else + if (reg->type == PTR_TO_MAP_VALUE) { + map = reg->map_ptr; + if (!map->btf) { verbose(env, - "map '%s' is not a struct type or bpf_spin_lock is mangled\n", + "map '%s' has to have BTF in order to use bpf_spin_lock\n", map->name); + return -EINVAL; + } + } else { + btf = reg->btf; + } + + rec = reg_btf_record(reg); + if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { + verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", + map ? map->name : "kptr"); return -EINVAL; } - if (map->spin_lock_off != val + reg->off) { - verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", - val + reg->off); + if (rec->spin_lock_off != val + reg->off) { + verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", + val + reg->off, rec->spin_lock_off); return -EINVAL; } if (is_lock) { - if (cur->active_spin_lock) { + void *ptr; + + if (map) + ptr = map; + else + ptr = btf; + + if (cur->active_locks) { verbose(env, "Locking two bpf_spin_locks are not allowed\n"); return -EINVAL; } - cur->active_spin_lock = reg->id; + err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr); + if (err < 0) { + verbose(env, "Failed to acquire lock state\n"); + return err; + } } else { - if (!cur->active_spin_lock) { + void *ptr; + + if (map) + ptr = map; + else + ptr = btf; + + if (!cur->active_locks) { verbose(env, "bpf_spin_unlock without taking a lock\n"); return -EINVAL; } - if (cur->active_spin_lock != reg->id) { + + if (release_lock_state(env->cur_state, REF_TYPE_LOCK, reg->id, ptr)) { verbose(env, "bpf_spin_unlock of different lock\n"); return -EINVAL; } - cur->active_spin_lock = 0; + + invalidate_non_owning_refs(env); + } + return 0; +} + +static int process_timer_func(struct bpf_verifier_env *env, int regno, + struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + bool is_const = tnum_is_const(reg->var_off); + struct bpf_map *map = reg->map_ptr; + u64 val = reg->var_off.value; + + if (!is_const) { + verbose(env, + "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", + regno); + return -EINVAL; + } + if (!map->btf) { + verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", + map->name); + return -EINVAL; + } + if (!btf_record_has_field(map->record, BPF_TIMER)) { + verbose(env, "map '%s' has no valid bpf_timer\n", map->name); + return -EINVAL; + } + if (map->record->timer_off != val + reg->off) { + verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", + val + reg->off, map->record->timer_off); + return -EINVAL; + } + if (meta->map_ptr) { + verbose(env, "verifier bug. Two map pointers in a timer helper\n"); + return -EFAULT; + } + meta->map_uid = reg->map_uid; + meta->map_ptr = map; + return 0; +} + +static int process_wq_func(struct bpf_verifier_env *env, int regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + struct bpf_map *map = reg->map_ptr; + u64 val = reg->var_off.value; + + if (map->record->wq_off != val + reg->off) { + verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", + val + reg->off, map->record->wq_off); + return -EINVAL; + } + meta->map.uid = reg->map_uid; + meta->map.ptr = map; + return 0; +} + +static int process_kptr_func(struct bpf_verifier_env *env, int regno, + struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + struct btf_field *kptr_field; + struct bpf_map *map_ptr; + struct btf_record *rec; + u32 kptr_off; + + if (type_is_ptr_alloc_obj(reg->type)) { + rec = reg_btf_record(reg); + } else { /* PTR_TO_MAP_VALUE */ + map_ptr = reg->map_ptr; + if (!map_ptr->btf) { + verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", + map_ptr->name); + return -EINVAL; + } + rec = map_ptr->record; + meta->map_ptr = map_ptr; + } + + if (!tnum_is_const(reg->var_off)) { + verbose(env, + "R%d doesn't have constant offset. kptr has to be at the constant offset\n", + regno); + return -EINVAL; + } + + if (!btf_record_has_field(rec, BPF_KPTR)) { + verbose(env, "R%d has no valid kptr\n", regno); + return -EINVAL; + } + + kptr_off = reg->off + reg->var_off.value; + kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); + if (!kptr_field) { + verbose(env, "off=%d doesn't point to kptr\n", kptr_off); + return -EACCES; + } + if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { + verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); + return -EACCES; + } + meta->kptr_field = kptr_field; + return 0; +} + +/* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK + * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. + * + * In both cases we deal with the first 8 bytes, but need to mark the next 8 + * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of + * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. + * + * Mutability of bpf_dynptr is at two levels, one is at the level of struct + * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct + * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can + * mutate the view of the dynptr and also possibly destroy it. In the latter + * case, it cannot mutate the bpf_dynptr itself but it can still mutate the + * memory that dynptr points to. + * + * The verifier will keep track both levels of mutation (bpf_dynptr's in + * reg->type and the memory's in reg->dynptr.type), but there is no support for + * readonly dynptr view yet, hence only the first case is tracked and checked. + * + * This is consistent with how C applies the const modifier to a struct object, + * where the pointer itself inside bpf_dynptr becomes const but not what it + * points to. + * + * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument + * type, and declare it as 'const struct bpf_dynptr *' in their prototype. + */ +static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, + enum bpf_arg_type arg_type, int clone_ref_obj_id) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + int err; + + if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { + verbose(env, + "arg#%d expected pointer to stack or const struct bpf_dynptr\n", + regno - 1); + return -EINVAL; + } + + /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an + * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): + */ + if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { + verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); + return -EFAULT; + } + + /* MEM_UNINIT - Points to memory that is an appropriate candidate for + * constructing a mutable bpf_dynptr object. + * + * Currently, this is only possible with PTR_TO_STACK + * pointing to a region of at least 16 bytes which doesn't + * contain an existing bpf_dynptr. + * + * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be + * mutated or destroyed. However, the memory it points to + * may be mutated. + * + * None - Points to a initialized dynptr that can be mutated and + * destroyed, including mutation of the memory it points + * to. + */ + if (arg_type & MEM_UNINIT) { + int i; + + if (!is_dynptr_reg_valid_uninit(env, reg)) { + verbose(env, "Dynptr has to be an uninitialized dynptr\n"); + return -EINVAL; + } + + /* we write BPF_DW bits (8 bytes) at a time */ + for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { + err = check_mem_access(env, insn_idx, regno, + i, BPF_DW, BPF_WRITE, -1, false, false); + if (err) + return err; + } + + err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); + } else /* MEM_RDONLY and None case from above */ { + /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ + if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { + verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); + return -EINVAL; + } + + if (!is_dynptr_reg_valid_init(env, reg)) { + verbose(env, + "Expected an initialized dynptr as arg #%d\n", + regno - 1); + return -EINVAL; + } + + /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ + if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { + verbose(env, + "Expected a dynptr of type %s as arg #%d\n", + dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); + return -EINVAL; + } + + err = mark_dynptr_read(env, reg); + } + return err; +} + +static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) +{ + struct bpf_func_state *state = func(env, reg); + + return state->stack[spi].spilled_ptr.ref_obj_id; +} + +static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); +} + +static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_ITER_NEW; +} + +static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_ITER_NEXT; +} + +static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_ITER_DESTROY; +} + +static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, + const struct btf_param *arg) +{ + /* btf_check_iter_kfuncs() guarantees that first argument of any iter + * kfunc is iter state pointer + */ + if (is_iter_kfunc(meta)) + return arg_idx == 0; + + /* iter passed as an argument to a generic kfunc */ + return btf_param_match_suffix(meta->btf, arg, "__iter"); +} + +static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + const struct btf_type *t; + int spi, err, i, nr_slots, btf_id; + + if (reg->type != PTR_TO_STACK) { + verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); + return -EINVAL; + } + + /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() + * ensures struct convention, so we wouldn't need to do any BTF + * validation here. But given iter state can be passed as a parameter + * to any kfunc, if arg has "__iter" suffix, we need to be a bit more + * conservative here. + */ + btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); + if (btf_id < 0) { + verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); + return -EINVAL; + } + t = btf_type_by_id(meta->btf, btf_id); + nr_slots = t->size / BPF_REG_SIZE; + + if (is_iter_new_kfunc(meta)) { + /* bpf_iter_<type>_new() expects pointer to uninit iter state */ + if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { + verbose(env, "expected uninitialized iter_%s as arg #%d\n", + iter_type_str(meta->btf, btf_id), regno - 1); + return -EINVAL; + } + + for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { + err = check_mem_access(env, insn_idx, regno, + i, BPF_DW, BPF_WRITE, -1, false, false); + if (err) + return err; + } + + err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); + if (err) + return err; + } else { + /* iter_next() or iter_destroy(), as well as any kfunc + * accepting iter argument, expect initialized iter state + */ + err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); + switch (err) { + case 0: + break; + case -EINVAL: + verbose(env, "expected an initialized iter_%s as arg #%d\n", + iter_type_str(meta->btf, btf_id), regno - 1); + return err; + case -EPROTO: + verbose(env, "expected an RCU CS when using %s\n", meta->func_name); + return err; + default: + return err; + } + + spi = iter_get_spi(env, reg, nr_slots); + if (spi < 0) + return spi; + + err = mark_iter_read(env, reg, spi, nr_slots); + if (err) + return err; + + /* remember meta->iter info for process_iter_next_call() */ + meta->iter.spi = spi; + meta->iter.frameno = reg->frameno; + meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); + + if (is_iter_destroy_kfunc(meta)) { + err = unmark_stack_slots_iter(env, reg, nr_slots); + if (err) + return err; + } } + return 0; } -static bool arg_type_is_mem_ptr(enum bpf_arg_type type) +/* Look for a previous loop entry at insn_idx: nearest parent state + * stopped at insn_idx with callsites matching those in cur->frame. + */ +static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, + struct bpf_verifier_state *cur, + int insn_idx) +{ + struct bpf_verifier_state_list *sl; + struct bpf_verifier_state *st; + + /* Explored states are pushed in stack order, most recent states come first */ + sl = *explored_state(env, insn_idx); + for (; sl; sl = sl->next) { + /* If st->branches != 0 state is a part of current DFS verification path, + * hence cur & st for a loop. + */ + st = &sl->state; + if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && + st->dfs_depth < cur->dfs_depth) + return st; + } + + return NULL; +} + +static void reset_idmap_scratch(struct bpf_verifier_env *env); +static bool regs_exact(const struct bpf_reg_state *rold, + const struct bpf_reg_state *rcur, + struct bpf_idmap *idmap); + +static void maybe_widen_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *rold, struct bpf_reg_state *rcur, + struct bpf_idmap *idmap) { - return type == ARG_PTR_TO_MEM || - type == ARG_PTR_TO_MEM_OR_NULL || - type == ARG_PTR_TO_UNINIT_MEM; + if (rold->type != SCALAR_VALUE) + return; + if (rold->type != rcur->type) + return; + if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) + return; + __mark_reg_unknown(env, rcur); +} + +static int widen_imprecise_scalars(struct bpf_verifier_env *env, + struct bpf_verifier_state *old, + struct bpf_verifier_state *cur) +{ + struct bpf_func_state *fold, *fcur; + int i, fr; + + reset_idmap_scratch(env); + for (fr = old->curframe; fr >= 0; fr--) { + fold = old->frame[fr]; + fcur = cur->frame[fr]; + + for (i = 0; i < MAX_BPF_REG; i++) + maybe_widen_reg(env, + &fold->regs[i], + &fcur->regs[i], + &env->idmap_scratch); + + for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { + if (!is_spilled_reg(&fold->stack[i]) || + !is_spilled_reg(&fcur->stack[i])) + continue; + + maybe_widen_reg(env, + &fold->stack[i].spilled_ptr, + &fcur->stack[i].spilled_ptr, + &env->idmap_scratch); + } + } + return 0; +} + +static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, + struct bpf_kfunc_call_arg_meta *meta) +{ + int iter_frameno = meta->iter.frameno; + int iter_spi = meta->iter.spi; + + return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; +} + +/* process_iter_next_call() is called when verifier gets to iterator's next + * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer + * to it as just "iter_next()" in comments below. + * + * BPF verifier relies on a crucial contract for any iter_next() + * implementation: it should *eventually* return NULL, and once that happens + * it should keep returning NULL. That is, once iterator exhausts elements to + * iterate, it should never reset or spuriously return new elements. + * + * With the assumption of such contract, process_iter_next_call() simulates + * a fork in the verifier state to validate loop logic correctness and safety + * without having to simulate infinite amount of iterations. + * + * In current state, we first assume that iter_next() returned NULL and + * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such + * conditions we should not form an infinite loop and should eventually reach + * exit. + * + * Besides that, we also fork current state and enqueue it for later + * verification. In a forked state we keep iterator state as ACTIVE + * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We + * also bump iteration depth to prevent erroneous infinite loop detection + * later on (see iter_active_depths_differ() comment for details). In this + * state we assume that we'll eventually loop back to another iter_next() + * calls (it could be in exactly same location or in some other instruction, + * it doesn't matter, we don't make any unnecessary assumptions about this, + * everything revolves around iterator state in a stack slot, not which + * instruction is calling iter_next()). When that happens, we either will come + * to iter_next() with equivalent state and can conclude that next iteration + * will proceed in exactly the same way as we just verified, so it's safe to + * assume that loop converges. If not, we'll go on another iteration + * simulation with a different input state, until all possible starting states + * are validated or we reach maximum number of instructions limit. + * + * This way, we will either exhaustively discover all possible input states + * that iterator loop can start with and eventually will converge, or we'll + * effectively regress into bounded loop simulation logic and either reach + * maximum number of instructions if loop is not provably convergent, or there + * is some statically known limit on number of iterations (e.g., if there is + * an explicit `if n > 100 then break;` statement somewhere in the loop). + * + * Iteration convergence logic in is_state_visited() relies on exact + * states comparison, which ignores read and precision marks. + * This is necessary because read and precision marks are not finalized + * while in the loop. Exact comparison might preclude convergence for + * simple programs like below: + * + * i = 0; + * while(iter_next(&it)) + * i++; + * + * At each iteration step i++ would produce a new distinct state and + * eventually instruction processing limit would be reached. + * + * To avoid such behavior speculatively forget (widen) range for + * imprecise scalar registers, if those registers were not precise at the + * end of the previous iteration and do not match exactly. + * + * This is a conservative heuristic that allows to verify wide range of programs, + * however it precludes verification of programs that conjure an + * imprecise value on the first loop iteration and use it as precise on a second. + * For example, the following safe program would fail to verify: + * + * struct bpf_num_iter it; + * int arr[10]; + * int i = 0, a = 0; + * bpf_iter_num_new(&it, 0, 10); + * while (bpf_iter_num_next(&it)) { + * if (a == 0) { + * a = 1; + * i = 7; // Because i changed verifier would forget + * // it's range on second loop entry. + * } else { + * arr[i] = 42; // This would fail to verify. + * } + * } + * bpf_iter_num_destroy(&it); + */ +static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; + struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; + struct bpf_reg_state *cur_iter, *queued_iter; + + BTF_TYPE_EMIT(struct bpf_iter); + + cur_iter = get_iter_from_state(cur_st, meta); + + if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && + cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { + verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", + cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); + return -EFAULT; + } + + if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { + /* Because iter_next() call is a checkpoint is_state_visitied() + * should guarantee parent state with same call sites and insn_idx. + */ + if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || + !same_callsites(cur_st->parent, cur_st)) { + verbose(env, "bug: bad parent state for iter next call"); + return -EFAULT; + } + /* Note cur_st->parent in the call below, it is necessary to skip + * checkpoint created for cur_st by is_state_visited() + * right at this instruction. + */ + prev_st = find_prev_entry(env, cur_st->parent, insn_idx); + /* branch out active iter state */ + queued_st = push_stack(env, insn_idx + 1, insn_idx, false); + if (!queued_st) + return -ENOMEM; + + queued_iter = get_iter_from_state(queued_st, meta); + queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; + queued_iter->iter.depth++; + if (prev_st) + widen_imprecise_scalars(env, prev_st, queued_st); + + queued_fr = queued_st->frame[queued_st->curframe]; + mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); + } + + /* switch to DRAINED state, but keep the depth unchanged */ + /* mark current iter state as drained and assume returned NULL */ + cur_iter->iter.state = BPF_ITER_STATE_DRAINED; + __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); + + return 0; } static bool arg_type_is_mem_size(enum bpf_arg_type type) @@ -3707,39 +8645,586 @@ static bool arg_type_is_mem_size(enum bpf_arg_type type) type == ARG_CONST_SIZE_OR_ZERO; } -static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type) +static bool arg_type_is_raw_mem(enum bpf_arg_type type) { - return type == ARG_PTR_TO_ALLOC_MEM || - type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; + return base_type(type) == ARG_PTR_TO_MEM && + type & MEM_UNINIT; } -static bool arg_type_is_alloc_size(enum bpf_arg_type type) +static bool arg_type_is_release(enum bpf_arg_type type) { - return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; + return type & OBJ_RELEASE; } -static bool arg_type_is_int_ptr(enum bpf_arg_type type) +static bool arg_type_is_dynptr(enum bpf_arg_type type) { - return type == ARG_PTR_TO_INT || - type == ARG_PTR_TO_LONG; + return base_type(type) == ARG_PTR_TO_DYNPTR; } -static int int_ptr_type_to_size(enum bpf_arg_type type) +static int resolve_map_arg_type(struct bpf_verifier_env *env, + const struct bpf_call_arg_meta *meta, + enum bpf_arg_type *arg_type) { - if (type == ARG_PTR_TO_INT) - return sizeof(u32); - else if (type == ARG_PTR_TO_LONG) - return sizeof(u64); + if (!meta->map_ptr) { + /* kernel subsystem misconfigured verifier */ + verbose(env, "invalid map_ptr to access map->type\n"); + return -EACCES; + } - return -EINVAL; + switch (meta->map_ptr->map_type) { + case BPF_MAP_TYPE_SOCKMAP: + case BPF_MAP_TYPE_SOCKHASH: + if (*arg_type == ARG_PTR_TO_MAP_VALUE) { + *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; + } else { + verbose(env, "invalid arg_type for sockmap/sockhash\n"); + return -EINVAL; + } + break; + case BPF_MAP_TYPE_BLOOM_FILTER: + if (meta->func_id == BPF_FUNC_map_peek_elem) + *arg_type = ARG_PTR_TO_MAP_VALUE; + break; + default: + break; + } + return 0; } -static int check_func_arg(struct bpf_verifier_env *env, u32 regno, +struct bpf_reg_types { + const enum bpf_reg_type types[10]; + u32 *btf_id; +}; + +static const struct bpf_reg_types sock_types = { + .types = { + PTR_TO_SOCK_COMMON, + PTR_TO_SOCKET, + PTR_TO_TCP_SOCK, + PTR_TO_XDP_SOCK, + }, +}; + +#ifdef CONFIG_NET +static const struct bpf_reg_types btf_id_sock_common_types = { + .types = { + PTR_TO_SOCK_COMMON, + PTR_TO_SOCKET, + PTR_TO_TCP_SOCK, + PTR_TO_XDP_SOCK, + PTR_TO_BTF_ID, + PTR_TO_BTF_ID | PTR_TRUSTED, + }, + .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], +}; +#endif + +static const struct bpf_reg_types mem_types = { + .types = { + PTR_TO_STACK, + PTR_TO_PACKET, + PTR_TO_PACKET_META, + PTR_TO_MAP_KEY, + PTR_TO_MAP_VALUE, + PTR_TO_MEM, + PTR_TO_MEM | MEM_RINGBUF, + PTR_TO_BUF, + PTR_TO_BTF_ID | PTR_TRUSTED, + }, +}; + +static const struct bpf_reg_types spin_lock_types = { + .types = { + PTR_TO_MAP_VALUE, + PTR_TO_BTF_ID | MEM_ALLOC, + } +}; + +static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; +static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; +static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; +static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; +static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; +static const struct bpf_reg_types btf_ptr_types = { + .types = { + PTR_TO_BTF_ID, + PTR_TO_BTF_ID | PTR_TRUSTED, + PTR_TO_BTF_ID | MEM_RCU, + }, +}; +static const struct bpf_reg_types percpu_btf_ptr_types = { + .types = { + PTR_TO_BTF_ID | MEM_PERCPU, + PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, + PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, + } +}; +static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; +static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; +static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; +static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; +static const struct bpf_reg_types kptr_xchg_dest_types = { + .types = { + PTR_TO_MAP_VALUE, + PTR_TO_BTF_ID | MEM_ALLOC + } +}; +static const struct bpf_reg_types dynptr_types = { + .types = { + PTR_TO_STACK, + CONST_PTR_TO_DYNPTR, + } +}; + +static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { + [ARG_PTR_TO_MAP_KEY] = &mem_types, + [ARG_PTR_TO_MAP_VALUE] = &mem_types, + [ARG_CONST_SIZE] = &scalar_types, + [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, + [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, + [ARG_CONST_MAP_PTR] = &const_map_ptr_types, + [ARG_PTR_TO_CTX] = &context_types, + [ARG_PTR_TO_SOCK_COMMON] = &sock_types, +#ifdef CONFIG_NET + [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, +#endif + [ARG_PTR_TO_SOCKET] = &fullsock_types, + [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, + [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, + [ARG_PTR_TO_MEM] = &mem_types, + [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, + [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, + [ARG_PTR_TO_FUNC] = &func_ptr_types, + [ARG_PTR_TO_STACK] = &stack_ptr_types, + [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, + [ARG_PTR_TO_TIMER] = &timer_types, + [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, + [ARG_PTR_TO_DYNPTR] = &dynptr_types, +}; + +static int check_reg_type(struct bpf_verifier_env *env, u32 regno, enum bpf_arg_type arg_type, + const u32 *arg_btf_id, struct bpf_call_arg_meta *meta) { struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; - enum bpf_reg_type expected_type, type = reg->type; + enum bpf_reg_type expected, type = reg->type; + const struct bpf_reg_types *compatible; + int i, j; + + compatible = compatible_reg_types[base_type(arg_type)]; + if (!compatible) { + verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); + return -EFAULT; + } + + /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, + * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY + * + * Same for MAYBE_NULL: + * + * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, + * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL + * + * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. + * + * Therefore we fold these flags depending on the arg_type before comparison. + */ + if (arg_type & MEM_RDONLY) + type &= ~MEM_RDONLY; + if (arg_type & PTR_MAYBE_NULL) + type &= ~PTR_MAYBE_NULL; + if (base_type(arg_type) == ARG_PTR_TO_MEM) + type &= ~DYNPTR_TYPE_FLAG_MASK; + + /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ + if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { + type &= ~MEM_ALLOC; + type &= ~MEM_PERCPU; + } + + for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { + expected = compatible->types[i]; + if (expected == NOT_INIT) + break; + + if (type == expected) + goto found; + } + + verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); + for (j = 0; j + 1 < i; j++) + verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); + verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); + return -EACCES; + +found: + if (base_type(reg->type) != PTR_TO_BTF_ID) + return 0; + + if (compatible == &mem_types) { + if (!(arg_type & MEM_RDONLY)) { + verbose(env, + "%s() may write into memory pointed by R%d type=%s\n", + func_id_name(meta->func_id), + regno, reg_type_str(env, reg->type)); + return -EACCES; + } + return 0; + } + + switch ((int)reg->type) { + case PTR_TO_BTF_ID: + case PTR_TO_BTF_ID | PTR_TRUSTED: + case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: + case PTR_TO_BTF_ID | MEM_RCU: + case PTR_TO_BTF_ID | PTR_MAYBE_NULL: + case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: + { + /* For bpf_sk_release, it needs to match against first member + * 'struct sock_common', hence make an exception for it. This + * allows bpf_sk_release to work for multiple socket types. + */ + bool strict_type_match = arg_type_is_release(arg_type) && + meta->func_id != BPF_FUNC_sk_release; + + if (type_may_be_null(reg->type) && + (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { + verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); + return -EACCES; + } + + if (!arg_btf_id) { + if (!compatible->btf_id) { + verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); + return -EFAULT; + } + arg_btf_id = compatible->btf_id; + } + + if (meta->func_id == BPF_FUNC_kptr_xchg) { + if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) + return -EACCES; + } else { + if (arg_btf_id == BPF_PTR_POISON) { + verbose(env, "verifier internal error:"); + verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", + regno); + return -EACCES; + } + + if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, + btf_vmlinux, *arg_btf_id, + strict_type_match)) { + verbose(env, "R%d is of type %s but %s is expected\n", + regno, btf_type_name(reg->btf, reg->btf_id), + btf_type_name(btf_vmlinux, *arg_btf_id)); + return -EACCES; + } + } + break; + } + case PTR_TO_BTF_ID | MEM_ALLOC: + case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: + if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && + meta->func_id != BPF_FUNC_kptr_xchg) { + verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); + return -EFAULT; + } + /* Check if local kptr in src arg matches kptr in dst arg */ + if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { + if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) + return -EACCES; + } + break; + case PTR_TO_BTF_ID | MEM_PERCPU: + case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: + case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: + /* Handled by helper specific checks */ + break; + default: + verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); + return -EFAULT; + } + return 0; +} + +static struct btf_field * +reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) +{ + struct btf_field *field; + struct btf_record *rec; + + rec = reg_btf_record(reg); + if (!rec) + return NULL; + + field = btf_record_find(rec, off, fields); + if (!field) + return NULL; + + return field; +} + +static int check_func_arg_reg_off(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, int regno, + enum bpf_arg_type arg_type) +{ + u32 type = reg->type; + + /* When referenced register is passed to release function, its fixed + * offset must be 0. + * + * We will check arg_type_is_release reg has ref_obj_id when storing + * meta->release_regno. + */ + if (arg_type_is_release(arg_type)) { + /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it + * may not directly point to the object being released, but to + * dynptr pointing to such object, which might be at some offset + * on the stack. In that case, we simply to fallback to the + * default handling. + */ + if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) + return 0; + + /* Doing check_ptr_off_reg check for the offset will catch this + * because fixed_off_ok is false, but checking here allows us + * to give the user a better error message. + */ + if (reg->off) { + verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", + regno); + return -EINVAL; + } + return __check_ptr_off_reg(env, reg, regno, false); + } + + switch (type) { + /* Pointer types where both fixed and variable offset is explicitly allowed: */ + case PTR_TO_STACK: + case PTR_TO_PACKET: + case PTR_TO_PACKET_META: + case PTR_TO_MAP_KEY: + case PTR_TO_MAP_VALUE: + case PTR_TO_MEM: + case PTR_TO_MEM | MEM_RDONLY: + case PTR_TO_MEM | MEM_RINGBUF: + case PTR_TO_BUF: + case PTR_TO_BUF | MEM_RDONLY: + case PTR_TO_ARENA: + case SCALAR_VALUE: + return 0; + /* All the rest must be rejected, except PTR_TO_BTF_ID which allows + * fixed offset. + */ + case PTR_TO_BTF_ID: + case PTR_TO_BTF_ID | MEM_ALLOC: + case PTR_TO_BTF_ID | PTR_TRUSTED: + case PTR_TO_BTF_ID | MEM_RCU: + case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: + case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: + /* When referenced PTR_TO_BTF_ID is passed to release function, + * its fixed offset must be 0. In the other cases, fixed offset + * can be non-zero. This was already checked above. So pass + * fixed_off_ok as true to allow fixed offset for all other + * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we + * still need to do checks instead of returning. + */ + return __check_ptr_off_reg(env, reg, regno, true); + default: + return __check_ptr_off_reg(env, reg, regno, false); + } +} + +static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, + const struct bpf_func_proto *fn, + struct bpf_reg_state *regs) +{ + struct bpf_reg_state *state = NULL; + int i; + + for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) + if (arg_type_is_dynptr(fn->arg_type[i])) { + if (state) { + verbose(env, "verifier internal error: multiple dynptr args\n"); + return NULL; + } + state = ®s[BPF_REG_1 + i]; + } + + if (!state) + verbose(env, "verifier internal error: no dynptr arg found\n"); + + return state; +} + +static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int spi; + + if (reg->type == CONST_PTR_TO_DYNPTR) + return reg->id; + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + return state->stack[spi].spilled_ptr.id; +} + +static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int spi; + + if (reg->type == CONST_PTR_TO_DYNPTR) + return reg->ref_obj_id; + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + return state->stack[spi].spilled_ptr.ref_obj_id; +} + +static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, + struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int spi; + + if (reg->type == CONST_PTR_TO_DYNPTR) + return reg->dynptr.type; + + spi = __get_spi(reg->off); + if (spi < 0) { + verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); + return BPF_DYNPTR_TYPE_INVALID; + } + + return state->stack[spi].spilled_ptr.dynptr.type; +} + +static int check_reg_const_str(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno) +{ + struct bpf_map *map = reg->map_ptr; + int err; + int map_off; + u64 map_addr; + char *str_ptr; + + if (reg->type != PTR_TO_MAP_VALUE) + return -EINVAL; + + if (!bpf_map_is_rdonly(map)) { + verbose(env, "R%d does not point to a readonly map'\n", regno); + return -EACCES; + } + + if (!tnum_is_const(reg->var_off)) { + verbose(env, "R%d is not a constant address'\n", regno); + return -EACCES; + } + + if (!map->ops->map_direct_value_addr) { + verbose(env, "no direct value access support for this map type\n"); + return -EACCES; + } + + err = check_map_access(env, regno, reg->off, + map->value_size - reg->off, false, + ACCESS_HELPER); + if (err) + return err; + + map_off = reg->off + reg->var_off.value; + err = map->ops->map_direct_value_addr(map, &map_addr, map_off); + if (err) { + verbose(env, "direct value access on string failed\n"); + return err; + } + + str_ptr = (char *)(long)(map_addr); + if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { + verbose(env, "string is not zero-terminated\n"); + return -EINVAL; + } + return 0; +} + +/* Returns constant key value in `value` if possible, else negative error */ +static int get_constant_map_key(struct bpf_verifier_env *env, + struct bpf_reg_state *key, + u32 key_size, + s64 *value) +{ + struct bpf_func_state *state = func(env, key); + struct bpf_reg_state *reg; + int slot, spi, off; + int spill_size = 0; + int zero_size = 0; + int stack_off; + int i, err; + u8 *stype; + + if (!env->bpf_capable) + return -EOPNOTSUPP; + if (key->type != PTR_TO_STACK) + return -EOPNOTSUPP; + if (!tnum_is_const(key->var_off)) + return -EOPNOTSUPP; + + stack_off = key->off + key->var_off.value; + slot = -stack_off - 1; + spi = slot / BPF_REG_SIZE; + off = slot % BPF_REG_SIZE; + stype = state->stack[spi].slot_type; + + /* First handle precisely tracked STACK_ZERO */ + for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) + zero_size++; + if (zero_size >= key_size) { + *value = 0; + return 0; + } + + /* Check that stack contains a scalar spill of expected size */ + if (!is_spilled_scalar_reg(&state->stack[spi])) + return -EOPNOTSUPP; + for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) + spill_size++; + if (spill_size != key_size) + return -EOPNOTSUPP; + + reg = &state->stack[spi].spilled_ptr; + if (!tnum_is_const(reg->var_off)) + /* Stack value not statically known */ + return -EOPNOTSUPP; + + /* We are relying on a constant value. So mark as precise + * to prevent pruning on it. + */ + bt_set_frame_slot(&env->bt, key->frameno, spi); + err = mark_chain_precision_batch(env); + if (err < 0) + return err; + + *value = reg->var_off.value; + return 0; +} + +static bool can_elide_value_nullness(enum bpf_map_type type); + +static int check_func_arg(struct bpf_verifier_env *env, u32 arg, + struct bpf_call_arg_meta *meta, + const struct bpf_func_proto *fn, + int insn_idx) +{ + u32 regno = BPF_REG_1 + arg; + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + enum bpf_arg_type arg_type = fn->arg_type[arg]; + enum bpf_reg_type type = reg->type; + u32 *arg_btf_id = NULL; + u32 key_size; int err = 0; if (arg_type == ARG_DONTCARE) @@ -3764,107 +9249,65 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, return -EACCES; } - if (arg_type == ARG_PTR_TO_MAP_KEY || - arg_type == ARG_PTR_TO_MAP_VALUE || - arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || - arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { - expected_type = PTR_TO_STACK; - if (register_is_null(reg) && - arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) - /* final test in check_stack_boundary() */; - else if (!type_is_pkt_pointer(type) && - type != PTR_TO_MAP_VALUE && - type != expected_type) - goto err_type; - } else if (arg_type == ARG_CONST_SIZE || - arg_type == ARG_CONST_SIZE_OR_ZERO || - arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) { - expected_type = SCALAR_VALUE; - if (type != expected_type) - goto err_type; - } else if (arg_type == ARG_CONST_MAP_PTR) { - expected_type = CONST_PTR_TO_MAP; - if (type != expected_type) - goto err_type; - } else if (arg_type == ARG_PTR_TO_CTX || - arg_type == ARG_PTR_TO_CTX_OR_NULL) { - expected_type = PTR_TO_CTX; - if (!(register_is_null(reg) && - arg_type == ARG_PTR_TO_CTX_OR_NULL)) { - if (type != expected_type) - goto err_type; - err = check_ctx_reg(env, reg, regno); - if (err < 0) - return err; - } - } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { - expected_type = PTR_TO_SOCK_COMMON; - /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ - if (!type_is_sk_pointer(type)) - goto err_type; - if (reg->ref_obj_id) { - if (meta->ref_obj_id) { - verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", - regno, reg->ref_obj_id, - meta->ref_obj_id); - return -EFAULT; - } - meta->ref_obj_id = reg->ref_obj_id; - } - } else if (arg_type == ARG_PTR_TO_SOCKET) { - expected_type = PTR_TO_SOCKET; - if (type != expected_type) - goto err_type; - } else if (arg_type == ARG_PTR_TO_BTF_ID) { - expected_type = PTR_TO_BTF_ID; - if (type != expected_type) - goto err_type; - if (reg->btf_id != meta->btf_id) { - verbose(env, "Helper has type %s got %s in R%d\n", - kernel_type_name(meta->btf_id), - kernel_type_name(reg->btf_id), regno); + if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { + err = resolve_map_arg_type(env, meta, &arg_type); + if (err) + return err; + } - return -EACCES; - } - if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { - verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", + if (register_is_null(reg) && type_may_be_null(arg_type)) + /* A NULL register has a SCALAR_VALUE type, so skip + * type checking. + */ + goto skip_type_check; + + /* arg_btf_id and arg_size are in a union. */ + if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || + base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) + arg_btf_id = fn->arg_btf_id[arg]; + + err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); + if (err) + return err; + + err = check_func_arg_reg_off(env, reg, regno, arg_type); + if (err) + return err; + +skip_type_check: + if (arg_type_is_release(arg_type)) { + if (arg_type_is_dynptr(arg_type)) { + struct bpf_func_state *state = func(env, reg); + int spi; + + /* Only dynptr created on stack can be released, thus + * the get_spi and stack state checks for spilled_ptr + * should only be done before process_dynptr_func for + * PTR_TO_STACK. + */ + if (reg->type == PTR_TO_STACK) { + spi = dynptr_get_spi(env, reg); + if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { + verbose(env, "arg %d is an unacquired reference\n", regno); + return -EINVAL; + } + } else { + verbose(env, "cannot release unowned const bpf_dynptr\n"); + return -EINVAL; + } + } else if (!reg->ref_obj_id && !register_is_null(reg)) { + verbose(env, "R%d must be referenced when passed to release function\n", regno); - return -EACCES; + return -EINVAL; } - } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { - if (meta->func_id == BPF_FUNC_spin_lock) { - if (process_spin_lock(env, regno, true)) - return -EACCES; - } else if (meta->func_id == BPF_FUNC_spin_unlock) { - if (process_spin_lock(env, regno, false)) - return -EACCES; - } else { - verbose(env, "verifier internal error\n"); + if (meta->release_regno) { + verbose(env, "verifier internal error: more than one release argument\n"); return -EFAULT; } - } else if (arg_type_is_mem_ptr(arg_type)) { - expected_type = PTR_TO_STACK; - /* One exception here. In case function allows for NULL to be - * passed in as argument, it's a SCALAR_VALUE type. Final test - * happens during stack boundary checking. - */ - if (register_is_null(reg) && - (arg_type == ARG_PTR_TO_MEM_OR_NULL || - arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)) - /* final test in check_stack_boundary() */; - else if (!type_is_pkt_pointer(type) && - type != PTR_TO_MAP_VALUE && - type != PTR_TO_MEM && - type != expected_type) - goto err_type; - meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; - } else if (arg_type_is_alloc_mem_ptr(arg_type)) { - expected_type = PTR_TO_MEM; - if (register_is_null(reg) && - arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL) - /* final test in check_stack_boundary() */; - else if (type != expected_type) - goto err_type; + meta->release_regno = regno; + } + + if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { if (meta->ref_obj_id) { verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", regno, reg->ref_obj_id, @@ -3872,21 +9315,36 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, return -EFAULT; } meta->ref_obj_id = reg->ref_obj_id; - } else if (arg_type_is_int_ptr(arg_type)) { - expected_type = PTR_TO_STACK; - if (!type_is_pkt_pointer(type) && - type != PTR_TO_MAP_VALUE && - type != expected_type) - goto err_type; - } else { - verbose(env, "unsupported arg_type %d\n", arg_type); - return -EFAULT; } - if (arg_type == ARG_CONST_MAP_PTR) { + switch (base_type(arg_type)) { + case ARG_CONST_MAP_PTR: /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ + if (meta->map_ptr) { + /* Use map_uid (which is unique id of inner map) to reject: + * inner_map1 = bpf_map_lookup_elem(outer_map, key1) + * inner_map2 = bpf_map_lookup_elem(outer_map, key2) + * if (inner_map1 && inner_map2) { + * timer = bpf_map_lookup_elem(inner_map1); + * if (timer) + * // mismatch would have been allowed + * bpf_timer_init(timer, inner_map2); + * } + * + * Comparing map_ptr is enough to distinguish normal and outer maps. + */ + if (meta->map_ptr != reg->map_ptr || + meta->map_uid != reg->map_uid) { + verbose(env, + "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", + meta->map_uid, reg->map_uid); + return -EINVAL; + } + } meta->map_ptr = reg->map_ptr; - } else if (arg_type == ARG_PTR_TO_MAP_KEY) { + meta->map_uid = reg->map_uid; + break; + case ARG_PTR_TO_MAP_KEY: /* bpf_map_xxx(..., map_ptr, ..., key) call: * check that [key, key + map->key_size) are within * stack limits and initialized @@ -3900,13 +9358,25 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, verbose(env, "invalid map_ptr to access map->key\n"); return -EACCES; } - err = check_helper_mem_access(env, regno, - meta->map_ptr->key_size, false, - NULL); - } else if (arg_type == ARG_PTR_TO_MAP_VALUE || - (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && - !register_is_null(reg)) || - arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { + key_size = meta->map_ptr->key_size; + err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); + if (err) + return err; + if (can_elide_value_nullness(meta->map_ptr->map_type)) { + err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); + if (err < 0) { + meta->const_map_key = -1; + if (err == -EOPNOTSUPP) + err = 0; + else + return err; + } + } + break; + case ARG_PTR_TO_MAP_VALUE: + if (type_may_be_null(arg_type) && register_is_null(reg)) + return 0; + /* bpf_map_xxx(..., map_ptr, ..., value) call: * check [value, value + map->value_size) validity */ @@ -3915,79 +9385,147 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, verbose(env, "invalid map_ptr to access map->value\n"); return -EACCES; } - meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); - err = check_helper_mem_access(env, regno, - meta->map_ptr->value_size, false, - meta); - } else if (arg_type_is_mem_size(arg_type)) { - bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); - - /* This is used to refine r0 return value bounds for helpers - * that enforce this value as an upper bound on return values. - * See do_refine_retval_range() for helpers that can refine - * the return value. C type of helper is u32 so we pull register - * bound from umax_value however, if negative verifier errors - * out. Only upper bounds can be learned because retval is an - * int type and negative retvals are allowed. - */ - meta->msize_max_value = reg->umax_value; - - /* The register is SCALAR_VALUE; the access check - * happens using its boundaries. - */ - if (!tnum_is_const(reg->var_off)) - /* For unprivileged variable accesses, disable raw - * mode so that the program is required to - * initialize all the memory that the helper could - * just partially fill up. - */ - meta = NULL; - - if (reg->smin_value < 0) { - verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", - regno); + meta->raw_mode = arg_type & MEM_UNINIT; + err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, + arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, + false, meta); + break; + case ARG_PTR_TO_PERCPU_BTF_ID: + if (!reg->btf_id) { + verbose(env, "Helper has invalid btf_id in R%d\n", regno); return -EACCES; } - - if (reg->umin_value == 0) { - err = check_helper_mem_access(env, regno - 1, 0, - zero_size_allowed, - meta); + meta->ret_btf = reg->btf; + meta->ret_btf_id = reg->btf_id; + break; + case ARG_PTR_TO_SPIN_LOCK: + if (in_rbtree_lock_required_cb(env)) { + verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); + return -EACCES; + } + if (meta->func_id == BPF_FUNC_spin_lock) { + err = process_spin_lock(env, regno, true); + if (err) + return err; + } else if (meta->func_id == BPF_FUNC_spin_unlock) { + err = process_spin_lock(env, regno, false); if (err) return err; + } else { + verbose(env, "verifier internal error\n"); + return -EFAULT; } - - if (reg->umax_value >= BPF_MAX_VAR_SIZ) { - verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", - regno); - return -EACCES; + break; + case ARG_PTR_TO_TIMER: + err = process_timer_func(env, regno, meta); + if (err) + return err; + break; + case ARG_PTR_TO_FUNC: + meta->subprogno = reg->subprogno; + break; + case ARG_PTR_TO_MEM: + /* The access to this pointer is only checked when we hit the + * next is_mem_size argument below. + */ + meta->raw_mode = arg_type & MEM_UNINIT; + if (arg_type & MEM_FIXED_SIZE) { + err = check_helper_mem_access(env, regno, fn->arg_size[arg], + arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, + false, meta); + if (err) + return err; + if (arg_type & MEM_ALIGNED) + err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); } - err = check_helper_mem_access(env, regno - 1, - reg->umax_value, - zero_size_allowed, meta); - if (!err) - err = mark_chain_precision(env, regno); - } else if (arg_type_is_alloc_size(arg_type)) { + break; + case ARG_CONST_SIZE: + err = check_mem_size_reg(env, reg, regno, + fn->arg_type[arg - 1] & MEM_WRITE ? + BPF_WRITE : BPF_READ, + false, meta); + break; + case ARG_CONST_SIZE_OR_ZERO: + err = check_mem_size_reg(env, reg, regno, + fn->arg_type[arg - 1] & MEM_WRITE ? + BPF_WRITE : BPF_READ, + true, meta); + break; + case ARG_PTR_TO_DYNPTR: + err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); + if (err) + return err; + break; + case ARG_CONST_ALLOC_SIZE_OR_ZERO: if (!tnum_is_const(reg->var_off)) { - verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", + verbose(env, "R%d is not a known constant'\n", regno); return -EACCES; } meta->mem_size = reg->var_off.value; - } else if (arg_type_is_int_ptr(arg_type)) { - int size = int_ptr_type_to_size(arg_type); - - err = check_helper_mem_access(env, regno, size, false, meta); + err = mark_chain_precision(env, regno); if (err) return err; - err = check_ptr_alignment(env, reg, 0, size, true); + break; + case ARG_PTR_TO_CONST_STR: + { + err = check_reg_const_str(env, reg, regno); + if (err) + return err; + break; + } + case ARG_KPTR_XCHG_DEST: + err = process_kptr_func(env, regno, meta); + if (err) + return err; + break; } return err; -err_type: - verbose(env, "R%d type=%s expected=%s\n", regno, - reg_type_str[type], reg_type_str[expected_type]); - return -EACCES; +} + +static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) +{ + enum bpf_attach_type eatype = env->prog->expected_attach_type; + enum bpf_prog_type type = resolve_prog_type(env->prog); + + if (func_id != BPF_FUNC_map_update_elem && + func_id != BPF_FUNC_map_delete_elem) + return false; + + /* It's not possible to get access to a locked struct sock in these + * contexts, so updating is safe. + */ + switch (type) { + case BPF_PROG_TYPE_TRACING: + if (eatype == BPF_TRACE_ITER) + return true; + break; + case BPF_PROG_TYPE_SOCK_OPS: + /* map_update allowed only via dedicated helpers with event type checks */ + if (func_id == BPF_FUNC_map_delete_elem) + return true; + break; + case BPF_PROG_TYPE_SOCKET_FILTER: + case BPF_PROG_TYPE_SCHED_CLS: + case BPF_PROG_TYPE_SCHED_ACT: + case BPF_PROG_TYPE_XDP: + case BPF_PROG_TYPE_SK_REUSEPORT: + case BPF_PROG_TYPE_FLOW_DISSECTOR: + case BPF_PROG_TYPE_SK_LOOKUP: + return true; + default: + break; + } + + verbose(env, "cannot update sockmap in this context\n"); + return false; +} + +static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) +{ + return env->prog->jit_requested && + bpf_jit_supports_subprog_tailcalls(); } static int check_map_func_compatibility(struct bpf_verifier_env *env, @@ -4013,9 +9551,14 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env, case BPF_MAP_TYPE_RINGBUF: if (func_id != BPF_FUNC_ringbuf_output && func_id != BPF_FUNC_ringbuf_reserve && - func_id != BPF_FUNC_ringbuf_submit && - func_id != BPF_FUNC_ringbuf_discard && - func_id != BPF_FUNC_ringbuf_query) + func_id != BPF_FUNC_ringbuf_query && + func_id != BPF_FUNC_ringbuf_reserve_dynptr && + func_id != BPF_FUNC_ringbuf_submit_dynptr && + func_id != BPF_FUNC_ringbuf_discard_dynptr) + goto error; + break; + case BPF_MAP_TYPE_USER_RINGBUF: + if (func_id != BPF_FUNC_user_ringbuf_drain) goto error; break; case BPF_MAP_TYPE_STACK_TRACE: @@ -4058,19 +9601,19 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env, case BPF_MAP_TYPE_SOCKMAP: if (func_id != BPF_FUNC_sk_redirect_map && func_id != BPF_FUNC_sock_map_update && - func_id != BPF_FUNC_map_delete_elem && func_id != BPF_FUNC_msg_redirect_map && func_id != BPF_FUNC_sk_select_reuseport && - func_id != BPF_FUNC_map_lookup_elem) + func_id != BPF_FUNC_map_lookup_elem && + !may_update_sockmap(env, func_id)) goto error; break; case BPF_MAP_TYPE_SOCKHASH: if (func_id != BPF_FUNC_sk_redirect_hash && func_id != BPF_FUNC_sock_hash_update && - func_id != BPF_FUNC_map_delete_elem && func_id != BPF_FUNC_msg_redirect_hash && func_id != BPF_FUNC_sk_select_reuseport && - func_id != BPF_FUNC_map_lookup_elem) + func_id != BPF_FUNC_map_lookup_elem && + !may_update_sockmap(env, func_id)) goto error; break; case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: @@ -4086,7 +9629,31 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env, break; case BPF_MAP_TYPE_SK_STORAGE: if (func_id != BPF_FUNC_sk_storage_get && - func_id != BPF_FUNC_sk_storage_delete) + func_id != BPF_FUNC_sk_storage_delete && + func_id != BPF_FUNC_kptr_xchg) + goto error; + break; + case BPF_MAP_TYPE_INODE_STORAGE: + if (func_id != BPF_FUNC_inode_storage_get && + func_id != BPF_FUNC_inode_storage_delete && + func_id != BPF_FUNC_kptr_xchg) + goto error; + break; + case BPF_MAP_TYPE_TASK_STORAGE: + if (func_id != BPF_FUNC_task_storage_get && + func_id != BPF_FUNC_task_storage_delete && + func_id != BPF_FUNC_kptr_xchg) + goto error; + break; + case BPF_MAP_TYPE_CGRP_STORAGE: + if (func_id != BPF_FUNC_cgrp_storage_get && + func_id != BPF_FUNC_cgrp_storage_delete && + func_id != BPF_FUNC_kptr_xchg) + goto error; + break; + case BPF_MAP_TYPE_BLOOM_FILTER: + if (func_id != BPF_FUNC_map_peek_elem && + func_id != BPF_FUNC_map_push_elem) goto error; break; default: @@ -4098,8 +9665,8 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env, case BPF_FUNC_tail_call: if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) goto error; - if (env->subprog_cnt > 1) { - verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); + if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { + verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); return -EINVAL; } break; @@ -4111,6 +9678,19 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env, if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) goto error; break; + case BPF_FUNC_ringbuf_output: + case BPF_FUNC_ringbuf_reserve: + case BPF_FUNC_ringbuf_query: + case BPF_FUNC_ringbuf_reserve_dynptr: + case BPF_FUNC_ringbuf_submit_dynptr: + case BPF_FUNC_ringbuf_discard_dynptr: + if (map->map_type != BPF_MAP_TYPE_RINGBUF) + goto error; + break; + case BPF_FUNC_user_ringbuf_drain: + if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) + goto error; + break; case BPF_FUNC_get_stackid: if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) goto error; @@ -4150,18 +9730,44 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env, map->map_type != BPF_MAP_TYPE_SOCKHASH) goto error; break; - case BPF_FUNC_map_peek_elem: case BPF_FUNC_map_pop_elem: - case BPF_FUNC_map_push_elem: if (map->map_type != BPF_MAP_TYPE_QUEUE && map->map_type != BPF_MAP_TYPE_STACK) goto error; break; + case BPF_FUNC_map_peek_elem: + case BPF_FUNC_map_push_elem: + if (map->map_type != BPF_MAP_TYPE_QUEUE && + map->map_type != BPF_MAP_TYPE_STACK && + map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) + goto error; + break; + case BPF_FUNC_map_lookup_percpu_elem: + if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && + map->map_type != BPF_MAP_TYPE_PERCPU_HASH && + map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) + goto error; + break; case BPF_FUNC_sk_storage_get: case BPF_FUNC_sk_storage_delete: if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) goto error; break; + case BPF_FUNC_inode_storage_get: + case BPF_FUNC_inode_storage_delete: + if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) + goto error; + break; + case BPF_FUNC_task_storage_get: + case BPF_FUNC_task_storage_delete: + if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) + goto error; + break; + case BPF_FUNC_cgrp_storage_get: + case BPF_FUNC_cgrp_storage_delete: + if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) + goto error; + break; default: break; } @@ -4177,15 +9783,15 @@ static bool check_raw_mode_ok(const struct bpf_func_proto *fn) { int count = 0; - if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) + if (arg_type_is_raw_mem(fn->arg1_type)) count++; - if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) + if (arg_type_is_raw_mem(fn->arg2_type)) count++; - if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) + if (arg_type_is_raw_mem(fn->arg3_type)) count++; - if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) + if (arg_type_is_raw_mem(fn->arg4_type)) count++; - if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) + if (arg_type_is_raw_mem(fn->arg5_type)) count++; /* We only support one arg being in raw mode at the moment, @@ -4195,13 +9801,19 @@ static bool check_raw_mode_ok(const struct bpf_func_proto *fn) return count <= 1; } -static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, - enum bpf_arg_type arg_next) +static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) { - return (arg_type_is_mem_ptr(arg_curr) && - !arg_type_is_mem_size(arg_next)) || - (!arg_type_is_mem_ptr(arg_curr) && - arg_type_is_mem_size(arg_next)); + bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; + bool has_size = fn->arg_size[arg] != 0; + bool is_next_size = false; + + if (arg + 1 < ARRAY_SIZE(fn->arg_type)) + is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); + + if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) + return is_next_size; + + return has_size == is_next_size || is_next_size == is_fixed; } static bool check_arg_pair_ok(const struct bpf_func_proto *fn) @@ -4212,119 +9824,135 @@ static bool check_arg_pair_ok(const struct bpf_func_proto *fn) * helper function specification. */ if (arg_type_is_mem_size(fn->arg1_type) || - arg_type_is_mem_ptr(fn->arg5_type) || - check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || - check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || - check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || - check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) + check_args_pair_invalid(fn, 0) || + check_args_pair_invalid(fn, 1) || + check_args_pair_invalid(fn, 2) || + check_args_pair_invalid(fn, 3) || + check_args_pair_invalid(fn, 4)) return false; return true; } -static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) +static bool check_btf_id_ok(const struct bpf_func_proto *fn) { - int count = 0; - - if (arg_type_may_be_refcounted(fn->arg1_type)) - count++; - if (arg_type_may_be_refcounted(fn->arg2_type)) - count++; - if (arg_type_may_be_refcounted(fn->arg3_type)) - count++; - if (arg_type_may_be_refcounted(fn->arg4_type)) - count++; - if (arg_type_may_be_refcounted(fn->arg5_type)) - count++; + int i; - /* A reference acquiring function cannot acquire - * another refcounted ptr. - */ - if (may_be_acquire_function(func_id) && count) - return false; + for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { + if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) + return !!fn->arg_btf_id[i]; + if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) + return fn->arg_btf_id[i] == BPF_PTR_POISON; + if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && + /* arg_btf_id and arg_size are in a union. */ + (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || + !(fn->arg_type[i] & MEM_FIXED_SIZE))) + return false; + } - /* We only support one arg being unreferenced at the moment, - * which is sufficient for the helper functions we have right now. - */ - return count <= 1; + return true; } static int check_func_proto(const struct bpf_func_proto *fn, int func_id) { return check_raw_mode_ok(fn) && check_arg_pair_ok(fn) && - check_refcount_ok(fn, func_id) ? 0 : -EINVAL; + check_btf_id_ok(fn) ? 0 : -EINVAL; } /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] * are now invalid, so turn them into unknown SCALAR_VALUE. + * + * This also applies to dynptr slices belonging to skb and xdp dynptrs, + * since these slices point to packet data. */ -static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, - struct bpf_func_state *state) +static void clear_all_pkt_pointers(struct bpf_verifier_env *env) { - struct bpf_reg_state *regs = state->regs, *reg; - int i; - - for (i = 0; i < MAX_BPF_REG; i++) - if (reg_is_pkt_pointer_any(®s[i])) - mark_reg_unknown(env, regs, i); + struct bpf_func_state *state; + struct bpf_reg_state *reg; - bpf_for_each_spilled_reg(i, state, reg) { - if (!reg) - continue; - if (reg_is_pkt_pointer_any(reg)) - __mark_reg_unknown(env, reg); - } + bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ + if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) + mark_reg_invalid(env, reg); + })); } -static void clear_all_pkt_pointers(struct bpf_verifier_env *env) +enum { + AT_PKT_END = -1, + BEYOND_PKT_END = -2, +}; + +static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) { - struct bpf_verifier_state *vstate = env->cur_state; - int i; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + struct bpf_reg_state *reg = &state->regs[regn]; - for (i = 0; i <= vstate->curframe; i++) - __clear_all_pkt_pointers(env, vstate->frame[i]); + if (reg->type != PTR_TO_PACKET) + /* PTR_TO_PACKET_META is not supported yet */ + return; + + /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. + * How far beyond pkt_end it goes is unknown. + * if (!range_open) it's the case of pkt >= pkt_end + * if (range_open) it's the case of pkt > pkt_end + * hence this pointer is at least 1 byte bigger than pkt_end + */ + if (range_open) + reg->range = BEYOND_PKT_END; + else + reg->range = AT_PKT_END; } -static void release_reg_references(struct bpf_verifier_env *env, - struct bpf_func_state *state, - int ref_obj_id) +static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) { - struct bpf_reg_state *regs = state->regs, *reg; int i; - for (i = 0; i < MAX_BPF_REG; i++) - if (regs[i].ref_obj_id == ref_obj_id) - mark_reg_unknown(env, regs, i); - - bpf_for_each_spilled_reg(i, state, reg) { - if (!reg) + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].type != REF_TYPE_PTR) continue; - if (reg->ref_obj_id == ref_obj_id) - __mark_reg_unknown(env, reg); + if (state->refs[i].id == ref_obj_id) { + release_reference_state(state, i); + return 0; + } } + return -EINVAL; } /* The pointer with the specified id has released its reference to kernel * resources. Identify all copies of the same pointer and clear the reference. + * + * This is the release function corresponding to acquire_reference(). Idempotent. */ -static int release_reference(struct bpf_verifier_env *env, - int ref_obj_id) +static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) { struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state; + struct bpf_reg_state *reg; int err; - int i; - err = release_reference_state(cur_func(env), ref_obj_id); + err = release_reference_nomark(vstate, ref_obj_id); if (err) return err; - for (i = 0; i <= vstate->curframe; i++) - release_reg_references(env, vstate->frame[i], ref_obj_id); + bpf_for_each_reg_in_vstate(vstate, state, reg, ({ + if (reg->ref_obj_id == ref_obj_id) + mark_reg_invalid(env, reg); + })); return 0; } +static void invalidate_non_owning_refs(struct bpf_verifier_env *env) +{ + struct bpf_func_state *unused; + struct bpf_reg_state *reg; + + bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ + if (type_is_non_owning_ref(reg->type)) + mark_reg_invalid(env, reg); + })); +} + static void clear_caller_saved_regs(struct bpf_verifier_env *env, struct bpf_reg_state *regs) { @@ -4333,18 +9961,25 @@ static void clear_caller_saved_regs(struct bpf_verifier_env *env, /* after the call registers r0 - r5 were scratched */ for (i = 0; i < CALLER_SAVED_REGS; i++) { mark_reg_not_init(env, regs, caller_saved[i]); - check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); + __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); } } -static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, - int *insn_idx) +typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx); + +static int set_callee_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, int insn_idx); + +static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, + set_callee_state_fn set_callee_state_cb, + struct bpf_verifier_state *state) { - struct bpf_verifier_state *state = env->cur_state; - struct bpf_func_info_aux *func_info_aux; struct bpf_func_state *caller, *callee; - int i, err, subprog, target_insn; - bool is_global = false; + int err; if (state->curframe + 1 >= MAX_CALL_FRAMES) { verbose(env, "the call stack of %d frames is too deep\n", @@ -4352,47 +9987,13 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, return -E2BIG; } - target_insn = *insn_idx + insn->imm; - subprog = find_subprog(env, target_insn + 1); - if (subprog < 0) { - verbose(env, "verifier bug. No program starts at insn %d\n", - target_insn + 1); - return -EFAULT; - } - - caller = state->frame[state->curframe]; if (state->frame[state->curframe + 1]) { verbose(env, "verifier bug. Frame %d already allocated\n", state->curframe + 1); return -EFAULT; } - func_info_aux = env->prog->aux->func_info_aux; - if (func_info_aux) - is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; - err = btf_check_func_arg_match(env, subprog, caller->regs); - if (err == -EFAULT) - return err; - if (is_global) { - if (err) { - verbose(env, "Caller passes invalid args into func#%d\n", - subprog); - return err; - } else { - if (env->log.level & BPF_LOG_LEVEL) - verbose(env, - "Func#%d is global and valid. Skipping.\n", - subprog); - clear_caller_saved_regs(env, caller->regs); - - /* All global functions return SCALAR_VALUE */ - mark_reg_unknown(env, caller->regs, BPF_REG_0); - - /* continue with next insn after call */ - return 0; - } - } - + caller = state->frame[state->curframe]; callee = kzalloc(sizeof(*callee), GFP_KERNEL); if (!callee) return -ENOMEM; @@ -4404,43 +10005,544 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, */ init_func_state(env, callee, /* remember the callsite, it will be used by bpf_exit */ - *insn_idx /* callsite */, + callsite, state->curframe + 1 /* frameno within this callchain */, subprog /* subprog number within this prog */); + err = set_callee_state_cb(env, caller, callee, callsite); + if (err) + goto err_out; - /* Transfer references to the callee */ - err = transfer_reference_state(callee, caller); + /* only increment it after check_reg_arg() finished */ + state->curframe++; + + return 0; + +err_out: + free_func_state(callee); + state->frame[state->curframe + 1] = NULL; + return err; +} + +static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, + const struct btf *btf, + struct bpf_reg_state *regs) +{ + struct bpf_subprog_info *sub = subprog_info(env, subprog); + struct bpf_verifier_log *log = &env->log; + u32 i; + int ret; + + ret = btf_prepare_func_args(env, subprog); + if (ret) + return ret; + + /* check that BTF function arguments match actual types that the + * verifier sees. + */ + for (i = 0; i < sub->arg_cnt; i++) { + u32 regno = i + 1; + struct bpf_reg_state *reg = ®s[regno]; + struct bpf_subprog_arg_info *arg = &sub->args[i]; + + if (arg->arg_type == ARG_ANYTHING) { + if (reg->type != SCALAR_VALUE) { + bpf_log(log, "R%d is not a scalar\n", regno); + return -EINVAL; + } + } else if (arg->arg_type == ARG_PTR_TO_CTX) { + ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); + if (ret < 0) + return ret; + /* If function expects ctx type in BTF check that caller + * is passing PTR_TO_CTX. + */ + if (reg->type != PTR_TO_CTX) { + bpf_log(log, "arg#%d expects pointer to ctx\n", i); + return -EINVAL; + } + } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { + ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); + if (ret < 0) + return ret; + if (check_mem_reg(env, reg, regno, arg->mem_size)) + return -EINVAL; + if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { + bpf_log(log, "arg#%d is expected to be non-NULL\n", i); + return -EINVAL; + } + } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { + /* + * Can pass any value and the kernel won't crash, but + * only PTR_TO_ARENA or SCALAR make sense. Everything + * else is a bug in the bpf program. Point it out to + * the user at the verification time instead of + * run-time debug nightmare. + */ + if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { + bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); + return -EINVAL; + } + } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { + ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); + if (ret) + return ret; + + ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); + if (ret) + return ret; + } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { + struct bpf_call_arg_meta meta; + int err; + + if (register_is_null(reg) && type_may_be_null(arg->arg_type)) + continue; + + memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ + err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); + err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); + if (err) + return err; + } else { + bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", + i, arg->arg_type); + return -EFAULT; + } + } + + return 0; +} + +/* Compare BTF of a function call with given bpf_reg_state. + * Returns: + * EFAULT - there is a verifier bug. Abort verification. + * EINVAL - there is a type mismatch or BTF is not available. + * 0 - BTF matches with what bpf_reg_state expects. + * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. + */ +static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, + struct bpf_reg_state *regs) +{ + struct bpf_prog *prog = env->prog; + struct btf *btf = prog->aux->btf; + u32 btf_id; + int err; + + if (!prog->aux->func_info) + return -EINVAL; + + btf_id = prog->aux->func_info[subprog].type_id; + if (!btf_id) + return -EFAULT; + + if (prog->aux->func_info_aux[subprog].unreliable) + return -EINVAL; + + err = btf_check_func_arg_match(env, subprog, btf, regs); + /* Compiler optimizations can remove arguments from static functions + * or mismatched type can be passed into a global function. + * In such cases mark the function as unreliable from BTF point of view. + */ if (err) + prog->aux->func_info_aux[subprog].unreliable = true; + return err; +} + +static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + int insn_idx, int subprog, + set_callee_state_fn set_callee_state_cb) +{ + struct bpf_verifier_state *state = env->cur_state, *callback_state; + struct bpf_func_state *caller, *callee; + int err; + + caller = state->frame[state->curframe]; + err = btf_check_subprog_call(env, subprog, caller->regs); + if (err == -EFAULT) return err; - /* copy r1 - r5 args that callee can access. The copy includes parent - * pointers, which connects us up to the liveness chain + /* set_callee_state is used for direct subprog calls, but we are + * interested in validating only BPF helpers that can call subprogs as + * callbacks */ - for (i = BPF_REG_1; i <= BPF_REG_5; i++) - callee->regs[i] = caller->regs[i]; + env->subprog_info[subprog].is_cb = true; + if (bpf_pseudo_kfunc_call(insn) && + !is_callback_calling_kfunc(insn->imm)) { + verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", + func_id_name(insn->imm), insn->imm); + return -EFAULT; + } else if (!bpf_pseudo_kfunc_call(insn) && + !is_callback_calling_function(insn->imm)) { /* helper */ + verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", + func_id_name(insn->imm), insn->imm); + return -EFAULT; + } - clear_caller_saved_regs(env, caller->regs); + if (is_async_callback_calling_insn(insn)) { + struct bpf_verifier_state *async_cb; - /* only increment it after check_reg_arg() finished */ - state->curframe++; + /* there is no real recursion here. timer and workqueue callbacks are async */ + env->subprog_info[subprog].is_async_cb = true; + async_cb = push_async_cb(env, env->subprog_info[subprog].start, + insn_idx, subprog, + is_bpf_wq_set_callback_impl_kfunc(insn->imm)); + if (!async_cb) + return -EFAULT; + callee = async_cb->frame[0]; + callee->async_entry_cnt = caller->async_entry_cnt + 1; + + /* Convert bpf_timer_set_callback() args into timer callback args */ + err = set_callee_state_cb(env, caller, callee, insn_idx); + if (err) + return err; + + return 0; + } + + /* for callback functions enqueue entry to callback and + * proceed with next instruction within current frame. + */ + callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); + if (!callback_state) + return -ENOMEM; + + err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, + callback_state); + if (err) + return err; + + callback_state->callback_unroll_depth++; + callback_state->frame[callback_state->curframe - 1]->callback_depth++; + caller->callback_depth = 0; + return 0; +} + +static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + int *insn_idx) +{ + struct bpf_verifier_state *state = env->cur_state; + struct bpf_func_state *caller; + int err, subprog, target_insn; + + target_insn = *insn_idx + insn->imm + 1; + subprog = find_subprog(env, target_insn); + if (subprog < 0) { + verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); + return -EFAULT; + } + + caller = state->frame[state->curframe]; + err = btf_check_subprog_call(env, subprog, caller->regs); + if (err == -EFAULT) + return err; + if (subprog_is_global(env, subprog)) { + const char *sub_name = subprog_name(env, subprog); + + /* Only global subprogs cannot be called with a lock held. */ + if (env->cur_state->active_locks) { + verbose(env, "global function calls are not allowed while holding a lock,\n" + "use static function instead\n"); + return -EINVAL; + } + + /* Only global subprogs cannot be called with preemption disabled. */ + if (env->cur_state->active_preempt_locks) { + verbose(env, "global function calls are not allowed with preemption disabled,\n" + "use static function instead\n"); + return -EINVAL; + } + + if (env->cur_state->active_irq_id) { + verbose(env, "global function calls are not allowed with IRQs disabled,\n" + "use static function instead\n"); + return -EINVAL; + } + + if (err) { + verbose(env, "Caller passes invalid args into func#%d ('%s')\n", + subprog, sub_name); + return err; + } + + verbose(env, "Func#%d ('%s') is global and assumed valid.\n", + subprog, sub_name); + if (env->subprog_info[subprog].changes_pkt_data) + clear_all_pkt_pointers(env); + /* mark global subprog for verifying after main prog */ + subprog_aux(env, subprog)->called = true; + clear_caller_saved_regs(env, caller->regs); + + /* All global functions return a 64-bit SCALAR_VALUE */ + mark_reg_unknown(env, caller->regs, BPF_REG_0); + caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; + + /* continue with next insn after call */ + return 0; + } + + /* for regular function entry setup new frame and continue + * from that frame. + */ + err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); + if (err) + return err; + + clear_caller_saved_regs(env, caller->regs); /* and go analyze first insn of the callee */ - *insn_idx = target_insn; + *insn_idx = env->subprog_info[subprog].start - 1; if (env->log.level & BPF_LOG_LEVEL) { verbose(env, "caller:\n"); - print_verifier_state(env, caller); + print_verifier_state(env, state, caller->frameno, true); verbose(env, "callee:\n"); - print_verifier_state(env, callee); + print_verifier_state(env, state, state->curframe, true); } + return 0; } -static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) +int map_set_for_each_callback_args(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee) +{ + /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, + * void *callback_ctx, u64 flags); + * callback_fn(struct bpf_map *map, void *key, void *value, + * void *callback_ctx); + */ + callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; + + callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; + __mark_reg_known_zero(&callee->regs[BPF_REG_2]); + callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; + + callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; + __mark_reg_known_zero(&callee->regs[BPF_REG_3]); + callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; + + /* pointer to stack or null */ + callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + return 0; +} + +static int set_callee_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, int insn_idx) +{ + int i; + + /* copy r1 - r5 args that callee can access. The copy includes parent + * pointers, which connects us up to the liveness chain + */ + for (i = BPF_REG_1; i <= BPF_REG_5; i++) + callee->regs[i] = caller->regs[i]; + return 0; +} + +static int set_map_elem_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; + struct bpf_map *map; + int err; + + /* valid map_ptr and poison value does not matter */ + map = insn_aux->map_ptr_state.map_ptr; + if (!map->ops->map_set_for_each_callback_args || + !map->ops->map_for_each_callback) { + verbose(env, "callback function not allowed for map\n"); + return -ENOTSUPP; + } + + err = map->ops->map_set_for_each_callback_args(env, caller, callee); + if (err) + return err; + + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_loop_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, + * u64 flags); + * callback_fn(u64 index, void *callback_ctx); + */ + callee->regs[BPF_REG_1].type = SCALAR_VALUE; + callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_timer_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; + + /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); + * callback_fn(struct bpf_map *map, void *key, void *value); + */ + callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; + __mark_reg_known_zero(&callee->regs[BPF_REG_1]); + callee->regs[BPF_REG_1].map_ptr = map_ptr; + + callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; + __mark_reg_known_zero(&callee->regs[BPF_REG_2]); + callee->regs[BPF_REG_2].map_ptr = map_ptr; + + callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; + __mark_reg_known_zero(&callee->regs[BPF_REG_3]); + callee->regs[BPF_REG_3].map_ptr = map_ptr; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + callee->in_async_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_find_vma_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + /* bpf_find_vma(struct task_struct *task, u64 addr, + * void *callback_fn, void *callback_ctx, u64 flags) + * (callback_fn)(struct task_struct *task, + * struct vm_area_struct *vma, void *callback_ctx); + */ + callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; + + callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; + __mark_reg_known_zero(&callee->regs[BPF_REG_2]); + callee->regs[BPF_REG_2].btf = btf_vmlinux; + callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; + + /* pointer to stack or null */ + callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void + * callback_ctx, u64 flags); + * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); + */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); + mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); + callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, + * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); + * + * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset + * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd + * by this point, so look at 'root' + */ + struct btf_field *field; + + field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, + BPF_RB_ROOT); + if (!field || !field->graph_root.value_btf_id) + return -EFAULT; + + mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); + ref_set_non_owning(env, &callee->regs[BPF_REG_1]); + mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); + ref_set_non_owning(env, &callee->regs[BPF_REG_2]); + + __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static bool is_rbtree_lock_required_kfunc(u32 btf_id); + +/* Are we currently verifying the callback for a rbtree helper that must + * be called with lock held? If so, no need to complain about unreleased + * lock + */ +static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) { struct bpf_verifier_state *state = env->cur_state; + struct bpf_insn *insn = env->prog->insnsi; + struct bpf_func_state *callee; + int kfunc_btf_id; + + if (!state->curframe) + return false; + + callee = state->frame[state->curframe]; + + if (!callee->in_callback_fn) + return false; + + kfunc_btf_id = insn[callee->callsite].imm; + return is_rbtree_lock_required_kfunc(kfunc_btf_id); +} + +static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, + bool return_32bit) +{ + if (return_32bit) + return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; + else + return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; +} + +static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) +{ + struct bpf_verifier_state *state = env->cur_state, *prev_st; struct bpf_func_state *caller, *callee; struct bpf_reg_state *r0; + bool in_callback_fn; int err; callee = state->frame[state->curframe]; @@ -4456,47 +10558,112 @@ static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) return -EINVAL; } - state->curframe--; - caller = state->frame[state->curframe]; - /* return to the caller whatever r0 had in the callee */ - caller->regs[BPF_REG_0] = *r0; + caller = state->frame[state->curframe - 1]; + if (callee->in_callback_fn) { + if (r0->type != SCALAR_VALUE) { + verbose(env, "R0 not a scalar value\n"); + return -EACCES; + } - /* Transfer references to the caller */ - err = transfer_reference_state(caller, callee); - if (err) - return err; + /* we are going to rely on register's precise value */ + err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); + err = err ?: mark_chain_precision(env, BPF_REG_0); + if (err) + return err; + + /* enforce R0 return value range, and bpf_callback_t returns 64bit */ + if (!retval_range_within(callee->callback_ret_range, r0, false)) { + verbose_invalid_scalar(env, r0, callee->callback_ret_range, + "At callback return", "R0"); + return -EINVAL; + } + if (!calls_callback(env, callee->callsite)) { + verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", + *insn_idx, callee->callsite); + return -EFAULT; + } + } else { + /* return to the caller whatever r0 had in the callee */ + caller->regs[BPF_REG_0] = *r0; + } + + /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, + * there function call logic would reschedule callback visit. If iteration + * converges is_state_visited() would prune that visit eventually. + */ + in_callback_fn = callee->in_callback_fn; + if (in_callback_fn) + *insn_idx = callee->callsite; + else + *insn_idx = callee->callsite + 1; - *insn_idx = callee->callsite + 1; if (env->log.level & BPF_LOG_LEVEL) { verbose(env, "returning from callee:\n"); - print_verifier_state(env, callee); + print_verifier_state(env, state, callee->frameno, true); verbose(env, "to caller at %d:\n", *insn_idx); - print_verifier_state(env, caller); + print_verifier_state(env, state, caller->frameno, true); } - /* clear everything in the callee */ + /* clear everything in the callee. In case of exceptional exits using + * bpf_throw, this will be done by copy_verifier_state for extra frames. */ free_func_state(callee); - state->frame[state->curframe + 1] = NULL; + state->frame[state->curframe--] = NULL; + + /* for callbacks widen imprecise scalars to make programs like below verify: + * + * struct ctx { int i; } + * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } + * ... + * struct ctx = { .i = 0; } + * bpf_loop(100, cb, &ctx, 0); + * + * This is similar to what is done in process_iter_next_call() for open + * coded iterators. + */ + prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; + if (prev_st) { + err = widen_imprecise_scalars(env, prev_st, state); + if (err) + return err; + } return 0; } -static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, - int func_id, - struct bpf_call_arg_meta *meta) +static int do_refine_retval_range(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, int ret_type, + int func_id, + struct bpf_call_arg_meta *meta) { struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; - if (ret_type != RET_INTEGER || - (func_id != BPF_FUNC_get_stack && - func_id != BPF_FUNC_probe_read_str && - func_id != BPF_FUNC_probe_read_kernel_str && - func_id != BPF_FUNC_probe_read_user_str)) - return; + if (ret_type != RET_INTEGER) + return 0; - ret_reg->smax_value = meta->msize_max_value; - ret_reg->s32_max_value = meta->msize_max_value; - __reg_deduce_bounds(ret_reg); - __reg_bound_offset(ret_reg); - __update_reg_bounds(ret_reg); + switch (func_id) { + case BPF_FUNC_get_stack: + case BPF_FUNC_get_task_stack: + case BPF_FUNC_probe_read_str: + case BPF_FUNC_probe_read_kernel_str: + case BPF_FUNC_probe_read_user_str: + ret_reg->smax_value = meta->msize_max_value; + ret_reg->s32_max_value = meta->msize_max_value; + ret_reg->smin_value = -MAX_ERRNO; + ret_reg->s32_min_value = -MAX_ERRNO; + reg_bounds_sync(ret_reg); + break; + case BPF_FUNC_get_smp_processor_id: + ret_reg->umax_value = nr_cpu_ids - 1; + ret_reg->u32_max_value = nr_cpu_ids - 1; + ret_reg->smax_value = nr_cpu_ids - 1; + ret_reg->s32_max_value = nr_cpu_ids - 1; + ret_reg->umin_value = 0; + ret_reg->u32_min_value = 0; + ret_reg->smin_value = 0; + ret_reg->s32_min_value = 0; + reg_bounds_sync(ret_reg); + break; + } + + return reg_bounds_sanity_check(env, ret_reg, "retval"); } static int @@ -4512,7 +10679,10 @@ record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, func_id != BPF_FUNC_map_delete_elem && func_id != BPF_FUNC_map_push_elem && func_id != BPF_FUNC_map_pop_elem && - func_id != BPF_FUNC_map_peek_elem) + func_id != BPF_FUNC_map_peek_elem && + func_id != BPF_FUNC_for_each_map_elem && + func_id != BPF_FUNC_redirect_map && + func_id != BPF_FUNC_map_lookup_percpu_elem) return 0; if (map == NULL) { @@ -4533,12 +10703,12 @@ record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, return -EACCES; } - if (!BPF_MAP_PTR(aux->map_ptr_state)) + if (!aux->map_ptr_state.map_ptr) + bpf_map_ptr_store(aux, meta->map_ptr, + !meta->map_ptr->bypass_spec_v1, false); + else if (aux->map_ptr_state.map_ptr != meta->map_ptr) bpf_map_ptr_store(aux, meta->map_ptr, - !meta->map_ptr->bypass_spec_v1); - else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) - bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, - !meta->map_ptr->bypass_spec_v1); + !meta->map_ptr->bypass_spec_v1, true); return 0; } @@ -4549,8 +10719,7 @@ record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; struct bpf_reg_state *regs = cur_regs(env), *reg; struct bpf_map *map = meta->map_ptr; - struct tnum range; - u64 val; + u64 val, max; int err; if (func_id != BPF_FUNC_tail_call) @@ -4560,10 +10729,11 @@ record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, return -EINVAL; } - range = tnum_range(0, map->max_entries - 1); reg = ®s[BPF_REG_3]; + val = reg->var_off.value; + max = map->max_entries; - if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { + if (!(is_reg_const(reg, false) && val < max)) { bpf_map_key_store(aux, BPF_MAP_KEY_POISON); return 0; } @@ -4571,8 +10741,6 @@ record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, err = mark_chain_precision(env, BPF_REG_3); if (err) return err; - - val = reg->var_off.value; if (bpf_map_key_unseen(aux)) bpf_map_key_store(aux, val); else if (!bpf_map_key_poisoned(aux) && @@ -4581,39 +10749,206 @@ record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, return 0; } -static int check_reference_leak(struct bpf_verifier_env *env) +static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) { - struct bpf_func_state *state = cur_func(env); + struct bpf_verifier_state *state = env->cur_state; + bool refs_lingering = false; int i; + if (!exception_exit && cur_func(env)->frameno) + return 0; + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].type != REF_TYPE_PTR) + continue; verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", state->refs[i].id, state->refs[i].insn_idx); + refs_lingering = true; + } + return refs_lingering ? -EINVAL : 0; +} + +static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) +{ + int err; + + if (check_lock && env->cur_state->active_locks) { + verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); + return -EINVAL; + } + + err = check_reference_leak(env, exception_exit); + if (err) { + verbose(env, "%s would lead to reference leak\n", prefix); + return err; + } + + if (check_lock && env->cur_state->active_irq_id) { + verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); + return -EINVAL; + } + + if (check_lock && env->cur_state->active_rcu_lock) { + verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); + return -EINVAL; + } + + if (check_lock && env->cur_state->active_preempt_locks) { + verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); + return -EINVAL; + } + + return 0; +} + +static int check_bpf_snprintf_call(struct bpf_verifier_env *env, + struct bpf_reg_state *regs) +{ + struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; + struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; + struct bpf_map *fmt_map = fmt_reg->map_ptr; + struct bpf_bprintf_data data = {}; + int err, fmt_map_off, num_args; + u64 fmt_addr; + char *fmt; + + /* data must be an array of u64 */ + if (data_len_reg->var_off.value % 8) + return -EINVAL; + num_args = data_len_reg->var_off.value / 8; + + /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const + * and map_direct_value_addr is set. + */ + fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; + err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, + fmt_map_off); + if (err) { + verbose(env, "verifier bug\n"); + return -EFAULT; } - return state->acquired_refs ? -EINVAL : 0; + fmt = (char *)(long)fmt_addr + fmt_map_off; + + /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we + * can focus on validating the format specifiers. + */ + err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); + if (err < 0) + verbose(env, "Invalid format string\n"); + + return err; } -static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) +static int check_get_func_ip(struct bpf_verifier_env *env) { + enum bpf_prog_type type = resolve_prog_type(env->prog); + int func_id = BPF_FUNC_get_func_ip; + + if (type == BPF_PROG_TYPE_TRACING) { + if (!bpf_prog_has_trampoline(env->prog)) { + verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", + func_id_name(func_id), func_id); + return -ENOTSUPP; + } + return 0; + } else if (type == BPF_PROG_TYPE_KPROBE) { + return 0; + } + + verbose(env, "func %s#%d not supported for program type %d\n", + func_id_name(func_id), func_id, type); + return -ENOTSUPP; +} + +static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) +{ + return &env->insn_aux_data[env->insn_idx]; +} + +static bool loop_flag_is_zero(struct bpf_verifier_env *env) +{ + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = ®s[BPF_REG_4]; + bool reg_is_null = register_is_null(reg); + + if (reg_is_null) + mark_chain_precision(env, BPF_REG_4); + + return reg_is_null; +} + +static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) +{ + struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; + + if (!state->initialized) { + state->initialized = 1; + state->fit_for_inline = loop_flag_is_zero(env); + state->callback_subprogno = subprogno; + return; + } + + if (!state->fit_for_inline) + return; + + state->fit_for_inline = (loop_flag_is_zero(env) && + state->callback_subprogno == subprogno); +} + +/* Returns whether or not the given map type can potentially elide + * lookup return value nullness check. This is possible if the key + * is statically known. + */ +static bool can_elide_value_nullness(enum bpf_map_type type) +{ + switch (type) { + case BPF_MAP_TYPE_ARRAY: + case BPF_MAP_TYPE_PERCPU_ARRAY: + return true; + default: + return false; + } +} + +static int get_helper_proto(struct bpf_verifier_env *env, int func_id, + const struct bpf_func_proto **ptr) +{ + if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) + return -ERANGE; + + if (!env->ops->get_func_proto) + return -EINVAL; + + *ptr = env->ops->get_func_proto(func_id, env->prog); + return *ptr ? 0 : -EINVAL; +} + +static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + int *insn_idx_p) +{ + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + bool returns_cpu_specific_alloc_ptr = false; const struct bpf_func_proto *fn = NULL; + enum bpf_return_type ret_type; + enum bpf_type_flag ret_flag; struct bpf_reg_state *regs; struct bpf_call_arg_meta meta; + int insn_idx = *insn_idx_p; bool changes_data; - int i, err; + int i, err, func_id; /* find function prototype */ - if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { - verbose(env, "invalid func %s#%d\n", func_id_name(func_id), - func_id); + func_id = insn->imm; + err = get_helper_proto(env, insn->imm, &fn); + if (err == -ERANGE) { + verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); return -EINVAL; } - if (env->ops->get_func_proto) - fn = env->ops->get_func_proto(func_id, env->prog); - if (!fn) { - verbose(env, "unknown func %s#%d\n", func_id_name(func_id), - func_id); - return -EINVAL; + if (err) { + verbose(env, "program of this type cannot use helper %s#%d\n", + func_id_name(func_id), func_id); + return err; } /* eBPF programs must be GPL compatible to use GPL-ed functions */ @@ -4622,8 +10957,18 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn return -EINVAL; } + if (fn->allowed && !fn->allowed(env->prog)) { + verbose(env, "helper call is not allowed in probe\n"); + return -EINVAL; + } + + if (!in_sleepable(env) && fn->might_sleep) { + verbose(env, "helper call might sleep in a non-sleepable prog\n"); + return -EINVAL; + } + /* With LD_ABS/IND some JITs save/restore skb from r1. */ - changes_data = bpf_helper_changes_pkt_data(fn->func); + changes_data = bpf_helper_changes_pkt_data(func_id); if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", func_id_name(func_id), func_id); @@ -4640,13 +10985,43 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn return err; } + if (env->cur_state->active_rcu_lock) { + if (fn->might_sleep) { + verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", + func_id_name(func_id), func_id); + return -EINVAL; + } + + if (in_sleepable(env) && is_storage_get_function(func_id)) + env->insn_aux_data[insn_idx].storage_get_func_atomic = true; + } + + if (env->cur_state->active_preempt_locks) { + if (fn->might_sleep) { + verbose(env, "sleepable helper %s#%d in non-preemptible region\n", + func_id_name(func_id), func_id); + return -EINVAL; + } + + if (in_sleepable(env) && is_storage_get_function(func_id)) + env->insn_aux_data[insn_idx].storage_get_func_atomic = true; + } + + if (env->cur_state->active_irq_id) { + if (fn->might_sleep) { + verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", + func_id_name(func_id), func_id); + return -EINVAL; + } + + if (in_sleepable(env) && is_storage_get_function(func_id)) + env->insn_aux_data[insn_idx].storage_get_func_atomic = true; + } + meta.func_id = func_id; /* check args */ - for (i = 0; i < 5; i++) { - err = btf_resolve_helper_id(&env->log, fn, i); - if (err > 0) - meta.btf_id = err; - err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); + for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { + err = check_func_arg(env, i, &meta, fn, insn_idx); if (err) return err; } @@ -4664,19 +11039,53 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn */ for (i = 0; i < meta.access_size; i++) { err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, - BPF_WRITE, -1, false); + BPF_WRITE, -1, false, false); if (err) return err; } - if (func_id == BPF_FUNC_tail_call) { - err = check_reference_leak(env); - if (err) { - verbose(env, "tail_call would lead to reference leak\n"); - return err; + regs = cur_regs(env); + + if (meta.release_regno) { + err = -EINVAL; + /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot + * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr + * is safe to do directly. + */ + if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { + if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { + verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); + return -EFAULT; + } + err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); + } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { + u32 ref_obj_id = meta.ref_obj_id; + bool in_rcu = in_rcu_cs(env); + struct bpf_func_state *state; + struct bpf_reg_state *reg; + + err = release_reference_nomark(env->cur_state, ref_obj_id); + if (!err) { + bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ + if (reg->ref_obj_id == ref_obj_id) { + if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { + reg->ref_obj_id = 0; + reg->type &= ~MEM_ALLOC; + reg->type |= MEM_RCU; + } else { + mark_reg_invalid(env, reg); + } + } + })); + } + } else if (meta.ref_obj_id) { + err = release_reference(env, meta.ref_obj_id); + } else if (register_is_null(®s[meta.release_regno])) { + /* meta.ref_obj_id can only be 0 if register that is meant to be + * released is NULL, which must be > R0. + */ + err = 0; } - } else if (is_release_function(func_id)) { - err = release_reference(env, meta.ref_obj_id); if (err) { verbose(env, "func %s#%d reference has not been acquired before\n", func_id_name(func_id), func_id); @@ -4684,16 +11093,155 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn } } - regs = cur_regs(env); + switch (func_id) { + case BPF_FUNC_tail_call: + err = check_resource_leak(env, false, true, "tail_call"); + if (err) + return err; + break; + case BPF_FUNC_get_local_storage: + /* check that flags argument in get_local_storage(map, flags) is 0, + * this is required because get_local_storage() can't return an error. + */ + if (!register_is_null(®s[BPF_REG_2])) { + verbose(env, "get_local_storage() doesn't support non-zero flags\n"); + return -EINVAL; + } + break; + case BPF_FUNC_for_each_map_elem: + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_map_elem_callback_state); + break; + case BPF_FUNC_timer_set_callback: + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_timer_callback_state); + break; + case BPF_FUNC_find_vma: + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_find_vma_callback_state); + break; + case BPF_FUNC_snprintf: + err = check_bpf_snprintf_call(env, regs); + break; + case BPF_FUNC_loop: + update_loop_inline_state(env, meta.subprogno); + /* Verifier relies on R1 value to determine if bpf_loop() iteration + * is finished, thus mark it precise. + */ + err = mark_chain_precision(env, BPF_REG_1); + if (err) + return err; + if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_loop_callback_state); + } else { + cur_func(env)->callback_depth = 0; + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "frame%d bpf_loop iteration limit reached\n", + env->cur_state->curframe); + } + break; + case BPF_FUNC_dynptr_from_mem: + if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { + verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", + reg_type_str(env, regs[BPF_REG_1].type)); + return -EACCES; + } + break; + case BPF_FUNC_set_retval: + if (prog_type == BPF_PROG_TYPE_LSM && + env->prog->expected_attach_type == BPF_LSM_CGROUP) { + if (!env->prog->aux->attach_func_proto->type) { + /* Make sure programs that attach to void + * hooks don't try to modify return value. + */ + verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); + return -EINVAL; + } + } + break; + case BPF_FUNC_dynptr_data: + { + struct bpf_reg_state *reg; + int id, ref_obj_id; - /* check that flags argument in get_local_storage(map, flags) is 0, - * this is required because get_local_storage() can't return an error. - */ - if (func_id == BPF_FUNC_get_local_storage && - !register_is_null(®s[BPF_REG_2])) { - verbose(env, "get_local_storage() doesn't support non-zero flags\n"); - return -EINVAL; + reg = get_dynptr_arg_reg(env, fn, regs); + if (!reg) + return -EFAULT; + + + if (meta.dynptr_id) { + verbose(env, "verifier internal error: meta.dynptr_id already set\n"); + return -EFAULT; + } + if (meta.ref_obj_id) { + verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); + return -EFAULT; + } + + id = dynptr_id(env, reg); + if (id < 0) { + verbose(env, "verifier internal error: failed to obtain dynptr id\n"); + return id; + } + + ref_obj_id = dynptr_ref_obj_id(env, reg); + if (ref_obj_id < 0) { + verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); + return ref_obj_id; + } + + meta.dynptr_id = id; + meta.ref_obj_id = ref_obj_id; + + break; } + case BPF_FUNC_dynptr_write: + { + enum bpf_dynptr_type dynptr_type; + struct bpf_reg_state *reg; + + reg = get_dynptr_arg_reg(env, fn, regs); + if (!reg) + return -EFAULT; + + dynptr_type = dynptr_get_type(env, reg); + if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) + return -EFAULT; + + if (dynptr_type == BPF_DYNPTR_TYPE_SKB) + /* this will trigger clear_all_pkt_pointers(), which will + * invalidate all dynptr slices associated with the skb + */ + changes_data = true; + + break; + } + case BPF_FUNC_per_cpu_ptr: + case BPF_FUNC_this_cpu_ptr: + { + struct bpf_reg_state *reg = ®s[BPF_REG_1]; + const struct btf_type *type; + + if (reg->type & MEM_RCU) { + type = btf_type_by_id(reg->btf, reg->btf_id); + if (!type || !btf_type_is_struct(type)) { + verbose(env, "Helper has invalid btf/btf_id in R1\n"); + return -EFAULT; + } + returns_cpu_specific_alloc_ptr = true; + env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; + } + break; + } + case BPF_FUNC_user_ringbuf_drain: + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_user_ringbuf_callback_state); + break; + } + + if (err) + return err; /* reset caller saved regs */ for (i = 0; i < CALLER_SAVED_REGS; i++) { @@ -4705,13 +11253,18 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; /* update return register (already marked as written above) */ - if (fn->ret_type == RET_INTEGER) { + ret_type = fn->ret_type; + ret_flag = type_flag(ret_type); + + switch (base_type(ret_type)) { + case RET_INTEGER: /* sets type to SCALAR_VALUE */ mark_reg_unknown(env, regs, BPF_REG_0); - } else if (fn->ret_type == RET_VOID) { + break; + case RET_VOID: regs[BPF_REG_0].type = NOT_INIT; - } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || - fn->ret_type == RET_PTR_TO_MAP_VALUE) { + break; + case RET_PTR_TO_MAP_VALUE: /* There is no offset yet applied, variable or fixed */ mark_reg_known_zero(env, regs, BPF_REG_0); /* remember map_ptr, so that check_map_access() @@ -4723,43 +11276,135 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn "kernel subsystem misconfigured verifier\n"); return -EINVAL; } + + if (func_id == BPF_FUNC_map_lookup_elem && + can_elide_value_nullness(meta.map_ptr->map_type) && + meta.const_map_key >= 0 && + meta.const_map_key < meta.map_ptr->max_entries) + ret_flag &= ~PTR_MAYBE_NULL; + regs[BPF_REG_0].map_ptr = meta.map_ptr; - if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { - regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; - if (map_value_has_spin_lock(meta.map_ptr)) - regs[BPF_REG_0].id = ++env->id_gen; - } else { - regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; + regs[BPF_REG_0].map_uid = meta.map_uid; + regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; + if (!type_may_be_null(ret_flag) && + btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { regs[BPF_REG_0].id = ++env->id_gen; } - } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { + break; + case RET_PTR_TO_SOCKET: mark_reg_known_zero(env, regs, BPF_REG_0); - regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; - regs[BPF_REG_0].id = ++env->id_gen; - } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { + regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; + break; + case RET_PTR_TO_SOCK_COMMON: mark_reg_known_zero(env, regs, BPF_REG_0); - regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; - regs[BPF_REG_0].id = ++env->id_gen; - } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { + regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; + break; + case RET_PTR_TO_TCP_SOCK: mark_reg_known_zero(env, regs, BPF_REG_0); - regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; - regs[BPF_REG_0].id = ++env->id_gen; - } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { + regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; + break; + case RET_PTR_TO_MEM: mark_reg_known_zero(env, regs, BPF_REG_0); - regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; - regs[BPF_REG_0].id = ++env->id_gen; + regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; regs[BPF_REG_0].mem_size = meta.mem_size; - } else { - verbose(env, "unknown return type %d of func %s#%d\n", - fn->ret_type, func_id_name(func_id), func_id); + break; + case RET_PTR_TO_MEM_OR_BTF_ID: + { + const struct btf_type *t; + + mark_reg_known_zero(env, regs, BPF_REG_0); + t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); + if (!btf_type_is_struct(t)) { + u32 tsize; + const struct btf_type *ret; + const char *tname; + + /* resolve the type size of ksym. */ + ret = btf_resolve_size(meta.ret_btf, t, &tsize); + if (IS_ERR(ret)) { + tname = btf_name_by_offset(meta.ret_btf, t->name_off); + verbose(env, "unable to resolve the size of type '%s': %ld\n", + tname, PTR_ERR(ret)); + return -EINVAL; + } + regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; + regs[BPF_REG_0].mem_size = tsize; + } else { + if (returns_cpu_specific_alloc_ptr) { + regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; + } else { + /* MEM_RDONLY may be carried from ret_flag, but it + * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise + * it will confuse the check of PTR_TO_BTF_ID in + * check_mem_access(). + */ + ret_flag &= ~MEM_RDONLY; + regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; + } + + regs[BPF_REG_0].btf = meta.ret_btf; + regs[BPF_REG_0].btf_id = meta.ret_btf_id; + } + break; + } + case RET_PTR_TO_BTF_ID: + { + struct btf *ret_btf; + int ret_btf_id; + + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; + if (func_id == BPF_FUNC_kptr_xchg) { + ret_btf = meta.kptr_field->kptr.btf; + ret_btf_id = meta.kptr_field->kptr.btf_id; + if (!btf_is_kernel(ret_btf)) { + regs[BPF_REG_0].type |= MEM_ALLOC; + if (meta.kptr_field->type == BPF_KPTR_PERCPU) + regs[BPF_REG_0].type |= MEM_PERCPU; + } + } else { + if (fn->ret_btf_id == BPF_PTR_POISON) { + verbose(env, "verifier internal error:"); + verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", + func_id_name(func_id)); + return -EINVAL; + } + ret_btf = btf_vmlinux; + ret_btf_id = *fn->ret_btf_id; + } + if (ret_btf_id == 0) { + verbose(env, "invalid return type %u of func %s#%d\n", + base_type(ret_type), func_id_name(func_id), + func_id); + return -EINVAL; + } + regs[BPF_REG_0].btf = ret_btf; + regs[BPF_REG_0].btf_id = ret_btf_id; + break; + } + default: + verbose(env, "unknown return type %u of func %s#%d\n", + base_type(ret_type), func_id_name(func_id), func_id); return -EINVAL; } - if (is_ptr_cast_function(func_id)) { + if (type_may_be_null(regs[BPF_REG_0].type)) + regs[BPF_REG_0].id = ++env->id_gen; + + if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { + verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", + func_id_name(func_id), func_id); + return -EFAULT; + } + + if (is_dynptr_ref_function(func_id)) + regs[BPF_REG_0].dynptr_id = meta.dynptr_id; + + if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { /* For release_reference() */ regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; } else if (is_acquire_function(func_id, meta.map_ptr)) { - int id = acquire_reference_state(env, insn_idx); + int id = acquire_reference(env, insn_idx); if (id < 0) return id; @@ -4769,13 +11414,17 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn regs[BPF_REG_0].ref_obj_id = id; } - do_refine_retval_range(regs, fn->ret_type, func_id, &meta); + err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); + if (err) + return err; err = check_map_func_compatibility(env, meta.map_ptr, func_id); if (err) return err; - if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { + if ((func_id == BPF_FUNC_get_stack || + func_id == BPF_FUNC_get_task_stack) && + !env->prog->has_callchain_buf) { const char *err_str; #ifdef CONFIG_PERF_EVENTS @@ -4793,49 +11442,2076 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn env->prog->has_callchain_buf = true; } + if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) + env->prog->call_get_stack = true; + + if (func_id == BPF_FUNC_get_func_ip) { + if (check_get_func_ip(env)) + return -ENOTSUPP; + env->prog->call_get_func_ip = true; + } + if (changes_data) clear_all_pkt_pointers(env); return 0; } -static bool signed_add_overflows(s64 a, s64 b) +/* mark_btf_func_reg_size() is used when the reg size is determined by + * the BTF func_proto's return value size and argument. + */ +static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, + size_t reg_size) +{ + struct bpf_reg_state *reg = &cur_regs(env)[regno]; + + if (regno == BPF_REG_0) { + /* Function return value */ + reg->live |= REG_LIVE_WRITTEN; + reg->subreg_def = reg_size == sizeof(u64) ? + DEF_NOT_SUBREG : env->insn_idx + 1; + } else { + /* Function argument */ + if (reg_size == sizeof(u64)) { + mark_insn_zext(env, reg); + mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); + } else { + mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); + } + } +} + +static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_ACQUIRE; +} + +static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_RELEASE; +} + +static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) +{ + return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); +} + +static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_SLEEPABLE; +} + +static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_DESTRUCTIVE; +} + +static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_RCU; +} + +static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_RCU_PROTECTED; +} + +static bool is_kfunc_arg_mem_size(const struct btf *btf, + const struct btf_param *arg, + const struct bpf_reg_state *reg) +{ + const struct btf_type *t; + + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) + return false; + + return btf_param_match_suffix(btf, arg, "__sz"); +} + +static bool is_kfunc_arg_const_mem_size(const struct btf *btf, + const struct btf_param *arg, + const struct bpf_reg_state *reg) +{ + const struct btf_type *t; + + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) + return false; + + return btf_param_match_suffix(btf, arg, "__szk"); +} + +static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__opt"); +} + +static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__k"); +} + +static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__ign"); +} + +static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__map"); +} + +static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__alloc"); +} + +static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__uninit"); +} + +static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) { - /* Do the add in u64, where overflow is well-defined */ - s64 res = (s64)((u64)a + (u64)b); + return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); +} - if (b < 0) - return res > a; - return res < a; +static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__nullable"); } -static bool signed_add32_overflows(s64 a, s64 b) +static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) { - /* Do the add in u32, where overflow is well-defined */ - s32 res = (s32)((u32)a + (u32)b); + return btf_param_match_suffix(btf, arg, "__str"); +} - if (b < 0) - return res > a; - return res < a; +static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__irq_flag"); } -static bool signed_sub_overflows(s32 a, s32 b) +static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, + const struct btf_param *arg, + const char *name) { - /* Do the sub in u64, where overflow is well-defined */ - s64 res = (s64)((u64)a - (u64)b); + int len, target_len = strlen(name); + const char *param_name; + + param_name = btf_name_by_offset(btf, arg->name_off); + if (str_is_empty(param_name)) + return false; + len = strlen(param_name); + if (len != target_len) + return false; + if (strcmp(param_name, name)) + return false; - if (b < 0) - return res < a; - return res > a; + return true; } -static bool signed_sub32_overflows(s32 a, s32 b) +enum { + KF_ARG_DYNPTR_ID, + KF_ARG_LIST_HEAD_ID, + KF_ARG_LIST_NODE_ID, + KF_ARG_RB_ROOT_ID, + KF_ARG_RB_NODE_ID, + KF_ARG_WORKQUEUE_ID, +}; + +BTF_ID_LIST(kf_arg_btf_ids) +BTF_ID(struct, bpf_dynptr) +BTF_ID(struct, bpf_list_head) +BTF_ID(struct, bpf_list_node) +BTF_ID(struct, bpf_rb_root) +BTF_ID(struct, bpf_rb_node) +BTF_ID(struct, bpf_wq) + +static bool __is_kfunc_ptr_arg_type(const struct btf *btf, + const struct btf_param *arg, int type) { - /* Do the sub in u64, where overflow is well-defined */ - s32 res = (s32)((u32)a - (u32)b); + const struct btf_type *t; + u32 res_id; + + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!t) + return false; + if (!btf_type_is_ptr(t)) + return false; + t = btf_type_skip_modifiers(btf, t->type, &res_id); + if (!t) + return false; + return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); +} + +static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); +} + +static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); +} + +static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); +} + +static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); +} + +static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); +} + +static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); +} + +static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, + const struct btf_param *arg) +{ + const struct btf_type *t; + + t = btf_type_resolve_func_ptr(btf, arg->type, NULL); + if (!t) + return false; + + return true; +} + +/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ +static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, + const struct btf *btf, + const struct btf_type *t, int rec) +{ + const struct btf_type *member_type; + const struct btf_member *member; + u32 i; + + if (!btf_type_is_struct(t)) + return false; + + for_each_member(i, t, member) { + const struct btf_array *array; + + member_type = btf_type_skip_modifiers(btf, member->type, NULL); + if (btf_type_is_struct(member_type)) { + if (rec >= 3) { + verbose(env, "max struct nesting depth exceeded\n"); + return false; + } + if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) + return false; + continue; + } + if (btf_type_is_array(member_type)) { + array = btf_array(member_type); + if (!array->nelems) + return false; + member_type = btf_type_skip_modifiers(btf, array->type, NULL); + if (!btf_type_is_scalar(member_type)) + return false; + continue; + } + if (!btf_type_is_scalar(member_type)) + return false; + } + return true; +} + +enum kfunc_ptr_arg_type { + KF_ARG_PTR_TO_CTX, + KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ + KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ + KF_ARG_PTR_TO_DYNPTR, + KF_ARG_PTR_TO_ITER, + KF_ARG_PTR_TO_LIST_HEAD, + KF_ARG_PTR_TO_LIST_NODE, + KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ + KF_ARG_PTR_TO_MEM, + KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ + KF_ARG_PTR_TO_CALLBACK, + KF_ARG_PTR_TO_RB_ROOT, + KF_ARG_PTR_TO_RB_NODE, + KF_ARG_PTR_TO_NULL, + KF_ARG_PTR_TO_CONST_STR, + KF_ARG_PTR_TO_MAP, + KF_ARG_PTR_TO_WORKQUEUE, + KF_ARG_PTR_TO_IRQ_FLAG, +}; + +enum special_kfunc_type { + KF_bpf_obj_new_impl, + KF_bpf_obj_drop_impl, + KF_bpf_refcount_acquire_impl, + KF_bpf_list_push_front_impl, + KF_bpf_list_push_back_impl, + KF_bpf_list_pop_front, + KF_bpf_list_pop_back, + KF_bpf_cast_to_kern_ctx, + KF_bpf_rdonly_cast, + KF_bpf_rcu_read_lock, + KF_bpf_rcu_read_unlock, + KF_bpf_rbtree_remove, + KF_bpf_rbtree_add_impl, + KF_bpf_rbtree_first, + KF_bpf_dynptr_from_skb, + KF_bpf_dynptr_from_xdp, + KF_bpf_dynptr_slice, + KF_bpf_dynptr_slice_rdwr, + KF_bpf_dynptr_clone, + KF_bpf_percpu_obj_new_impl, + KF_bpf_percpu_obj_drop_impl, + KF_bpf_throw, + KF_bpf_wq_set_callback_impl, + KF_bpf_preempt_disable, + KF_bpf_preempt_enable, + KF_bpf_iter_css_task_new, + KF_bpf_session_cookie, + KF_bpf_get_kmem_cache, + KF_bpf_local_irq_save, + KF_bpf_local_irq_restore, + KF_bpf_iter_num_new, + KF_bpf_iter_num_next, + KF_bpf_iter_num_destroy, +}; + +BTF_SET_START(special_kfunc_set) +BTF_ID(func, bpf_obj_new_impl) +BTF_ID(func, bpf_obj_drop_impl) +BTF_ID(func, bpf_refcount_acquire_impl) +BTF_ID(func, bpf_list_push_front_impl) +BTF_ID(func, bpf_list_push_back_impl) +BTF_ID(func, bpf_list_pop_front) +BTF_ID(func, bpf_list_pop_back) +BTF_ID(func, bpf_cast_to_kern_ctx) +BTF_ID(func, bpf_rdonly_cast) +BTF_ID(func, bpf_rbtree_remove) +BTF_ID(func, bpf_rbtree_add_impl) +BTF_ID(func, bpf_rbtree_first) +#ifdef CONFIG_NET +BTF_ID(func, bpf_dynptr_from_skb) +BTF_ID(func, bpf_dynptr_from_xdp) +#endif +BTF_ID(func, bpf_dynptr_slice) +BTF_ID(func, bpf_dynptr_slice_rdwr) +BTF_ID(func, bpf_dynptr_clone) +BTF_ID(func, bpf_percpu_obj_new_impl) +BTF_ID(func, bpf_percpu_obj_drop_impl) +BTF_ID(func, bpf_throw) +BTF_ID(func, bpf_wq_set_callback_impl) +#ifdef CONFIG_CGROUPS +BTF_ID(func, bpf_iter_css_task_new) +#endif +BTF_SET_END(special_kfunc_set) + +BTF_ID_LIST(special_kfunc_list) +BTF_ID(func, bpf_obj_new_impl) +BTF_ID(func, bpf_obj_drop_impl) +BTF_ID(func, bpf_refcount_acquire_impl) +BTF_ID(func, bpf_list_push_front_impl) +BTF_ID(func, bpf_list_push_back_impl) +BTF_ID(func, bpf_list_pop_front) +BTF_ID(func, bpf_list_pop_back) +BTF_ID(func, bpf_cast_to_kern_ctx) +BTF_ID(func, bpf_rdonly_cast) +BTF_ID(func, bpf_rcu_read_lock) +BTF_ID(func, bpf_rcu_read_unlock) +BTF_ID(func, bpf_rbtree_remove) +BTF_ID(func, bpf_rbtree_add_impl) +BTF_ID(func, bpf_rbtree_first) +#ifdef CONFIG_NET +BTF_ID(func, bpf_dynptr_from_skb) +BTF_ID(func, bpf_dynptr_from_xdp) +#else +BTF_ID_UNUSED +BTF_ID_UNUSED +#endif +BTF_ID(func, bpf_dynptr_slice) +BTF_ID(func, bpf_dynptr_slice_rdwr) +BTF_ID(func, bpf_dynptr_clone) +BTF_ID(func, bpf_percpu_obj_new_impl) +BTF_ID(func, bpf_percpu_obj_drop_impl) +BTF_ID(func, bpf_throw) +BTF_ID(func, bpf_wq_set_callback_impl) +BTF_ID(func, bpf_preempt_disable) +BTF_ID(func, bpf_preempt_enable) +#ifdef CONFIG_CGROUPS +BTF_ID(func, bpf_iter_css_task_new) +#else +BTF_ID_UNUSED +#endif +#ifdef CONFIG_BPF_EVENTS +BTF_ID(func, bpf_session_cookie) +#else +BTF_ID_UNUSED +#endif +BTF_ID(func, bpf_get_kmem_cache) +BTF_ID(func, bpf_local_irq_save) +BTF_ID(func, bpf_local_irq_restore) +BTF_ID(func, bpf_iter_num_new) +BTF_ID(func, bpf_iter_num_next) +BTF_ID(func, bpf_iter_num_destroy) - if (b < 0) - return res < a; - return res > a; +static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) +{ + if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && + meta->arg_owning_ref) { + return false; + } + + return meta->kfunc_flags & KF_RET_NULL; +} + +static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; +} + +static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; +} + +static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; +} + +static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; +} + +static enum kfunc_ptr_arg_type +get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, + struct bpf_kfunc_call_arg_meta *meta, + const struct btf_type *t, const struct btf_type *ref_t, + const char *ref_tname, const struct btf_param *args, + int argno, int nargs) +{ + u32 regno = argno + 1; + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = ®s[regno]; + bool arg_mem_size = false; + + if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) + return KF_ARG_PTR_TO_CTX; + + /* In this function, we verify the kfunc's BTF as per the argument type, + * leaving the rest of the verification with respect to the register + * type to our caller. When a set of conditions hold in the BTF type of + * arguments, we resolve it to a known kfunc_ptr_arg_type. + */ + if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) + return KF_ARG_PTR_TO_CTX; + + if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) + return KF_ARG_PTR_TO_NULL; + + if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_ALLOC_BTF_ID; + + if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_REFCOUNTED_KPTR; + + if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_DYNPTR; + + if (is_kfunc_arg_iter(meta, argno, &args[argno])) + return KF_ARG_PTR_TO_ITER; + + if (is_kfunc_arg_list_head(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_LIST_HEAD; + + if (is_kfunc_arg_list_node(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_LIST_NODE; + + if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_RB_ROOT; + + if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_RB_NODE; + + if (is_kfunc_arg_const_str(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_CONST_STR; + + if (is_kfunc_arg_map(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_MAP; + + if (is_kfunc_arg_wq(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_WORKQUEUE; + + if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_IRQ_FLAG; + + if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { + if (!btf_type_is_struct(ref_t)) { + verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", + meta->func_name, argno, btf_type_str(ref_t), ref_tname); + return -EINVAL; + } + return KF_ARG_PTR_TO_BTF_ID; + } + + if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) + return KF_ARG_PTR_TO_CALLBACK; + + if (argno + 1 < nargs && + (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || + is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) + arg_mem_size = true; + + /* This is the catch all argument type of register types supported by + * check_helper_mem_access. However, we only allow when argument type is + * pointer to scalar, or struct composed (recursively) of scalars. When + * arg_mem_size is true, the pointer can be void *. + */ + if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && + (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { + verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", + argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); + return -EINVAL; + } + return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; +} + +static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const struct btf_type *ref_t, + const char *ref_tname, u32 ref_id, + struct bpf_kfunc_call_arg_meta *meta, + int argno) +{ + const struct btf_type *reg_ref_t; + bool strict_type_match = false; + const struct btf *reg_btf; + const char *reg_ref_tname; + bool taking_projection; + bool struct_same; + u32 reg_ref_id; + + if (base_type(reg->type) == PTR_TO_BTF_ID) { + reg_btf = reg->btf; + reg_ref_id = reg->btf_id; + } else { + reg_btf = btf_vmlinux; + reg_ref_id = *reg2btf_ids[base_type(reg->type)]; + } + + /* Enforce strict type matching for calls to kfuncs that are acquiring + * or releasing a reference, or are no-cast aliases. We do _not_ + * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, + * as we want to enable BPF programs to pass types that are bitwise + * equivalent without forcing them to explicitly cast with something + * like bpf_cast_to_kern_ctx(). + * + * For example, say we had a type like the following: + * + * struct bpf_cpumask { + * cpumask_t cpumask; + * refcount_t usage; + * }; + * + * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed + * to a struct cpumask, so it would be safe to pass a struct + * bpf_cpumask * to a kfunc expecting a struct cpumask *. + * + * The philosophy here is similar to how we allow scalars of different + * types to be passed to kfuncs as long as the size is the same. The + * only difference here is that we're simply allowing + * btf_struct_ids_match() to walk the struct at the 0th offset, and + * resolve types. + */ + if ((is_kfunc_release(meta) && reg->ref_obj_id) || + btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) + strict_type_match = true; + + WARN_ON_ONCE(is_kfunc_release(meta) && + (reg->off || !tnum_is_const(reg->var_off) || + reg->var_off.value)); + + reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); + reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); + struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); + /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot + * actually use it -- it must cast to the underlying type. So we allow + * caller to pass in the underlying type. + */ + taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); + if (!taking_projection && !struct_same) { + verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", + meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, + btf_type_str(reg_ref_t), reg_ref_tname); + return -EINVAL; + } + return 0; +} + +static int process_irq_flag(struct bpf_verifier_env *env, int regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + bool irq_save; + int err; + + if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save]) { + irq_save = true; + } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore]) { + irq_save = false; + } else { + verbose(env, "verifier internal error: unknown irq flags kfunc\n"); + return -EFAULT; + } + + if (irq_save) { + if (!is_irq_flag_reg_valid_uninit(env, reg)) { + verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); + return -EINVAL; + } + + err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); + if (err) + return err; + + err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx); + if (err) + return err; + } else { + err = is_irq_flag_reg_valid_init(env, reg); + if (err) { + verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); + return err; + } + + err = mark_irq_flag_read(env, reg); + if (err) + return err; + + err = unmark_stack_slot_irq_flag(env, reg); + if (err) + return err; + } + return 0; +} + + +static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct btf_record *rec = reg_btf_record(reg); + + if (!env->cur_state->active_locks) { + verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); + return -EFAULT; + } + + if (type_flag(reg->type) & NON_OWN_REF) { + verbose(env, "verifier internal error: NON_OWN_REF already set\n"); + return -EFAULT; + } + + reg->type |= NON_OWN_REF; + if (rec->refcount_off >= 0) + reg->type |= MEM_RCU; + + return 0; +} + +static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) +{ + struct bpf_verifier_state *state = env->cur_state; + struct bpf_func_state *unused; + struct bpf_reg_state *reg; + int i; + + if (!ref_obj_id) { + verbose(env, "verifier internal error: ref_obj_id is zero for " + "owning -> non-owning conversion\n"); + return -EFAULT; + } + + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].id != ref_obj_id) + continue; + + /* Clear ref_obj_id here so release_reference doesn't clobber + * the whole reg + */ + bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ + if (reg->ref_obj_id == ref_obj_id) { + reg->ref_obj_id = 0; + ref_set_non_owning(env, reg); + } + })); + return 0; + } + + verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); + return -EFAULT; +} + +/* Implementation details: + * + * Each register points to some region of memory, which we define as an + * allocation. Each allocation may embed a bpf_spin_lock which protects any + * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same + * allocation. The lock and the data it protects are colocated in the same + * memory region. + * + * Hence, everytime a register holds a pointer value pointing to such + * allocation, the verifier preserves a unique reg->id for it. + * + * The verifier remembers the lock 'ptr' and the lock 'id' whenever + * bpf_spin_lock is called. + * + * To enable this, lock state in the verifier captures two values: + * active_lock.ptr = Register's type specific pointer + * active_lock.id = A unique ID for each register pointer value + * + * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two + * supported register types. + * + * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of + * allocated objects is the reg->btf pointer. + * + * The active_lock.id is non-unique for maps supporting direct_value_addr, as we + * can establish the provenance of the map value statically for each distinct + * lookup into such maps. They always contain a single map value hence unique + * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. + * + * So, in case of global variables, they use array maps with max_entries = 1, + * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point + * into the same map value as max_entries is 1, as described above). + * + * In case of inner map lookups, the inner map pointer has same map_ptr as the + * outer map pointer (in verifier context), but each lookup into an inner map + * assigns a fresh reg->id to the lookup, so while lookups into distinct inner + * maps from the same outer map share the same map_ptr as active_lock.ptr, they + * will get different reg->id assigned to each lookup, hence different + * active_lock.id. + * + * In case of allocated objects, active_lock.ptr is the reg->btf, and the + * reg->id is a unique ID preserved after the NULL pointer check on the pointer + * returned from bpf_obj_new. Each allocation receives a new reg->id. + */ +static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_reference_state *s; + void *ptr; + u32 id; + + switch ((int)reg->type) { + case PTR_TO_MAP_VALUE: + ptr = reg->map_ptr; + break; + case PTR_TO_BTF_ID | MEM_ALLOC: + ptr = reg->btf; + break; + default: + verbose(env, "verifier internal error: unknown reg type for lock check\n"); + return -EFAULT; + } + id = reg->id; + + if (!env->cur_state->active_locks) + return -EINVAL; + s = find_lock_state(env->cur_state, REF_TYPE_LOCK, id, ptr); + if (!s) { + verbose(env, "held lock and object are not in the same allocation\n"); + return -EINVAL; + } + return 0; +} + +static bool is_bpf_list_api_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || + btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || + btf_id == special_kfunc_list[KF_bpf_list_pop_front] || + btf_id == special_kfunc_list[KF_bpf_list_pop_back]; +} + +static bool is_bpf_rbtree_api_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || + btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || + btf_id == special_kfunc_list[KF_bpf_rbtree_first]; +} + +static bool is_bpf_iter_num_api_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || + btf_id == special_kfunc_list[KF_bpf_iter_num_next] || + btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; +} + +static bool is_bpf_graph_api_kfunc(u32 btf_id) +{ + return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || + btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; +} + +static bool kfunc_spin_allowed(u32 btf_id) +{ + return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id); +} + +static bool is_sync_callback_calling_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; +} + +static bool is_async_callback_calling_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; +} + +static bool is_bpf_throw_kfunc(struct bpf_insn *insn) +{ + return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && + insn->imm == special_kfunc_list[KF_bpf_throw]; +} + +static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; +} + +static bool is_callback_calling_kfunc(u32 btf_id) +{ + return is_sync_callback_calling_kfunc(btf_id) || + is_async_callback_calling_kfunc(btf_id); +} + +static bool is_rbtree_lock_required_kfunc(u32 btf_id) +{ + return is_bpf_rbtree_api_kfunc(btf_id); +} + +static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, + enum btf_field_type head_field_type, + u32 kfunc_btf_id) +{ + bool ret; + + switch (head_field_type) { + case BPF_LIST_HEAD: + ret = is_bpf_list_api_kfunc(kfunc_btf_id); + break; + case BPF_RB_ROOT: + ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); + break; + default: + verbose(env, "verifier internal error: unexpected graph root argument type %s\n", + btf_field_type_name(head_field_type)); + return false; + } + + if (!ret) + verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", + btf_field_type_name(head_field_type)); + return ret; +} + +static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, + enum btf_field_type node_field_type, + u32 kfunc_btf_id) +{ + bool ret; + + switch (node_field_type) { + case BPF_LIST_NODE: + ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || + kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); + break; + case BPF_RB_NODE: + ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || + kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); + break; + default: + verbose(env, "verifier internal error: unexpected graph node argument type %s\n", + btf_field_type_name(node_field_type)); + return false; + } + + if (!ret) + verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", + btf_field_type_name(node_field_type)); + return ret; +} + +static int +__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta, + enum btf_field_type head_field_type, + struct btf_field **head_field) +{ + const char *head_type_name; + struct btf_field *field; + struct btf_record *rec; + u32 head_off; + + if (meta->btf != btf_vmlinux) { + verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); + return -EFAULT; + } + + if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) + return -EFAULT; + + head_type_name = btf_field_type_name(head_field_type); + if (!tnum_is_const(reg->var_off)) { + verbose(env, + "R%d doesn't have constant offset. %s has to be at the constant offset\n", + regno, head_type_name); + return -EINVAL; + } + + rec = reg_btf_record(reg); + head_off = reg->off + reg->var_off.value; + field = btf_record_find(rec, head_off, head_field_type); + if (!field) { + verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); + return -EINVAL; + } + + /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ + if (check_reg_allocation_locked(env, reg)) { + verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", + rec->spin_lock_off, head_type_name); + return -EINVAL; + } + + if (*head_field) { + verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); + return -EFAULT; + } + *head_field = field; + return 0; +} + +static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, + &meta->arg_list_head.field); +} + +static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, + &meta->arg_rbtree_root.field); +} + +static int +__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta, + enum btf_field_type head_field_type, + enum btf_field_type node_field_type, + struct btf_field **node_field) +{ + const char *node_type_name; + const struct btf_type *et, *t; + struct btf_field *field; + u32 node_off; + + if (meta->btf != btf_vmlinux) { + verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); + return -EFAULT; + } + + if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) + return -EFAULT; + + node_type_name = btf_field_type_name(node_field_type); + if (!tnum_is_const(reg->var_off)) { + verbose(env, + "R%d doesn't have constant offset. %s has to be at the constant offset\n", + regno, node_type_name); + return -EINVAL; + } + + node_off = reg->off + reg->var_off.value; + field = reg_find_field_offset(reg, node_off, node_field_type); + if (!field) { + verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); + return -EINVAL; + } + + field = *node_field; + + et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); + t = btf_type_by_id(reg->btf, reg->btf_id); + if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, + field->graph_root.value_btf_id, true)) { + verbose(env, "operation on %s expects arg#1 %s at offset=%d " + "in struct %s, but arg is at offset=%d in struct %s\n", + btf_field_type_name(head_field_type), + btf_field_type_name(node_field_type), + field->graph_root.node_offset, + btf_name_by_offset(field->graph_root.btf, et->name_off), + node_off, btf_name_by_offset(reg->btf, t->name_off)); + return -EINVAL; + } + meta->arg_btf = reg->btf; + meta->arg_btf_id = reg->btf_id; + + if (node_off != field->graph_root.node_offset) { + verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", + node_off, btf_field_type_name(node_field_type), + field->graph_root.node_offset, + btf_name_by_offset(field->graph_root.btf, et->name_off)); + return -EINVAL; + } + + return 0; +} + +static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, + BPF_LIST_HEAD, BPF_LIST_NODE, + &meta->arg_list_head.field); +} + +static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, + BPF_RB_ROOT, BPF_RB_NODE, + &meta->arg_rbtree_root.field); +} + +/* + * css_task iter allowlist is needed to avoid dead locking on css_set_lock. + * LSM hooks and iters (both sleepable and non-sleepable) are safe. + * Any sleepable progs are also safe since bpf_check_attach_target() enforce + * them can only be attached to some specific hook points. + */ +static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) +{ + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + + switch (prog_type) { + case BPF_PROG_TYPE_LSM: + return true; + case BPF_PROG_TYPE_TRACING: + if (env->prog->expected_attach_type == BPF_TRACE_ITER) + return true; + fallthrough; + default: + return in_sleepable(env); + } +} + +static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, + int insn_idx) +{ + const char *func_name = meta->func_name, *ref_tname; + const struct btf *btf = meta->btf; + const struct btf_param *args; + struct btf_record *rec; + u32 i, nargs; + int ret; + + args = (const struct btf_param *)(meta->func_proto + 1); + nargs = btf_type_vlen(meta->func_proto); + if (nargs > MAX_BPF_FUNC_REG_ARGS) { + verbose(env, "Function %s has %d > %d args\n", func_name, nargs, + MAX_BPF_FUNC_REG_ARGS); + return -EINVAL; + } + + /* Check that BTF function arguments match actual types that the + * verifier sees. + */ + for (i = 0; i < nargs; i++) { + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; + const struct btf_type *t, *ref_t, *resolve_ret; + enum bpf_arg_type arg_type = ARG_DONTCARE; + u32 regno = i + 1, ref_id, type_size; + bool is_ret_buf_sz = false; + int kf_arg_type; + + t = btf_type_skip_modifiers(btf, args[i].type, NULL); + + if (is_kfunc_arg_ignore(btf, &args[i])) + continue; + + if (btf_type_is_scalar(t)) { + if (reg->type != SCALAR_VALUE) { + verbose(env, "R%d is not a scalar\n", regno); + return -EINVAL; + } + + if (is_kfunc_arg_constant(meta->btf, &args[i])) { + if (meta->arg_constant.found) { + verbose(env, "verifier internal error: only one constant argument permitted\n"); + return -EFAULT; + } + if (!tnum_is_const(reg->var_off)) { + verbose(env, "R%d must be a known constant\n", regno); + return -EINVAL; + } + ret = mark_chain_precision(env, regno); + if (ret < 0) + return ret; + meta->arg_constant.found = true; + meta->arg_constant.value = reg->var_off.value; + } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { + meta->r0_rdonly = true; + is_ret_buf_sz = true; + } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { + is_ret_buf_sz = true; + } + + if (is_ret_buf_sz) { + if (meta->r0_size) { + verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); + return -EINVAL; + } + + if (!tnum_is_const(reg->var_off)) { + verbose(env, "R%d is not a const\n", regno); + return -EINVAL; + } + + meta->r0_size = reg->var_off.value; + ret = mark_chain_precision(env, regno); + if (ret) + return ret; + } + continue; + } + + if (!btf_type_is_ptr(t)) { + verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); + return -EINVAL; + } + + if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && + (register_is_null(reg) || type_may_be_null(reg->type)) && + !is_kfunc_arg_nullable(meta->btf, &args[i])) { + verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); + return -EACCES; + } + + if (reg->ref_obj_id) { + if (is_kfunc_release(meta) && meta->ref_obj_id) { + verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", + regno, reg->ref_obj_id, + meta->ref_obj_id); + return -EFAULT; + } + meta->ref_obj_id = reg->ref_obj_id; + if (is_kfunc_release(meta)) + meta->release_regno = regno; + } + + ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); + ref_tname = btf_name_by_offset(btf, ref_t->name_off); + + kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); + if (kf_arg_type < 0) + return kf_arg_type; + + switch (kf_arg_type) { + case KF_ARG_PTR_TO_NULL: + continue; + case KF_ARG_PTR_TO_MAP: + if (!reg->map_ptr) { + verbose(env, "pointer in R%d isn't map pointer\n", regno); + return -EINVAL; + } + if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { + /* Use map_uid (which is unique id of inner map) to reject: + * inner_map1 = bpf_map_lookup_elem(outer_map, key1) + * inner_map2 = bpf_map_lookup_elem(outer_map, key2) + * if (inner_map1 && inner_map2) { + * wq = bpf_map_lookup_elem(inner_map1); + * if (wq) + * // mismatch would have been allowed + * bpf_wq_init(wq, inner_map2); + * } + * + * Comparing map_ptr is enough to distinguish normal and outer maps. + */ + if (meta->map.ptr != reg->map_ptr || + meta->map.uid != reg->map_uid) { + verbose(env, + "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", + meta->map.uid, reg->map_uid); + return -EINVAL; + } + } + meta->map.ptr = reg->map_ptr; + meta->map.uid = reg->map_uid; + fallthrough; + case KF_ARG_PTR_TO_ALLOC_BTF_ID: + case KF_ARG_PTR_TO_BTF_ID: + if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) + break; + + if (!is_trusted_reg(reg)) { + if (!is_kfunc_rcu(meta)) { + verbose(env, "R%d must be referenced or trusted\n", regno); + return -EINVAL; + } + if (!is_rcu_reg(reg)) { + verbose(env, "R%d must be a rcu pointer\n", regno); + return -EINVAL; + } + } + fallthrough; + case KF_ARG_PTR_TO_CTX: + case KF_ARG_PTR_TO_DYNPTR: + case KF_ARG_PTR_TO_ITER: + case KF_ARG_PTR_TO_LIST_HEAD: + case KF_ARG_PTR_TO_LIST_NODE: + case KF_ARG_PTR_TO_RB_ROOT: + case KF_ARG_PTR_TO_RB_NODE: + case KF_ARG_PTR_TO_MEM: + case KF_ARG_PTR_TO_MEM_SIZE: + case KF_ARG_PTR_TO_CALLBACK: + case KF_ARG_PTR_TO_REFCOUNTED_KPTR: + case KF_ARG_PTR_TO_CONST_STR: + case KF_ARG_PTR_TO_WORKQUEUE: + case KF_ARG_PTR_TO_IRQ_FLAG: + break; + default: + WARN_ON_ONCE(1); + return -EFAULT; + } + + if (is_kfunc_release(meta) && reg->ref_obj_id) + arg_type |= OBJ_RELEASE; + ret = check_func_arg_reg_off(env, reg, regno, arg_type); + if (ret < 0) + return ret; + + switch (kf_arg_type) { + case KF_ARG_PTR_TO_CTX: + if (reg->type != PTR_TO_CTX) { + verbose(env, "arg#%d expected pointer to ctx, but got %s\n", + i, reg_type_str(env, reg->type)); + return -EINVAL; + } + + if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { + ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); + if (ret < 0) + return -EINVAL; + meta->ret_btf_id = ret; + } + break; + case KF_ARG_PTR_TO_ALLOC_BTF_ID: + if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { + if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { + verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); + return -EINVAL; + } + } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { + if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { + verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); + return -EINVAL; + } + } else { + verbose(env, "arg#%d expected pointer to allocated object\n", i); + return -EINVAL; + } + if (!reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + if (meta->btf == btf_vmlinux) { + meta->arg_btf = reg->btf; + meta->arg_btf_id = reg->btf_id; + } + break; + case KF_ARG_PTR_TO_DYNPTR: + { + enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; + int clone_ref_obj_id = 0; + + if (reg->type == CONST_PTR_TO_DYNPTR) + dynptr_arg_type |= MEM_RDONLY; + + if (is_kfunc_arg_uninit(btf, &args[i])) + dynptr_arg_type |= MEM_UNINIT; + + if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { + dynptr_arg_type |= DYNPTR_TYPE_SKB; + } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { + dynptr_arg_type |= DYNPTR_TYPE_XDP; + } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && + (dynptr_arg_type & MEM_UNINIT)) { + enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; + + if (parent_type == BPF_DYNPTR_TYPE_INVALID) { + verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); + return -EFAULT; + } + + dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); + clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; + if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { + verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); + return -EFAULT; + } + } + + ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); + if (ret < 0) + return ret; + + if (!(dynptr_arg_type & MEM_UNINIT)) { + int id = dynptr_id(env, reg); + + if (id < 0) { + verbose(env, "verifier internal error: failed to obtain dynptr id\n"); + return id; + } + meta->initialized_dynptr.id = id; + meta->initialized_dynptr.type = dynptr_get_type(env, reg); + meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); + } + + break; + } + case KF_ARG_PTR_TO_ITER: + if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { + if (!check_css_task_iter_allowlist(env)) { + verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); + return -EINVAL; + } + } + ret = process_iter_arg(env, regno, insn_idx, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_LIST_HEAD: + if (reg->type != PTR_TO_MAP_VALUE && + reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); + return -EINVAL; + } + if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_RB_ROOT: + if (reg->type != PTR_TO_MAP_VALUE && + reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); + return -EINVAL; + } + if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_LIST_NODE: + if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d expected pointer to allocated object\n", i); + return -EINVAL; + } + if (!reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_RB_NODE: + if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { + if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { + verbose(env, "rbtree_remove node input must be non-owning ref\n"); + return -EINVAL; + } + if (in_rbtree_lock_required_cb(env)) { + verbose(env, "rbtree_remove not allowed in rbtree cb\n"); + return -EINVAL; + } + } else { + if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d expected pointer to allocated object\n", i); + return -EINVAL; + } + if (!reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + } + + ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_MAP: + /* If argument has '__map' suffix expect 'struct bpf_map *' */ + ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; + ref_t = btf_type_by_id(btf_vmlinux, ref_id); + ref_tname = btf_name_by_offset(btf, ref_t->name_off); + fallthrough; + case KF_ARG_PTR_TO_BTF_ID: + /* Only base_type is checked, further checks are done here */ + if ((base_type(reg->type) != PTR_TO_BTF_ID || + (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && + !reg2btf_ids[base_type(reg->type)]) { + verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); + verbose(env, "expected %s or socket\n", + reg_type_str(env, base_type(reg->type) | + (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); + return -EINVAL; + } + ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_MEM: + resolve_ret = btf_resolve_size(btf, ref_t, &type_size); + if (IS_ERR(resolve_ret)) { + verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", + i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); + return -EINVAL; + } + ret = check_mem_reg(env, reg, regno, type_size); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_MEM_SIZE: + { + struct bpf_reg_state *buff_reg = ®s[regno]; + const struct btf_param *buff_arg = &args[i]; + struct bpf_reg_state *size_reg = ®s[regno + 1]; + const struct btf_param *size_arg = &args[i + 1]; + + if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { + ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); + if (ret < 0) { + verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); + return ret; + } + } + + if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { + if (meta->arg_constant.found) { + verbose(env, "verifier internal error: only one constant argument permitted\n"); + return -EFAULT; + } + if (!tnum_is_const(size_reg->var_off)) { + verbose(env, "R%d must be a known constant\n", regno + 1); + return -EINVAL; + } + meta->arg_constant.found = true; + meta->arg_constant.value = size_reg->var_off.value; + } + + /* Skip next '__sz' or '__szk' argument */ + i++; + break; + } + case KF_ARG_PTR_TO_CALLBACK: + if (reg->type != PTR_TO_FUNC) { + verbose(env, "arg%d expected pointer to func\n", i); + return -EINVAL; + } + meta->subprogno = reg->subprogno; + break; + case KF_ARG_PTR_TO_REFCOUNTED_KPTR: + if (!type_is_ptr_alloc_obj(reg->type)) { + verbose(env, "arg#%d is neither owning or non-owning ref\n", i); + return -EINVAL; + } + if (!type_is_non_owning_ref(reg->type)) + meta->arg_owning_ref = true; + + rec = reg_btf_record(reg); + if (!rec) { + verbose(env, "verifier internal error: Couldn't find btf_record\n"); + return -EFAULT; + } + + if (rec->refcount_off < 0) { + verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); + return -EINVAL; + } + + meta->arg_btf = reg->btf; + meta->arg_btf_id = reg->btf_id; + break; + case KF_ARG_PTR_TO_CONST_STR: + if (reg->type != PTR_TO_MAP_VALUE) { + verbose(env, "arg#%d doesn't point to a const string\n", i); + return -EINVAL; + } + ret = check_reg_const_str(env, reg, regno); + if (ret) + return ret; + break; + case KF_ARG_PTR_TO_WORKQUEUE: + if (reg->type != PTR_TO_MAP_VALUE) { + verbose(env, "arg#%d doesn't point to a map value\n", i); + return -EINVAL; + } + ret = process_wq_func(env, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_IRQ_FLAG: + if (reg->type != PTR_TO_STACK) { + verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); + return -EINVAL; + } + ret = process_irq_flag(env, regno, meta); + if (ret < 0) + return ret; + break; + } + } + + if (is_kfunc_release(meta) && !meta->release_regno) { + verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", + func_name); + return -EINVAL; + } + + return 0; +} + +static int fetch_kfunc_meta(struct bpf_verifier_env *env, + struct bpf_insn *insn, + struct bpf_kfunc_call_arg_meta *meta, + const char **kfunc_name) +{ + const struct btf_type *func, *func_proto; + u32 func_id, *kfunc_flags; + const char *func_name; + struct btf *desc_btf; + + if (kfunc_name) + *kfunc_name = NULL; + + if (!insn->imm) + return -EINVAL; + + desc_btf = find_kfunc_desc_btf(env, insn->off); + if (IS_ERR(desc_btf)) + return PTR_ERR(desc_btf); + + func_id = insn->imm; + func = btf_type_by_id(desc_btf, func_id); + func_name = btf_name_by_offset(desc_btf, func->name_off); + if (kfunc_name) + *kfunc_name = func_name; + func_proto = btf_type_by_id(desc_btf, func->type); + + kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); + if (!kfunc_flags) { + return -EACCES; + } + + memset(meta, 0, sizeof(*meta)); + meta->btf = desc_btf; + meta->func_id = func_id; + meta->kfunc_flags = *kfunc_flags; + meta->func_proto = func_proto; + meta->func_name = func_name; + + return 0; +} + +static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); + +static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + int *insn_idx_p) +{ + bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; + u32 i, nargs, ptr_type_id, release_ref_obj_id; + struct bpf_reg_state *regs = cur_regs(env); + const char *func_name, *ptr_type_name; + const struct btf_type *t, *ptr_type; + struct bpf_kfunc_call_arg_meta meta; + struct bpf_insn_aux_data *insn_aux; + int err, insn_idx = *insn_idx_p; + const struct btf_param *args; + const struct btf_type *ret_t; + struct btf *desc_btf; + + /* skip for now, but return error when we find this in fixup_kfunc_call */ + if (!insn->imm) + return 0; + + err = fetch_kfunc_meta(env, insn, &meta, &func_name); + if (err == -EACCES && func_name) + verbose(env, "calling kernel function %s is not allowed\n", func_name); + if (err) + return err; + desc_btf = meta.btf; + insn_aux = &env->insn_aux_data[insn_idx]; + + insn_aux->is_iter_next = is_iter_next_kfunc(&meta); + + if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { + verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); + return -EACCES; + } + + sleepable = is_kfunc_sleepable(&meta); + if (sleepable && !in_sleepable(env)) { + verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); + return -EACCES; + } + + /* Check the arguments */ + err = check_kfunc_args(env, &meta, insn_idx); + if (err < 0) + return err; + + if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_rbtree_add_callback_state); + if (err) { + verbose(env, "kfunc %s#%d failed callback verification\n", + func_name, meta.func_id); + return err; + } + } + + if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { + meta.r0_size = sizeof(u64); + meta.r0_rdonly = false; + } + + if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_timer_callback_state); + if (err) { + verbose(env, "kfunc %s#%d failed callback verification\n", + func_name, meta.func_id); + return err; + } + } + + rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); + rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); + + preempt_disable = is_kfunc_bpf_preempt_disable(&meta); + preempt_enable = is_kfunc_bpf_preempt_enable(&meta); + + if (env->cur_state->active_rcu_lock) { + struct bpf_func_state *state; + struct bpf_reg_state *reg; + u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); + + if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { + verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); + return -EACCES; + } + + if (rcu_lock) { + verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); + return -EINVAL; + } else if (rcu_unlock) { + bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ + if (reg->type & MEM_RCU) { + reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); + reg->type |= PTR_UNTRUSTED; + } + })); + env->cur_state->active_rcu_lock = false; + } else if (sleepable) { + verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); + return -EACCES; + } + } else if (rcu_lock) { + env->cur_state->active_rcu_lock = true; + } else if (rcu_unlock) { + verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); + return -EINVAL; + } + + if (env->cur_state->active_preempt_locks) { + if (preempt_disable) { + env->cur_state->active_preempt_locks++; + } else if (preempt_enable) { + env->cur_state->active_preempt_locks--; + } else if (sleepable) { + verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); + return -EACCES; + } + } else if (preempt_disable) { + env->cur_state->active_preempt_locks++; + } else if (preempt_enable) { + verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); + return -EINVAL; + } + + if (env->cur_state->active_irq_id && sleepable) { + verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); + return -EACCES; + } + + /* In case of release function, we get register number of refcounted + * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. + */ + if (meta.release_regno) { + err = release_reference(env, regs[meta.release_regno].ref_obj_id); + if (err) { + verbose(env, "kfunc %s#%d reference has not been acquired before\n", + func_name, meta.func_id); + return err; + } + } + + if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || + meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || + meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; + insn_aux->insert_off = regs[BPF_REG_2].off; + insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); + err = ref_convert_owning_non_owning(env, release_ref_obj_id); + if (err) { + verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", + func_name, meta.func_id); + return err; + } + + err = release_reference(env, release_ref_obj_id); + if (err) { + verbose(env, "kfunc %s#%d reference has not been acquired before\n", + func_name, meta.func_id); + return err; + } + } + + if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { + if (!bpf_jit_supports_exceptions()) { + verbose(env, "JIT does not support calling kfunc %s#%d\n", + func_name, meta.func_id); + return -ENOTSUPP; + } + env->seen_exception = true; + + /* In the case of the default callback, the cookie value passed + * to bpf_throw becomes the return value of the program. + */ + if (!env->exception_callback_subprog) { + err = check_return_code(env, BPF_REG_1, "R1"); + if (err < 0) + return err; + } + } + + for (i = 0; i < CALLER_SAVED_REGS; i++) + mark_reg_not_init(env, regs, caller_saved[i]); + + /* Check return type */ + t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); + + if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { + /* Only exception is bpf_obj_new_impl */ + if (meta.btf != btf_vmlinux || + (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && + meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && + meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { + verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); + return -EINVAL; + } + } + + if (btf_type_is_scalar(t)) { + mark_reg_unknown(env, regs, BPF_REG_0); + mark_btf_func_reg_size(env, BPF_REG_0, t->size); + } else if (btf_type_is_ptr(t)) { + ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); + + if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { + if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || + meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { + struct btf_struct_meta *struct_meta; + struct btf *ret_btf; + u32 ret_btf_id; + + if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) + return -ENOMEM; + + if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { + verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); + return -EINVAL; + } + + ret_btf = env->prog->aux->btf; + ret_btf_id = meta.arg_constant.value; + + /* This may be NULL due to user not supplying a BTF */ + if (!ret_btf) { + verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); + return -EINVAL; + } + + ret_t = btf_type_by_id(ret_btf, ret_btf_id); + if (!ret_t || !__btf_type_is_struct(ret_t)) { + verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); + return -EINVAL; + } + + if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { + if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { + verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", + ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); + return -EINVAL; + } + + if (!bpf_global_percpu_ma_set) { + mutex_lock(&bpf_percpu_ma_lock); + if (!bpf_global_percpu_ma_set) { + /* Charge memory allocated with bpf_global_percpu_ma to + * root memcg. The obj_cgroup for root memcg is NULL. + */ + err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); + if (!err) + bpf_global_percpu_ma_set = true; + } + mutex_unlock(&bpf_percpu_ma_lock); + if (err) + return err; + } + + mutex_lock(&bpf_percpu_ma_lock); + err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); + mutex_unlock(&bpf_percpu_ma_lock); + if (err) + return err; + } + + struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); + if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { + if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { + verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); + return -EINVAL; + } + + if (struct_meta) { + verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); + return -EINVAL; + } + } + + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; + regs[BPF_REG_0].btf = ret_btf; + regs[BPF_REG_0].btf_id = ret_btf_id; + if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) + regs[BPF_REG_0].type |= MEM_PERCPU; + + insn_aux->obj_new_size = ret_t->size; + insn_aux->kptr_struct_meta = struct_meta; + } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; + regs[BPF_REG_0].btf = meta.arg_btf; + regs[BPF_REG_0].btf_id = meta.arg_btf_id; + + insn_aux->kptr_struct_meta = + btf_find_struct_meta(meta.arg_btf, + meta.arg_btf_id); + } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || + meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { + struct btf_field *field = meta.arg_list_head.field; + + mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); + } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || + meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { + struct btf_field *field = meta.arg_rbtree_root.field; + + mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); + } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; + regs[BPF_REG_0].btf = desc_btf; + regs[BPF_REG_0].btf_id = meta.ret_btf_id; + } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { + ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); + if (!ret_t || !btf_type_is_struct(ret_t)) { + verbose(env, + "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); + return -EINVAL; + } + + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; + regs[BPF_REG_0].btf = desc_btf; + regs[BPF_REG_0].btf_id = meta.arg_constant.value; + } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || + meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { + enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); + + mark_reg_known_zero(env, regs, BPF_REG_0); + + if (!meta.arg_constant.found) { + verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); + return -EFAULT; + } + + regs[BPF_REG_0].mem_size = meta.arg_constant.value; + + /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ + regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; + + if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { + regs[BPF_REG_0].type |= MEM_RDONLY; + } else { + /* this will set env->seen_direct_write to true */ + if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { + verbose(env, "the prog does not allow writes to packet data\n"); + return -EINVAL; + } + } + + if (!meta.initialized_dynptr.id) { + verbose(env, "verifier internal error: no dynptr id\n"); + return -EFAULT; + } + regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; + + /* we don't need to set BPF_REG_0's ref obj id + * because packet slices are not refcounted (see + * dynptr_type_refcounted) + */ + } else { + verbose(env, "kernel function %s unhandled dynamic return type\n", + meta.func_name); + return -EFAULT; + } + } else if (btf_type_is_void(ptr_type)) { + /* kfunc returning 'void *' is equivalent to returning scalar */ + mark_reg_unknown(env, regs, BPF_REG_0); + } else if (!__btf_type_is_struct(ptr_type)) { + if (!meta.r0_size) { + __u32 sz; + + if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { + meta.r0_size = sz; + meta.r0_rdonly = true; + } + } + if (!meta.r0_size) { + ptr_type_name = btf_name_by_offset(desc_btf, + ptr_type->name_off); + verbose(env, + "kernel function %s returns pointer type %s %s is not supported\n", + func_name, + btf_type_str(ptr_type), + ptr_type_name); + return -EINVAL; + } + + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_MEM; + regs[BPF_REG_0].mem_size = meta.r0_size; + + if (meta.r0_rdonly) + regs[BPF_REG_0].type |= MEM_RDONLY; + + /* Ensures we don't access the memory after a release_reference() */ + if (meta.ref_obj_id) + regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; + } else { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].btf = desc_btf; + regs[BPF_REG_0].type = PTR_TO_BTF_ID; + regs[BPF_REG_0].btf_id = ptr_type_id; + + if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) + regs[BPF_REG_0].type |= PTR_UNTRUSTED; + + if (is_iter_next_kfunc(&meta)) { + struct bpf_reg_state *cur_iter; + + cur_iter = get_iter_from_state(env->cur_state, &meta); + + if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ + regs[BPF_REG_0].type |= MEM_RCU; + else + regs[BPF_REG_0].type |= PTR_TRUSTED; + } + } + + if (is_kfunc_ret_null(&meta)) { + regs[BPF_REG_0].type |= PTR_MAYBE_NULL; + /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ + regs[BPF_REG_0].id = ++env->id_gen; + } + mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); + if (is_kfunc_acquire(&meta)) { + int id = acquire_reference(env, insn_idx); + + if (id < 0) + return id; + if (is_kfunc_ret_null(&meta)) + regs[BPF_REG_0].id = id; + regs[BPF_REG_0].ref_obj_id = id; + } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { + ref_set_non_owning(env, ®s[BPF_REG_0]); + } + + if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) + regs[BPF_REG_0].id = ++env->id_gen; + } else if (btf_type_is_void(t)) { + if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { + if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || + meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { + insn_aux->kptr_struct_meta = + btf_find_struct_meta(meta.arg_btf, + meta.arg_btf_id); + } + } + } + + nargs = btf_type_vlen(meta.func_proto); + args = (const struct btf_param *)(meta.func_proto + 1); + for (i = 0; i < nargs; i++) { + u32 regno = i + 1; + + t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); + if (btf_type_is_ptr(t)) + mark_btf_func_reg_size(env, regno, sizeof(void *)); + else + /* scalar. ensured by btf_check_kfunc_arg_match() */ + mark_btf_func_reg_size(env, regno, t->size); + } + + if (is_iter_next_kfunc(&meta)) { + err = process_iter_next_call(env, insn_idx, &meta); + if (err) + return err; + } + + return 0; } static bool check_reg_sane_offset(struct bpf_verifier_env *env, @@ -4848,65 +13524,68 @@ static bool check_reg_sane_offset(struct bpf_verifier_env *env, if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { verbose(env, "math between %s pointer and %lld is not allowed\n", - reg_type_str[type], val); + reg_type_str(env, type), val); return false; } if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { verbose(env, "%s pointer offset %d is not allowed\n", - reg_type_str[type], reg->off); + reg_type_str(env, type), reg->off); return false; } if (smin == S64_MIN) { verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", - reg_type_str[type]); + reg_type_str(env, type)); return false; } if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { verbose(env, "value %lld makes %s pointer be out of bounds\n", - smin, reg_type_str[type]); + smin, reg_type_str(env, type)); return false; } return true; } -static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) -{ - return &env->insn_aux_data[env->insn_idx]; -} +enum { + REASON_BOUNDS = -1, + REASON_TYPE = -2, + REASON_PATHS = -3, + REASON_LIMIT = -4, + REASON_STACK = -5, +}; static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, - u32 *ptr_limit, u8 opcode, bool off_is_neg) + u32 *alu_limit, bool mask_to_left) { - bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || - (opcode == BPF_SUB && !off_is_neg); - u32 off; + u32 max = 0, ptr_limit = 0; switch (ptr_reg->type) { case PTR_TO_STACK: - /* Indirect variable offset stack access is prohibited in - * unprivileged mode so it's not handled here. + /* Offset 0 is out-of-bounds, but acceptable start for the + * left direction, see BPF_REG_FP. Also, unknown scalar + * offset where we would need to deal with min/max bounds is + * currently prohibited for unprivileged. */ - off = ptr_reg->off + ptr_reg->var_off.value; - if (mask_to_left) - *ptr_limit = MAX_BPF_STACK + off; - else - *ptr_limit = -off; - return 0; + max = MAX_BPF_STACK + mask_to_left; + ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); + break; case PTR_TO_MAP_VALUE: - if (mask_to_left) { - *ptr_limit = ptr_reg->umax_value + ptr_reg->off; - } else { - off = ptr_reg->smin_value + ptr_reg->off; - *ptr_limit = ptr_reg->map_ptr->value_size - off; - } - return 0; + max = ptr_reg->map_ptr->value_size; + ptr_limit = (mask_to_left ? + ptr_reg->smin_value : + ptr_reg->umax_value) + ptr_reg->off; + break; default: - return -EINVAL; + return REASON_TYPE; } + + if (ptr_limit >= max) + return REASON_LIMIT; + *alu_limit = ptr_limit; + return 0; } static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, @@ -4924,9 +13603,9 @@ static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, if (aux->alu_state && (aux->alu_state != alu_state || aux->alu_limit != alu_limit)) - return -EACCES; + return REASON_PATHS; - /* Corresponding fixup done in fixup_bpf_calls(). */ + /* Corresponding fixup done in do_misc_fixups(). */ aux->alu_state = alu_state; aux->alu_limit = alu_limit; return 0; @@ -4943,19 +13622,55 @@ static int sanitize_val_alu(struct bpf_verifier_env *env, return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); } +static bool sanitize_needed(u8 opcode) +{ + return opcode == BPF_ADD || opcode == BPF_SUB; +} + +struct bpf_sanitize_info { + struct bpf_insn_aux_data aux; + bool mask_to_left; +}; + +static struct bpf_verifier_state * +sanitize_speculative_path(struct bpf_verifier_env *env, + const struct bpf_insn *insn, + u32 next_idx, u32 curr_idx) +{ + struct bpf_verifier_state *branch; + struct bpf_reg_state *regs; + + branch = push_stack(env, next_idx, curr_idx, true); + if (branch && insn) { + regs = branch->frame[branch->curframe]->regs; + if (BPF_SRC(insn->code) == BPF_K) { + mark_reg_unknown(env, regs, insn->dst_reg); + } else if (BPF_SRC(insn->code) == BPF_X) { + mark_reg_unknown(env, regs, insn->dst_reg); + mark_reg_unknown(env, regs, insn->src_reg); + } + } + return branch; +} + static int sanitize_ptr_alu(struct bpf_verifier_env *env, struct bpf_insn *insn, const struct bpf_reg_state *ptr_reg, + const struct bpf_reg_state *off_reg, struct bpf_reg_state *dst_reg, - bool off_is_neg) + struct bpf_sanitize_info *info, + const bool commit_window) { + struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; struct bpf_verifier_state *vstate = env->cur_state; - struct bpf_insn_aux_data *aux = cur_aux(env); + bool off_is_imm = tnum_is_const(off_reg->var_off); + bool off_is_neg = off_reg->smin_value < 0; bool ptr_is_dst_reg = ptr_reg == dst_reg; u8 opcode = BPF_OP(insn->code); u32 alu_state, alu_limit; struct bpf_reg_state tmp; bool ret; + int err; if (can_skip_alu_sanitation(env, insn)) return 0; @@ -4967,15 +13682,53 @@ static int sanitize_ptr_alu(struct bpf_verifier_env *env, if (vstate->speculative) goto do_sim; - alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; - alu_state |= ptr_is_dst_reg ? - BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; + if (!commit_window) { + if (!tnum_is_const(off_reg->var_off) && + (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) + return REASON_BOUNDS; - if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) - return 0; - if (update_alu_sanitation_state(aux, alu_state, alu_limit)) - return -EACCES; + info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || + (opcode == BPF_SUB && !off_is_neg); + } + + err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); + if (err < 0) + return err; + + if (commit_window) { + /* In commit phase we narrow the masking window based on + * the observed pointer move after the simulated operation. + */ + alu_state = info->aux.alu_state; + alu_limit = abs(info->aux.alu_limit - alu_limit); + } else { + alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; + alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; + alu_state |= ptr_is_dst_reg ? + BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; + + /* Limit pruning on unknown scalars to enable deep search for + * potential masking differences from other program paths. + */ + if (!off_is_imm) + env->explore_alu_limits = true; + } + + err = update_alu_sanitation_state(aux, alu_state, alu_limit); + if (err < 0) + return err; do_sim: + /* If we're in commit phase, we're done here given we already + * pushed the truncated dst_reg into the speculative verification + * stack. + * + * Also, when register is a known constant, we rewrite register-based + * operation to immediate-based, and thus do not need masking (and as + * a consequence, do not need to simulate the zero-truncation either). + */ + if (commit_window || off_is_imm) + return 0; + /* Simulate and find potential out-of-bounds access under * speculative execution from truncation as a result of * masking when off was not within expected range. If off @@ -4987,12 +13740,131 @@ do_sim: */ if (!ptr_is_dst_reg) { tmp = *dst_reg; - *dst_reg = *ptr_reg; + copy_register_state(dst_reg, ptr_reg); } - ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); + ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, + env->insn_idx); if (!ptr_is_dst_reg && ret) *dst_reg = tmp; - return !ret ? -EFAULT : 0; + return !ret ? REASON_STACK : 0; +} + +static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) +{ + struct bpf_verifier_state *vstate = env->cur_state; + + /* If we simulate paths under speculation, we don't update the + * insn as 'seen' such that when we verify unreachable paths in + * the non-speculative domain, sanitize_dead_code() can still + * rewrite/sanitize them. + */ + if (!vstate->speculative) + env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; +} + +static int sanitize_err(struct bpf_verifier_env *env, + const struct bpf_insn *insn, int reason, + const struct bpf_reg_state *off_reg, + const struct bpf_reg_state *dst_reg) +{ + static const char *err = "pointer arithmetic with it prohibited for !root"; + const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; + u32 dst = insn->dst_reg, src = insn->src_reg; + + switch (reason) { + case REASON_BOUNDS: + verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", + off_reg == dst_reg ? dst : src, err); + break; + case REASON_TYPE: + verbose(env, "R%d has pointer with unsupported alu operation, %s\n", + off_reg == dst_reg ? src : dst, err); + break; + case REASON_PATHS: + verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", + dst, op, err); + break; + case REASON_LIMIT: + verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", + dst, op, err); + break; + case REASON_STACK: + verbose(env, "R%d could not be pushed for speculative verification, %s\n", + dst, err); + break; + default: + verbose(env, "verifier internal error: unknown reason (%d)\n", + reason); + break; + } + + return -EACCES; +} + +/* check that stack access falls within stack limits and that 'reg' doesn't + * have a variable offset. + * + * Variable offset is prohibited for unprivileged mode for simplicity since it + * requires corresponding support in Spectre masking for stack ALU. See also + * retrieve_ptr_limit(). + * + * + * 'off' includes 'reg->off'. + */ +static int check_stack_access_for_ptr_arithmetic( + struct bpf_verifier_env *env, + int regno, + const struct bpf_reg_state *reg, + int off) +{ + if (!tnum_is_const(reg->var_off)) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", + regno, tn_buf, off); + return -EACCES; + } + + if (off >= 0 || off < -MAX_BPF_STACK) { + verbose(env, "R%d stack pointer arithmetic goes out of range, " + "prohibited for !root; off=%d\n", regno, off); + return -EACCES; + } + + return 0; +} + +static int sanitize_check_bounds(struct bpf_verifier_env *env, + const struct bpf_insn *insn, + const struct bpf_reg_state *dst_reg) +{ + u32 dst = insn->dst_reg; + + /* For unprivileged we require that resulting offset must be in bounds + * in order to be able to sanitize access later on. + */ + if (env->bypass_spec_v1) + return 0; + + switch (dst_reg->type) { + case PTR_TO_STACK: + if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, + dst_reg->off + dst_reg->var_off.value)) + return -EACCES; + break; + case PTR_TO_MAP_VALUE: + if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { + verbose(env, "R%d pointer arithmetic of map value goes out of range, " + "prohibited for !root\n", dst); + return -EACCES; + } + break; + default: + break; + } + + return 0; } /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. @@ -5013,8 +13885,9 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; - u32 dst = insn->dst_reg, src = insn->src_reg; + struct bpf_sanitize_info info = {}; u8 opcode = BPF_OP(insn->code); + u32 dst = insn->dst_reg; int ret; dst_reg = ®s[dst]; @@ -5030,38 +13903,50 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, if (BPF_CLASS(insn->code) != BPF_ALU64) { /* 32-bit ALU ops on pointers produce (meaningless) scalars */ + if (opcode == BPF_SUB && env->allow_ptr_leaks) { + __mark_reg_unknown(env, dst_reg); + return 0; + } + verbose(env, "R%d 32-bit pointer arithmetic prohibited\n", dst); return -EACCES; } - switch (ptr_reg->type) { - case PTR_TO_MAP_VALUE_OR_NULL: + if (ptr_reg->type & PTR_MAYBE_NULL) { verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", - dst, reg_type_str[ptr_reg->type]); + dst, reg_type_str(env, ptr_reg->type)); return -EACCES; + } + + switch (base_type(ptr_reg->type)) { + case PTR_TO_CTX: + case PTR_TO_MAP_VALUE: + case PTR_TO_MAP_KEY: + case PTR_TO_STACK: + case PTR_TO_PACKET_META: + case PTR_TO_PACKET: + case PTR_TO_TP_BUFFER: + case PTR_TO_BTF_ID: + case PTR_TO_MEM: + case PTR_TO_BUF: + case PTR_TO_FUNC: + case CONST_PTR_TO_DYNPTR: + break; + case PTR_TO_FLOW_KEYS: + if (known) + break; + fallthrough; case CONST_PTR_TO_MAP: - case PTR_TO_PACKET_END: - case PTR_TO_SOCKET: - case PTR_TO_SOCKET_OR_NULL: - case PTR_TO_SOCK_COMMON: - case PTR_TO_SOCK_COMMON_OR_NULL: - case PTR_TO_TCP_SOCK: - case PTR_TO_TCP_SOCK_OR_NULL: - case PTR_TO_XDP_SOCK: + /* smin_val represents the known value */ + if (known && smin_val == 0 && opcode == BPF_ADD) + break; + fallthrough; + default: verbose(env, "R%d pointer arithmetic on %s prohibited\n", - dst, reg_type_str[ptr_reg->type]); + dst, reg_type_str(env, ptr_reg->type)); return -EACCES; - case PTR_TO_MAP_VALUE: - if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { - verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", - off_reg == dst_reg ? dst : src); - return -EACCES; - } - /* fall-through */ - default: - break; } /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. @@ -5077,13 +13962,15 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, /* pointer types do not carry 32-bit bounds at the moment. */ __mark_reg32_unbounded(dst_reg); + if (sanitize_needed(opcode)) { + ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, + &info, false); + if (ret < 0) + return sanitize_err(env, insn, ret, off_reg, dst_reg); + } + switch (opcode) { case BPF_ADD: - ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); - if (ret < 0) { - verbose(env, "R%d tried to add from different maps or paths\n", dst); - return ret; - } /* We can take a fixed offset as long as it doesn't overflow * the s32 'off' field */ @@ -5108,21 +13995,15 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, * added into the variable offset, and we copy the fixed offset * from ptr_reg. */ - if (signed_add_overflows(smin_ptr, smin_val) || - signed_add_overflows(smax_ptr, smax_val)) { + if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || + check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; - } else { - dst_reg->smin_value = smin_ptr + smin_val; - dst_reg->smax_value = smax_ptr + smax_val; } - if (umin_ptr + umin_val < umin_ptr || - umax_ptr + umax_val < umax_ptr) { + if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || + check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { dst_reg->umin_value = 0; dst_reg->umax_value = U64_MAX; - } else { - dst_reg->umin_value = umin_ptr + umin_val; - dst_reg->umax_value = umax_ptr + umax_val; } dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); dst_reg->off = ptr_reg->off; @@ -5130,15 +14011,10 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, if (reg_is_pkt_pointer(ptr_reg)) { dst_reg->id = ++env->id_gen; /* something was added to pkt_ptr, set range to zero */ - dst_reg->raw = 0; + memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); } break; case BPF_SUB: - ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); - if (ret < 0) { - verbose(env, "R%d tried to sub from different maps or paths\n", dst); - return ret; - } if (dst_reg == off_reg) { /* scalar -= pointer. Creates an unknown scalar */ verbose(env, "R%d tried to subtract pointer from scalar\n", @@ -5170,14 +14046,11 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, /* A new variable offset is created. If the subtrahend is known * nonnegative, then any reg->range we had before is still good. */ - if (signed_sub_overflows(smin_ptr, smax_val) || - signed_sub_overflows(smax_ptr, smin_val)) { + if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || + check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { /* Overflow possible, we know nothing */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; - } else { - dst_reg->smin_value = smin_ptr - smax_val; - dst_reg->smax_value = smax_ptr - smin_val; } if (umin_ptr < umax_val) { /* Overflow possible, we know nothing */ @@ -5195,7 +14068,7 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, dst_reg->id = ++env->id_gen; /* something was added to pkt_ptr, set range to zero */ if (smin_val < 0) - dst_reg->raw = 0; + memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); } break; case BPF_AND: @@ -5214,27 +14087,14 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) return -EINVAL; - - __update_reg_bounds(dst_reg); - __reg_deduce_bounds(dst_reg); - __reg_bound_offset(dst_reg); - - /* For unprivileged we require that resulting offset must be in bounds - * in order to be able to sanitize access later on. - */ - if (!env->bypass_spec_v1) { - if (dst_reg->type == PTR_TO_MAP_VALUE && - check_map_access(env, dst, dst_reg->off, 1, false)) { - verbose(env, "R%d pointer arithmetic of map value goes out of range, " - "prohibited for !root\n", dst); - return -EACCES; - } else if (dst_reg->type == PTR_TO_STACK && - check_stack_access(env, dst_reg, dst_reg->off + - dst_reg->var_off.value, 1)) { - verbose(env, "R%d stack pointer arithmetic goes out of range, " - "prohibited for !root\n", dst); - return -EACCES; - } + reg_bounds_sync(dst_reg); + if (sanitize_check_bounds(env, insn, dst_reg) < 0) + return -EACCES; + if (sanitize_needed(opcode)) { + ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, + &info, true); + if (ret < 0) + return sanitize_err(env, insn, ret, off_reg, dst_reg); } return 0; @@ -5243,71 +14103,56 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) { - s32 smin_val = src_reg->s32_min_value; - s32 smax_val = src_reg->s32_max_value; - u32 umin_val = src_reg->u32_min_value; - u32 umax_val = src_reg->u32_max_value; + s32 *dst_smin = &dst_reg->s32_min_value; + s32 *dst_smax = &dst_reg->s32_max_value; + u32 *dst_umin = &dst_reg->u32_min_value; + u32 *dst_umax = &dst_reg->u32_max_value; - if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || - signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { - dst_reg->s32_min_value = S32_MIN; - dst_reg->s32_max_value = S32_MAX; - } else { - dst_reg->s32_min_value += smin_val; - dst_reg->s32_max_value += smax_val; + if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || + check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { + *dst_smin = S32_MIN; + *dst_smax = S32_MAX; } - if (dst_reg->u32_min_value + umin_val < umin_val || - dst_reg->u32_max_value + umax_val < umax_val) { - dst_reg->u32_min_value = 0; - dst_reg->u32_max_value = U32_MAX; - } else { - dst_reg->u32_min_value += umin_val; - dst_reg->u32_max_value += umax_val; + if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || + check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { + *dst_umin = 0; + *dst_umax = U32_MAX; } } static void scalar_min_max_add(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) { - s64 smin_val = src_reg->smin_value; - s64 smax_val = src_reg->smax_value; - u64 umin_val = src_reg->umin_value; - u64 umax_val = src_reg->umax_value; + s64 *dst_smin = &dst_reg->smin_value; + s64 *dst_smax = &dst_reg->smax_value; + u64 *dst_umin = &dst_reg->umin_value; + u64 *dst_umax = &dst_reg->umax_value; - if (signed_add_overflows(dst_reg->smin_value, smin_val) || - signed_add_overflows(dst_reg->smax_value, smax_val)) { - dst_reg->smin_value = S64_MIN; - dst_reg->smax_value = S64_MAX; - } else { - dst_reg->smin_value += smin_val; - dst_reg->smax_value += smax_val; + if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || + check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { + *dst_smin = S64_MIN; + *dst_smax = S64_MAX; } - if (dst_reg->umin_value + umin_val < umin_val || - dst_reg->umax_value + umax_val < umax_val) { - dst_reg->umin_value = 0; - dst_reg->umax_value = U64_MAX; - } else { - dst_reg->umin_value += umin_val; - dst_reg->umax_value += umax_val; + if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || + check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { + *dst_umin = 0; + *dst_umax = U64_MAX; } } static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) { - s32 smin_val = src_reg->s32_min_value; - s32 smax_val = src_reg->s32_max_value; + s32 *dst_smin = &dst_reg->s32_min_value; + s32 *dst_smax = &dst_reg->s32_max_value; u32 umin_val = src_reg->u32_min_value; u32 umax_val = src_reg->u32_max_value; - if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || - signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { + if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || + check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { /* Overflow possible, we know nothing */ - dst_reg->s32_min_value = S32_MIN; - dst_reg->s32_max_value = S32_MAX; - } else { - dst_reg->s32_min_value -= smax_val; - dst_reg->s32_max_value -= smin_val; + *dst_smin = S32_MIN; + *dst_smax = S32_MAX; } if (dst_reg->u32_min_value < umax_val) { /* Overflow possible, we know nothing */ @@ -5323,19 +14168,16 @@ static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) { - s64 smin_val = src_reg->smin_value; - s64 smax_val = src_reg->smax_value; + s64 *dst_smin = &dst_reg->smin_value; + s64 *dst_smax = &dst_reg->smax_value; u64 umin_val = src_reg->umin_value; u64 umax_val = src_reg->umax_value; - if (signed_sub_overflows(dst_reg->smin_value, smax_val) || - signed_sub_overflows(dst_reg->smax_value, smin_val)) { + if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || + check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { /* Overflow possible, we know nothing */ - dst_reg->smin_value = S64_MIN; - dst_reg->smax_value = S64_MAX; - } else { - dst_reg->smin_value -= smax_val; - dst_reg->smax_value -= smin_val; + *dst_smin = S64_MIN; + *dst_smax = S64_MAX; } if (dst_reg->umin_value < umax_val) { /* Overflow possible, we know nothing */ @@ -5351,64 +14193,56 @@ static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) { - s32 smin_val = src_reg->s32_min_value; - u32 umin_val = src_reg->u32_min_value; - u32 umax_val = src_reg->u32_max_value; + s32 *dst_smin = &dst_reg->s32_min_value; + s32 *dst_smax = &dst_reg->s32_max_value; + u32 *dst_umin = &dst_reg->u32_min_value; + u32 *dst_umax = &dst_reg->u32_max_value; + s32 tmp_prod[4]; - if (smin_val < 0 || dst_reg->s32_min_value < 0) { - /* Ain't nobody got time to multiply that sign */ - __mark_reg32_unbounded(dst_reg); - return; - } - /* Both values are positive, so we can work with unsigned and - * copy the result to signed (unless it exceeds S32_MAX). - */ - if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { - /* Potential overflow, we know nothing */ - __mark_reg32_unbounded(dst_reg); - return; + if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || + check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { + /* Overflow possible, we know nothing */ + *dst_umin = 0; + *dst_umax = U32_MAX; } - dst_reg->u32_min_value *= umin_val; - dst_reg->u32_max_value *= umax_val; - if (dst_reg->u32_max_value > S32_MAX) { + if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || + check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || + check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || + check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { /* Overflow possible, we know nothing */ - dst_reg->s32_min_value = S32_MIN; - dst_reg->s32_max_value = S32_MAX; + *dst_smin = S32_MIN; + *dst_smax = S32_MAX; } else { - dst_reg->s32_min_value = dst_reg->u32_min_value; - dst_reg->s32_max_value = dst_reg->u32_max_value; + *dst_smin = min_array(tmp_prod, 4); + *dst_smax = max_array(tmp_prod, 4); } } static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) { - s64 smin_val = src_reg->smin_value; - u64 umin_val = src_reg->umin_value; - u64 umax_val = src_reg->umax_value; + s64 *dst_smin = &dst_reg->smin_value; + s64 *dst_smax = &dst_reg->smax_value; + u64 *dst_umin = &dst_reg->umin_value; + u64 *dst_umax = &dst_reg->umax_value; + s64 tmp_prod[4]; - if (smin_val < 0 || dst_reg->smin_value < 0) { - /* Ain't nobody got time to multiply that sign */ - __mark_reg64_unbounded(dst_reg); - return; - } - /* Both values are positive, so we can work with unsigned and - * copy the result to signed (unless it exceeds S64_MAX). - */ - if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { - /* Potential overflow, we know nothing */ - __mark_reg64_unbounded(dst_reg); - return; + if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || + check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { + /* Overflow possible, we know nothing */ + *dst_umin = 0; + *dst_umax = U64_MAX; } - dst_reg->umin_value *= umin_val; - dst_reg->umax_value *= umax_val; - if (dst_reg->umax_value > S64_MAX) { + if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || + check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || + check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || + check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { /* Overflow possible, we know nothing */ - dst_reg->smin_value = S64_MIN; - dst_reg->smax_value = S64_MAX; + *dst_smin = S64_MIN; + *dst_smax = S64_MAX; } else { - dst_reg->smin_value = dst_reg->umin_value; - dst_reg->smax_value = dst_reg->umax_value; + *dst_smin = min_array(tmp_prod, 4); + *dst_smax = max_array(tmp_prod, 4); } } @@ -5418,34 +14252,29 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, bool src_known = tnum_subreg_is_const(src_reg->var_off); bool dst_known = tnum_subreg_is_const(dst_reg->var_off); struct tnum var32_off = tnum_subreg(dst_reg->var_off); - s32 smin_val = src_reg->s32_min_value; u32 umax_val = src_reg->u32_max_value; - /* Assuming scalar64_min_max_and will be called so its safe - * to skip updating register for known 32-bit case. - */ - if (src_known && dst_known) + if (src_known && dst_known) { + __mark_reg32_known(dst_reg, var32_off.value); return; + } /* We get our minimum from the var_off, since that's inherently * bitwise. Our maximum is the minimum of the operands' maxima. */ dst_reg->u32_min_value = var32_off.value; dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); - if (dst_reg->s32_min_value < 0 || smin_val < 0) { - /* Lose signed bounds when ANDing negative numbers, - * ain't nobody got time for that. - */ - dst_reg->s32_min_value = S32_MIN; - dst_reg->s32_max_value = S32_MAX; - } else { - /* ANDing two positives gives a positive, so safe to - * cast result into s64. - */ + + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { dst_reg->s32_min_value = dst_reg->u32_min_value; dst_reg->s32_max_value = dst_reg->u32_max_value; + } else { + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; } - } static void scalar_min_max_and(struct bpf_reg_state *dst_reg, @@ -5453,12 +14282,10 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg, { bool src_known = tnum_is_const(src_reg->var_off); bool dst_known = tnum_is_const(dst_reg->var_off); - s64 smin_val = src_reg->smin_value; u64 umax_val = src_reg->umax_value; if (src_known && dst_known) { - __mark_reg_known(dst_reg, dst_reg->var_off.value & - src_reg->var_off.value); + __mark_reg_known(dst_reg, dst_reg->var_off.value); return; } @@ -5467,18 +14294,16 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg, */ dst_reg->umin_value = dst_reg->var_off.value; dst_reg->umax_value = min(dst_reg->umax_value, umax_val); - if (dst_reg->smin_value < 0 || smin_val < 0) { - /* Lose signed bounds when ANDing negative numbers, - * ain't nobody got time for that. - */ - dst_reg->smin_value = S64_MIN; - dst_reg->smax_value = S64_MAX; - } else { - /* ANDing two positives gives a positive, so safe to - * cast result into s64. - */ + + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; + } else { + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; } /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); @@ -5490,32 +14315,28 @@ static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, bool src_known = tnum_subreg_is_const(src_reg->var_off); bool dst_known = tnum_subreg_is_const(dst_reg->var_off); struct tnum var32_off = tnum_subreg(dst_reg->var_off); - s32 smin_val = src_reg->smin_value; - u32 umin_val = src_reg->umin_value; + u32 umin_val = src_reg->u32_min_value; - /* Assuming scalar64_min_max_or will be called so it is safe - * to skip updating register for known case. - */ - if (src_known && dst_known) + if (src_known && dst_known) { + __mark_reg32_known(dst_reg, var32_off.value); return; + } /* We get our maximum from the var_off, and our minimum is the * maximum of the operands' minima */ dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); dst_reg->u32_max_value = var32_off.value | var32_off.mask; - if (dst_reg->s32_min_value < 0 || smin_val < 0) { - /* Lose signed bounds when ORing negative numbers, - * ain't nobody got time for that. - */ + + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { + dst_reg->s32_min_value = dst_reg->u32_min_value; + dst_reg->s32_max_value = dst_reg->u32_max_value; + } else { dst_reg->s32_min_value = S32_MIN; dst_reg->s32_max_value = S32_MAX; - } else { - /* ORing two positives gives a positive, so safe to - * cast result into s64. - */ - dst_reg->s32_min_value = dst_reg->umin_value; - dst_reg->s32_max_value = dst_reg->umax_value; } } @@ -5524,12 +14345,10 @@ static void scalar_min_max_or(struct bpf_reg_state *dst_reg, { bool src_known = tnum_is_const(src_reg->var_off); bool dst_known = tnum_is_const(dst_reg->var_off); - s64 smin_val = src_reg->smin_value; u64 umin_val = src_reg->umin_value; if (src_known && dst_known) { - __mark_reg_known(dst_reg, dst_reg->var_off.value | - src_reg->var_off.value); + __mark_reg_known(dst_reg, dst_reg->var_off.value); return; } @@ -5538,20 +14357,76 @@ static void scalar_min_max_or(struct bpf_reg_state *dst_reg, */ dst_reg->umin_value = max(dst_reg->umin_value, umin_val); dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; - if (dst_reg->smin_value < 0 || smin_val < 0) { - /* Lose signed bounds when ORing negative numbers, - * ain't nobody got time for that. - */ + + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { + dst_reg->smin_value = dst_reg->umin_value; + dst_reg->smax_value = dst_reg->umax_value; + } else { dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; + } + /* We may learn something more from the var_off */ + __update_reg_bounds(dst_reg); +} + +static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + bool src_known = tnum_subreg_is_const(src_reg->var_off); + bool dst_known = tnum_subreg_is_const(dst_reg->var_off); + struct tnum var32_off = tnum_subreg(dst_reg->var_off); + + if (src_known && dst_known) { + __mark_reg32_known(dst_reg, var32_off.value); + return; + } + + /* We get both minimum and maximum from the var32_off. */ + dst_reg->u32_min_value = var32_off.value; + dst_reg->u32_max_value = var32_off.value | var32_off.mask; + + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { + dst_reg->s32_min_value = dst_reg->u32_min_value; + dst_reg->s32_max_value = dst_reg->u32_max_value; } else { - /* ORing two positives gives a positive, so safe to - * cast result into s64. - */ + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; + } +} + +static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + bool src_known = tnum_is_const(src_reg->var_off); + bool dst_known = tnum_is_const(dst_reg->var_off); + + if (src_known && dst_known) { + /* dst_reg->var_off.value has been updated earlier */ + __mark_reg_known(dst_reg, dst_reg->var_off.value); + return; + } + + /* We get both minimum and maximum from the var_off. */ + dst_reg->umin_value = dst_reg->var_off.value; + dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; + + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; + } else { + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; } - /* We may learn something more from the var_off */ + __update_reg_bounds(dst_reg); } @@ -5652,7 +14527,7 @@ static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, * 3) the signed bounds cross zero, so they tell us nothing * about the result * If the value in dst_reg is known nonnegative, then again the - * unsigned bounts capture the signed bounds. + * unsigned bounds capture the signed bounds. * Thus, in all cases it suffices to blow away our signed bounds * and rely on inferring new ones from the unsigned bounds and * var_off of the result. @@ -5683,7 +14558,7 @@ static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, * 3) the signed bounds cross zero, so they tell us nothing * about the result * If the value in dst_reg is known nonnegative, then again the - * unsigned bounts capture the signed bounds. + * unsigned bounds capture the signed bounds. * Thus, in all cases it suffices to blow away our signed bounds * and rely on inferring new ones from the unsigned bounds and * var_off of the result. @@ -5752,6 +14627,46 @@ static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, __update_reg_bounds(dst_reg); } +static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, + const struct bpf_reg_state *src_reg) +{ + bool src_is_const = false; + u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; + + if (insn_bitness == 32) { + if (tnum_subreg_is_const(src_reg->var_off) + && src_reg->s32_min_value == src_reg->s32_max_value + && src_reg->u32_min_value == src_reg->u32_max_value) + src_is_const = true; + } else { + if (tnum_is_const(src_reg->var_off) + && src_reg->smin_value == src_reg->smax_value + && src_reg->umin_value == src_reg->umax_value) + src_is_const = true; + } + + switch (BPF_OP(insn->code)) { + case BPF_ADD: + case BPF_SUB: + case BPF_AND: + case BPF_XOR: + case BPF_OR: + case BPF_MUL: + return true; + + /* Shift operators range is only computable if shift dimension operand + * is a constant. Shifts greater than 31 or 63 are undefined. This + * includes shifts by a negative number. + */ + case BPF_LSH: + case BPF_RSH: + case BPF_ARSH: + return (src_is_const && src_reg->umax_value < insn_bitness); + default: + return false; + } +} + /* WARNING: This function does calculations on 64-bit values, but the actual * execution may occur on 32-bit values. Therefore, things like bitshifts * need extra checks in the 32-bit case. @@ -5761,58 +14676,21 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, struct bpf_reg_state *dst_reg, struct bpf_reg_state src_reg) { - struct bpf_reg_state *regs = cur_regs(env); u8 opcode = BPF_OP(insn->code); - bool src_known; - s64 smin_val, smax_val; - u64 umin_val, umax_val; - s32 s32_min_val, s32_max_val; - u32 u32_min_val, u32_max_val; - u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; - u32 dst = insn->dst_reg; - int ret; bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); + int ret; - smin_val = src_reg.smin_value; - smax_val = src_reg.smax_value; - umin_val = src_reg.umin_value; - umax_val = src_reg.umax_value; - - s32_min_val = src_reg.s32_min_value; - s32_max_val = src_reg.s32_max_value; - u32_min_val = src_reg.u32_min_value; - u32_max_val = src_reg.u32_max_value; - - if (alu32) { - src_known = tnum_subreg_is_const(src_reg.var_off); - if ((src_known && - (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || - s32_min_val > s32_max_val || u32_min_val > u32_max_val) { - /* Taint dst register if offset had invalid bounds - * derived from e.g. dead branches. - */ - __mark_reg_unknown(env, dst_reg); - return 0; - } - } else { - src_known = tnum_is_const(src_reg.var_off); - if ((src_known && - (smin_val != smax_val || umin_val != umax_val)) || - smin_val > smax_val || umin_val > umax_val) { - /* Taint dst register if offset had invalid bounds - * derived from e.g. dead branches. - */ - __mark_reg_unknown(env, dst_reg); - return 0; - } - } - - if (!src_known && - opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { + if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { __mark_reg_unknown(env, dst_reg); return 0; } + if (sanitize_needed(opcode)) { + ret = sanitize_val_alu(env, insn); + if (ret < 0) + return sanitize_err(env, insn, ret, NULL, NULL); + } + /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. * There are two classes of instructions: The first class we track both * alu32 and alu64 sign/unsigned bounds independently this provides the @@ -5829,21 +14707,11 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, */ switch (opcode) { case BPF_ADD: - ret = sanitize_val_alu(env, insn); - if (ret < 0) { - verbose(env, "R%d tried to add from different pointers or scalars\n", dst); - return ret; - } scalar32_min_max_add(dst_reg, &src_reg); scalar_min_max_add(dst_reg, &src_reg); dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); break; case BPF_SUB: - ret = sanitize_val_alu(env, insn); - if (ret < 0) { - verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); - return ret; - } scalar32_min_max_sub(dst_reg, &src_reg); scalar_min_max_sub(dst_reg, &src_reg); dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); @@ -5863,57 +14731,37 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, scalar32_min_max_or(dst_reg, &src_reg); scalar_min_max_or(dst_reg, &src_reg); break; + case BPF_XOR: + dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); + scalar32_min_max_xor(dst_reg, &src_reg); + scalar_min_max_xor(dst_reg, &src_reg); + break; case BPF_LSH: - if (umax_val >= insn_bitness) { - /* Shifts greater than 31 or 63 are undefined. - * This includes shifts by a negative number. - */ - mark_reg_unknown(env, regs, insn->dst_reg); - break; - } if (alu32) scalar32_min_max_lsh(dst_reg, &src_reg); else scalar_min_max_lsh(dst_reg, &src_reg); break; case BPF_RSH: - if (umax_val >= insn_bitness) { - /* Shifts greater than 31 or 63 are undefined. - * This includes shifts by a negative number. - */ - mark_reg_unknown(env, regs, insn->dst_reg); - break; - } if (alu32) scalar32_min_max_rsh(dst_reg, &src_reg); else scalar_min_max_rsh(dst_reg, &src_reg); break; case BPF_ARSH: - if (umax_val >= insn_bitness) { - /* Shifts greater than 31 or 63 are undefined. - * This includes shifts by a negative number. - */ - mark_reg_unknown(env, regs, insn->dst_reg); - break; - } if (alu32) scalar32_min_max_arsh(dst_reg, &src_reg); else scalar_min_max_arsh(dst_reg, &src_reg); break; default: - mark_reg_unknown(env, regs, insn->dst_reg); break; } /* ALU32 ops are zero extended into 64bit register */ if (alu32) zext_32_to_64(dst_reg); - - __update_reg_bounds(dst_reg); - __reg_deduce_bounds(dst_reg); - __reg_bound_offset(dst_reg); + reg_bounds_sync(dst_reg); return 0; } @@ -5927,13 +14775,30 @@ static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, struct bpf_func_state *state = vstate->frame[vstate->curframe]; struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; + bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); u8 opcode = BPF_OP(insn->code); int err; dst_reg = ®s[insn->dst_reg]; src_reg = NULL; + + if (dst_reg->type == PTR_TO_ARENA) { + struct bpf_insn_aux_data *aux = cur_aux(env); + + if (BPF_CLASS(insn->code) == BPF_ALU64) + /* + * 32-bit operations zero upper bits automatically. + * 64-bit operations need to be converted to 32. + */ + aux->needs_zext = true; + + /* Any arithmetic operations are allowed on arena pointers */ + return 0; + } + if (dst_reg->type != SCALAR_VALUE) ptr_reg = dst_reg; + if (BPF_SRC(insn->code) == BPF_X) { src_reg = ®s[insn->src_reg]; if (src_reg->type != SCALAR_VALUE) { @@ -5968,6 +14833,11 @@ static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, return err; return adjust_ptr_min_max_vals(env, insn, dst_reg, src_reg); + } else if (dst_reg->precise) { + /* if dst_reg is precise, src_reg should be precise as well */ + err = mark_chain_precision(env, insn->src_reg); + if (err) + return err; } } else { /* Pretend the src is a reg with a known value, since we only @@ -5983,16 +14853,53 @@ static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, /* Got here implies adding two SCALAR_VALUEs */ if (WARN_ON_ONCE(ptr_reg)) { - print_verifier_state(env, state); + print_verifier_state(env, vstate, vstate->curframe, true); verbose(env, "verifier internal error: unexpected ptr_reg\n"); return -EINVAL; } if (WARN_ON(!src_reg)) { - print_verifier_state(env, state); + print_verifier_state(env, vstate, vstate->curframe, true); verbose(env, "verifier internal error: no src_reg\n"); return -EINVAL; } - return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); + err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); + if (err) + return err; + /* + * Compilers can generate the code + * r1 = r2 + * r1 += 0x1 + * if r2 < 1000 goto ... + * use r1 in memory access + * So for 64-bit alu remember constant delta between r2 and r1 and + * update r1 after 'if' condition. + */ + if (env->bpf_capable && + BPF_OP(insn->code) == BPF_ADD && !alu32 && + dst_reg->id && is_reg_const(src_reg, false)) { + u64 val = reg_const_value(src_reg, false); + + if ((dst_reg->id & BPF_ADD_CONST) || + /* prevent overflow in sync_linked_regs() later */ + val > (u32)S32_MAX) { + /* + * If the register already went through rX += val + * we cannot accumulate another val into rx->off. + */ + dst_reg->off = 0; + dst_reg->id = 0; + } else { + dst_reg->id |= BPF_ADD_CONST; + dst_reg->off = val; + } + } else { + /* + * Make sure ID is cleared otherwise dst_reg min/max could be + * incorrectly propagated into other registers by sync_linked_regs() + */ + dst_reg->id = 0; + } + return 0; } /* check validity of 32-bit and 64-bit arithmetic operations */ @@ -6004,7 +14911,7 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) if (opcode == BPF_END || opcode == BPF_NEG) { if (opcode == BPF_NEG) { - if (BPF_SRC(insn->code) != 0 || + if (BPF_SRC(insn->code) != BPF_K || insn->src_reg != BPF_REG_0 || insn->off != 0 || insn->imm != 0) { verbose(env, "BPF_NEG uses reserved fields\n"); @@ -6013,7 +14920,8 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) } else { if (insn->src_reg != BPF_REG_0 || insn->off != 0 || (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || - BPF_CLASS(insn->code) == BPF_ALU64) { + (BPF_CLASS(insn->code) == BPF_ALU64 && + BPF_SRC(insn->code) != BPF_TO_LE)) { verbose(env, "BPF_END uses reserved fields\n"); return -EINVAL; } @@ -6038,9 +14946,27 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) } else if (opcode == BPF_MOV) { if (BPF_SRC(insn->code) == BPF_X) { - if (insn->imm != 0 || insn->off != 0) { - verbose(env, "BPF_MOV uses reserved fields\n"); - return -EINVAL; + if (BPF_CLASS(insn->code) == BPF_ALU) { + if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || + insn->imm) { + verbose(env, "BPF_MOV uses reserved fields\n"); + return -EINVAL; + } + } else if (insn->off == BPF_ADDR_SPACE_CAST) { + if (insn->imm != 1 && insn->imm != 1u << 16) { + verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); + return -EINVAL; + } + if (!env->prog->aux->arena) { + verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); + return -EINVAL; + } + } else { + if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && + insn->off != 32) || insn->imm) { + verbose(env, "BPF_MOV uses reserved fields\n"); + return -EINVAL; + } } /* check src operand */ @@ -6064,12 +14990,45 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) struct bpf_reg_state *dst_reg = regs + insn->dst_reg; if (BPF_CLASS(insn->code) == BPF_ALU64) { - /* case: R1 = R2 - * copy register state to dest reg - */ - *dst_reg = *src_reg; - dst_reg->live |= REG_LIVE_WRITTEN; - dst_reg->subreg_def = DEF_NOT_SUBREG; + if (insn->imm) { + /* off == BPF_ADDR_SPACE_CAST */ + mark_reg_unknown(env, regs, insn->dst_reg); + if (insn->imm == 1) { /* cast from as(1) to as(0) */ + dst_reg->type = PTR_TO_ARENA; + /* PTR_TO_ARENA is 32-bit */ + dst_reg->subreg_def = env->insn_idx + 1; + } + } else if (insn->off == 0) { + /* case: R1 = R2 + * copy register state to dest reg + */ + assign_scalar_id_before_mov(env, src_reg); + copy_register_state(dst_reg, src_reg); + dst_reg->live |= REG_LIVE_WRITTEN; + dst_reg->subreg_def = DEF_NOT_SUBREG; + } else { + /* case: R1 = (s8, s16 s32)R2 */ + if (is_pointer_value(env, insn->src_reg)) { + verbose(env, + "R%d sign-extension part of pointer\n", + insn->src_reg); + return -EACCES; + } else if (src_reg->type == SCALAR_VALUE) { + bool no_sext; + + no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); + if (no_sext) + assign_scalar_id_before_mov(env, src_reg); + copy_register_state(dst_reg, src_reg); + if (!no_sext) + dst_reg->id = 0; + coerce_reg_to_size_sx(dst_reg, insn->off >> 3); + dst_reg->live |= REG_LIVE_WRITTEN; + dst_reg->subreg_def = DEF_NOT_SUBREG; + } else { + mark_reg_unknown(env, regs, insn->dst_reg); + } + } } else { /* R1 = (u32) R2 */ if (is_pointer_value(env, insn->src_reg)) { @@ -6078,14 +15037,39 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) insn->src_reg); return -EACCES; } else if (src_reg->type == SCALAR_VALUE) { - *dst_reg = *src_reg; - dst_reg->live |= REG_LIVE_WRITTEN; - dst_reg->subreg_def = env->insn_idx + 1; + if (insn->off == 0) { + bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; + + if (is_src_reg_u32) + assign_scalar_id_before_mov(env, src_reg); + copy_register_state(dst_reg, src_reg); + /* Make sure ID is cleared if src_reg is not in u32 + * range otherwise dst_reg min/max could be incorrectly + * propagated into src_reg by sync_linked_regs() + */ + if (!is_src_reg_u32) + dst_reg->id = 0; + dst_reg->live |= REG_LIVE_WRITTEN; + dst_reg->subreg_def = env->insn_idx + 1; + } else { + /* case: W1 = (s8, s16)W2 */ + bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); + + if (no_sext) + assign_scalar_id_before_mov(env, src_reg); + copy_register_state(dst_reg, src_reg); + if (!no_sext) + dst_reg->id = 0; + dst_reg->live |= REG_LIVE_WRITTEN; + dst_reg->subreg_def = env->insn_idx + 1; + coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); + } } else { mark_reg_unknown(env, regs, insn->dst_reg); } zext_32_to_64(dst_reg); + reg_bounds_sync(dst_reg); } } else { /* case: R = imm @@ -6110,7 +15094,8 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) } else { /* all other ALU ops: and, sub, xor, add, ... */ if (BPF_SRC(insn->code) == BPF_X) { - if (insn->imm != 0 || insn->off != 0) { + if (insn->imm != 0 || insn->off > 1 || + (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { verbose(env, "BPF_ALU uses reserved fields\n"); return -EINVAL; } @@ -6119,7 +15104,8 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) if (err) return err; } else { - if (insn->src_reg != BPF_REG_0 || insn->off != 0) { + if (insn->src_reg != BPF_REG_0 || insn->off > 1 || + (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { verbose(env, "BPF_ALU uses reserved fields\n"); return -EINVAL; } @@ -6148,35 +15134,12 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) /* check dest operand */ err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); + err = err ?: adjust_reg_min_max_vals(env, insn); if (err) return err; - - return adjust_reg_min_max_vals(env, insn); } - return 0; -} - -static void __find_good_pkt_pointers(struct bpf_func_state *state, - struct bpf_reg_state *dst_reg, - enum bpf_reg_type type, u16 new_range) -{ - struct bpf_reg_state *reg; - int i; - - for (i = 0; i < MAX_BPF_REG; i++) { - reg = &state->regs[i]; - if (reg->type == type && reg->id == dst_reg->id) - /* keep the maximum range already checked */ - reg->range = max(reg->range, new_range); - } - - bpf_for_each_spilled_reg(i, state, reg) { - if (!reg) - continue; - if (reg->type == type && reg->id == dst_reg->id) - reg->range = max(reg->range, new_range); - } + return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); } static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, @@ -6184,8 +15147,9 @@ static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, enum bpf_reg_type type, bool range_right_open) { - u16 new_range; - int i; + struct bpf_func_state *state; + struct bpf_reg_state *reg; + int new_range; if (dst_reg->off < 0 || (dst_reg->off == 0 && range_right_open)) @@ -6201,7 +15165,7 @@ static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, new_range = dst_reg->off; if (range_right_open) - new_range--; + new_range++; /* Examples for register markings: * @@ -6250,77 +15214,137 @@ static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, * the range won't allow anything. * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. */ - for (i = 0; i <= vstate->curframe; i++) - __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, - new_range); + bpf_for_each_reg_in_vstate(vstate, state, reg, ({ + if (reg->type == type && reg->id == dst_reg->id) + /* keep the maximum range already checked */ + reg->range = max(reg->range, new_range); + })); } -static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) -{ - struct tnum subreg = tnum_subreg(reg->var_off); - s32 sval = (s32)val; +/* + * <reg1> <op> <reg2>, currently assuming reg2 is a constant + */ +static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, + u8 opcode, bool is_jmp32) +{ + struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; + struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; + u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; + u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; + s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; + s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; + u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; + u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; + s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; + s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; switch (opcode) { case BPF_JEQ: - if (tnum_is_const(subreg)) - return !!tnum_equals_const(subreg, val); + /* constants, umin/umax and smin/smax checks would be + * redundant in this case because they all should match + */ + if (tnum_is_const(t1) && tnum_is_const(t2)) + return t1.value == t2.value; + /* non-overlapping ranges */ + if (umin1 > umax2 || umax1 < umin2) + return 0; + if (smin1 > smax2 || smax1 < smin2) + return 0; + if (!is_jmp32) { + /* if 64-bit ranges are inconclusive, see if we can + * utilize 32-bit subrange knowledge to eliminate + * branches that can't be taken a priori + */ + if (reg1->u32_min_value > reg2->u32_max_value || + reg1->u32_max_value < reg2->u32_min_value) + return 0; + if (reg1->s32_min_value > reg2->s32_max_value || + reg1->s32_max_value < reg2->s32_min_value) + return 0; + } break; case BPF_JNE: - if (tnum_is_const(subreg)) - return !tnum_equals_const(subreg, val); + /* constants, umin/umax and smin/smax checks would be + * redundant in this case because they all should match + */ + if (tnum_is_const(t1) && tnum_is_const(t2)) + return t1.value != t2.value; + /* non-overlapping ranges */ + if (umin1 > umax2 || umax1 < umin2) + return 1; + if (smin1 > smax2 || smax1 < smin2) + return 1; + if (!is_jmp32) { + /* if 64-bit ranges are inconclusive, see if we can + * utilize 32-bit subrange knowledge to eliminate + * branches that can't be taken a priori + */ + if (reg1->u32_min_value > reg2->u32_max_value || + reg1->u32_max_value < reg2->u32_min_value) + return 1; + if (reg1->s32_min_value > reg2->s32_max_value || + reg1->s32_max_value < reg2->s32_min_value) + return 1; + } break; case BPF_JSET: - if ((~subreg.mask & subreg.value) & val) + if (!is_reg_const(reg2, is_jmp32)) { + swap(reg1, reg2); + swap(t1, t2); + } + if (!is_reg_const(reg2, is_jmp32)) + return -1; + if ((~t1.mask & t1.value) & t2.value) return 1; - if (!((subreg.mask | subreg.value) & val)) + if (!((t1.mask | t1.value) & t2.value)) return 0; break; case BPF_JGT: - if (reg->u32_min_value > val) + if (umin1 > umax2) return 1; - else if (reg->u32_max_value <= val) + else if (umax1 <= umin2) return 0; break; case BPF_JSGT: - if (reg->s32_min_value > sval) + if (smin1 > smax2) return 1; - else if (reg->s32_max_value < sval) + else if (smax1 <= smin2) return 0; break; case BPF_JLT: - if (reg->u32_max_value < val) + if (umax1 < umin2) return 1; - else if (reg->u32_min_value >= val) + else if (umin1 >= umax2) return 0; break; case BPF_JSLT: - if (reg->s32_max_value < sval) + if (smax1 < smin2) return 1; - else if (reg->s32_min_value >= sval) + else if (smin1 >= smax2) return 0; break; case BPF_JGE: - if (reg->u32_min_value >= val) + if (umin1 >= umax2) return 1; - else if (reg->u32_max_value < val) + else if (umax1 < umin2) return 0; break; case BPF_JSGE: - if (reg->s32_min_value >= sval) + if (smin1 >= smax2) return 1; - else if (reg->s32_max_value < sval) + else if (smax1 < smin2) return 0; break; case BPF_JLE: - if (reg->u32_max_value <= val) + if (umax1 <= umin2) return 1; - else if (reg->u32_min_value > val) + else if (umin1 > umax2) return 0; break; case BPF_JSLE: - if (reg->s32_max_value <= sval) + if (smax1 <= smin2) return 1; - else if (reg->s32_min_value > sval) + else if (smin1 > smax2) return 0; break; } @@ -6328,96 +15352,99 @@ static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) return -1; } +static int flip_opcode(u32 opcode) +{ + /* How can we transform "a <op> b" into "b <op> a"? */ + static const u8 opcode_flip[16] = { + /* these stay the same */ + [BPF_JEQ >> 4] = BPF_JEQ, + [BPF_JNE >> 4] = BPF_JNE, + [BPF_JSET >> 4] = BPF_JSET, + /* these swap "lesser" and "greater" (L and G in the opcodes) */ + [BPF_JGE >> 4] = BPF_JLE, + [BPF_JGT >> 4] = BPF_JLT, + [BPF_JLE >> 4] = BPF_JGE, + [BPF_JLT >> 4] = BPF_JGT, + [BPF_JSGE >> 4] = BPF_JSLE, + [BPF_JSGT >> 4] = BPF_JSLT, + [BPF_JSLE >> 4] = BPF_JSGE, + [BPF_JSLT >> 4] = BPF_JSGT + }; + return opcode_flip[opcode >> 4]; +} -static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) +static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg, + u8 opcode) { - s64 sval = (s64)val; + struct bpf_reg_state *pkt; + + if (src_reg->type == PTR_TO_PACKET_END) { + pkt = dst_reg; + } else if (dst_reg->type == PTR_TO_PACKET_END) { + pkt = src_reg; + opcode = flip_opcode(opcode); + } else { + return -1; + } + + if (pkt->range >= 0) + return -1; switch (opcode) { - case BPF_JEQ: - if (tnum_is_const(reg->var_off)) - return !!tnum_equals_const(reg->var_off, val); - break; - case BPF_JNE: - if (tnum_is_const(reg->var_off)) - return !tnum_equals_const(reg->var_off, val); - break; - case BPF_JSET: - if ((~reg->var_off.mask & reg->var_off.value) & val) - return 1; - if (!((reg->var_off.mask | reg->var_off.value) & val)) - return 0; - break; + case BPF_JLE: + /* pkt <= pkt_end */ + fallthrough; case BPF_JGT: - if (reg->umin_value > val) - return 1; - else if (reg->umax_value <= val) - return 0; - break; - case BPF_JSGT: - if (reg->smin_value > sval) - return 1; - else if (reg->smax_value < sval) - return 0; + /* pkt > pkt_end */ + if (pkt->range == BEYOND_PKT_END) + /* pkt has at last one extra byte beyond pkt_end */ + return opcode == BPF_JGT; break; case BPF_JLT: - if (reg->umax_value < val) - return 1; - else if (reg->umin_value >= val) - return 0; - break; - case BPF_JSLT: - if (reg->smax_value < sval) - return 1; - else if (reg->smin_value >= sval) - return 0; - break; + /* pkt < pkt_end */ + fallthrough; case BPF_JGE: - if (reg->umin_value >= val) - return 1; - else if (reg->umax_value < val) - return 0; - break; - case BPF_JSGE: - if (reg->smin_value >= sval) - return 1; - else if (reg->smax_value < sval) - return 0; - break; - case BPF_JLE: - if (reg->umax_value <= val) - return 1; - else if (reg->umin_value > val) - return 0; - break; - case BPF_JSLE: - if (reg->smax_value <= sval) - return 1; - else if (reg->smin_value > sval) - return 0; + /* pkt >= pkt_end */ + if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) + return opcode == BPF_JGE; break; } - return -1; } -/* compute branch direction of the expression "if (reg opcode val) goto target;" +/* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" * and return: * 1 - branch will be taken and "goto target" will be executed * 0 - branch will not be taken and fall-through to next insn - * -1 - unknown. Example: "if (reg < 5)" is unknown when register value + * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value * range [0,10] */ -static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, - bool is_jmp32) +static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, + u8 opcode, bool is_jmp32) { - if (__is_pointer_value(false, reg)) { - if (!reg_type_not_null(reg->type)) + if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) + return is_pkt_ptr_branch_taken(reg1, reg2, opcode); + + if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { + u64 val; + + /* arrange that reg2 is a scalar, and reg1 is a pointer */ + if (!is_reg_const(reg2, is_jmp32)) { + opcode = flip_opcode(opcode); + swap(reg1, reg2); + } + /* and ensure that reg2 is a constant */ + if (!is_reg_const(reg2, is_jmp32)) + return -1; + + if (!reg_not_null(reg1)) return -1; /* If pointer is valid tests against zero will fail so we can * use this to direct branch taken. */ + val = reg_const_value(reg2, is_jmp32); if (val != 0) return -1; @@ -6431,293 +15458,279 @@ static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, } } - if (is_jmp32) - return is_branch32_taken(reg, val, opcode); - return is_branch64_taken(reg, val, opcode); + /* now deal with two scalars, but not necessarily constants */ + return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); } -/* Adjusts the register min/max values in the case that the dst_reg is the - * variable register that we are working on, and src_reg is a constant or we're - * simply doing a BPF_K check. - * In JEQ/JNE cases we also adjust the var_off values. +/* Opcode that corresponds to a *false* branch condition. + * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 */ -static void reg_set_min_max(struct bpf_reg_state *true_reg, - struct bpf_reg_state *false_reg, - u64 val, u32 val32, - u8 opcode, bool is_jmp32) -{ - struct tnum false_32off = tnum_subreg(false_reg->var_off); - struct tnum false_64off = false_reg->var_off; - struct tnum true_32off = tnum_subreg(true_reg->var_off); - struct tnum true_64off = true_reg->var_off; - s64 sval = (s64)val; - s32 sval32 = (s32)val32; - - /* If the dst_reg is a pointer, we can't learn anything about its - * variable offset from the compare (unless src_reg were a pointer into - * the same object, but we don't bother with that. - * Since false_reg and true_reg have the same type by construction, we - * only need to check one of them for pointerness. - */ - if (__is_pointer_value(false, false_reg)) - return; +static u8 rev_opcode(u8 opcode) +{ + switch (opcode) { + case BPF_JEQ: return BPF_JNE; + case BPF_JNE: return BPF_JEQ; + /* JSET doesn't have it's reverse opcode in BPF, so add + * BPF_X flag to denote the reverse of that operation + */ + case BPF_JSET: return BPF_JSET | BPF_X; + case BPF_JSET | BPF_X: return BPF_JSET; + case BPF_JGE: return BPF_JLT; + case BPF_JGT: return BPF_JLE; + case BPF_JLE: return BPF_JGT; + case BPF_JLT: return BPF_JGE; + case BPF_JSGE: return BPF_JSLT; + case BPF_JSGT: return BPF_JSLE; + case BPF_JSLE: return BPF_JSGT; + case BPF_JSLT: return BPF_JSGE; + default: return 0; + } +} + +/* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ +static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, + u8 opcode, bool is_jmp32) +{ + struct tnum t; + u64 val; + + /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ + switch (opcode) { + case BPF_JGE: + case BPF_JGT: + case BPF_JSGE: + case BPF_JSGT: + opcode = flip_opcode(opcode); + swap(reg1, reg2); + break; + default: + break; + } switch (opcode) { case BPF_JEQ: + if (is_jmp32) { + reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); + reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); + reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); + reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); + reg2->u32_min_value = reg1->u32_min_value; + reg2->u32_max_value = reg1->u32_max_value; + reg2->s32_min_value = reg1->s32_min_value; + reg2->s32_max_value = reg1->s32_max_value; + + t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); + reg1->var_off = tnum_with_subreg(reg1->var_off, t); + reg2->var_off = tnum_with_subreg(reg2->var_off, t); + } else { + reg1->umin_value = max(reg1->umin_value, reg2->umin_value); + reg1->umax_value = min(reg1->umax_value, reg2->umax_value); + reg1->smin_value = max(reg1->smin_value, reg2->smin_value); + reg1->smax_value = min(reg1->smax_value, reg2->smax_value); + reg2->umin_value = reg1->umin_value; + reg2->umax_value = reg1->umax_value; + reg2->smin_value = reg1->smin_value; + reg2->smax_value = reg1->smax_value; + + reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); + reg2->var_off = reg1->var_off; + } + break; case BPF_JNE: - { - struct bpf_reg_state *reg = - opcode == BPF_JEQ ? true_reg : false_reg; + if (!is_reg_const(reg2, is_jmp32)) + swap(reg1, reg2); + if (!is_reg_const(reg2, is_jmp32)) + break; - /* For BPF_JEQ, if this is false we know nothing Jon Snow, but - * if it is true we know the value for sure. Likewise for - * BPF_JNE. + /* try to recompute the bound of reg1 if reg2 is a const and + * is exactly the edge of reg1. */ - if (is_jmp32) - __mark_reg32_known(reg, val32); - else - __mark_reg_known(reg, val); + val = reg_const_value(reg2, is_jmp32); + if (is_jmp32) { + /* u32_min_value is not equal to 0xffffffff at this point, + * because otherwise u32_max_value is 0xffffffff as well, + * in such a case both reg1 and reg2 would be constants, + * jump would be predicted and reg_set_min_max() won't + * be called. + * + * Same reasoning works for all {u,s}{min,max}{32,64} cases + * below. + */ + if (reg1->u32_min_value == (u32)val) + reg1->u32_min_value++; + if (reg1->u32_max_value == (u32)val) + reg1->u32_max_value--; + if (reg1->s32_min_value == (s32)val) + reg1->s32_min_value++; + if (reg1->s32_max_value == (s32)val) + reg1->s32_max_value--; + } else { + if (reg1->umin_value == (u64)val) + reg1->umin_value++; + if (reg1->umax_value == (u64)val) + reg1->umax_value--; + if (reg1->smin_value == (s64)val) + reg1->smin_value++; + if (reg1->smax_value == (s64)val) + reg1->smax_value--; + } break; - } case BPF_JSET: + if (!is_reg_const(reg2, is_jmp32)) + swap(reg1, reg2); + if (!is_reg_const(reg2, is_jmp32)) + break; + val = reg_const_value(reg2, is_jmp32); + /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) + * requires single bit to learn something useful. E.g., if we + * know that `r1 & 0x3` is true, then which bits (0, 1, or both) + * are actually set? We can learn something definite only if + * it's a single-bit value to begin with. + * + * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have + * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor + * bit 1 is set, which we can readily use in adjustments. + */ + if (!is_power_of_2(val)) + break; if (is_jmp32) { - false_32off = tnum_and(false_32off, tnum_const(~val32)); - if (is_power_of_2(val32)) - true_32off = tnum_or(true_32off, - tnum_const(val32)); + t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); + reg1->var_off = tnum_with_subreg(reg1->var_off, t); } else { - false_64off = tnum_and(false_64off, tnum_const(~val)); - if (is_power_of_2(val)) - true_64off = tnum_or(true_64off, - tnum_const(val)); + reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); } break; - case BPF_JGE: - case BPF_JGT: - { + case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ + if (!is_reg_const(reg2, is_jmp32)) + swap(reg1, reg2); + if (!is_reg_const(reg2, is_jmp32)) + break; + val = reg_const_value(reg2, is_jmp32); if (is_jmp32) { - u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; - u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; - - false_reg->u32_max_value = min(false_reg->u32_max_value, - false_umax); - true_reg->u32_min_value = max(true_reg->u32_min_value, - true_umin); + t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); + reg1->var_off = tnum_with_subreg(reg1->var_off, t); } else { - u64 false_umax = opcode == BPF_JGT ? val : val - 1; - u64 true_umin = opcode == BPF_JGT ? val + 1 : val; - - false_reg->umax_value = min(false_reg->umax_value, false_umax); - true_reg->umin_value = max(true_reg->umin_value, true_umin); + reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); } break; - } - case BPF_JSGE: - case BPF_JSGT: - { + case BPF_JLE: if (is_jmp32) { - s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; - s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; - - false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); - true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); + reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); + reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); } else { - s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; - s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; - - false_reg->smax_value = min(false_reg->smax_value, false_smax); - true_reg->smin_value = max(true_reg->smin_value, true_smin); + reg1->umax_value = min(reg1->umax_value, reg2->umax_value); + reg2->umin_value = max(reg1->umin_value, reg2->umin_value); } break; - } - case BPF_JLE: case BPF_JLT: - { if (is_jmp32) { - u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; - u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; - - false_reg->u32_min_value = max(false_reg->u32_min_value, - false_umin); - true_reg->u32_max_value = min(true_reg->u32_max_value, - true_umax); + reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); + reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); } else { - u64 false_umin = opcode == BPF_JLT ? val : val + 1; - u64 true_umax = opcode == BPF_JLT ? val - 1 : val; - - false_reg->umin_value = max(false_reg->umin_value, false_umin); - true_reg->umax_value = min(true_reg->umax_value, true_umax); + reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); + reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); } break; - } case BPF_JSLE: + if (is_jmp32) { + reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); + reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); + } else { + reg1->smax_value = min(reg1->smax_value, reg2->smax_value); + reg2->smin_value = max(reg1->smin_value, reg2->smin_value); + } + break; case BPF_JSLT: - { if (is_jmp32) { - s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; - s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; - - false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); - true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); + reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); + reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); } else { - s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; - s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; - - false_reg->smin_value = max(false_reg->smin_value, false_smin); - true_reg->smax_value = min(true_reg->smax_value, true_smax); + reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); + reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); } break; - } default: return; } - - if (is_jmp32) { - false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), - tnum_subreg(false_32off)); - true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), - tnum_subreg(true_32off)); - __reg_combine_32_into_64(false_reg); - __reg_combine_32_into_64(true_reg); - } else { - false_reg->var_off = false_64off; - true_reg->var_off = true_64off; - __reg_combine_64_into_32(false_reg); - __reg_combine_64_into_32(true_reg); - } } -/* Same as above, but for the case that dst_reg holds a constant and src_reg is - * the variable reg. +/* Adjusts the register min/max values in the case that the dst_reg and + * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K + * check, in which case we have a fake SCALAR_VALUE representing insn->imm). + * Technically we can do similar adjustments for pointers to the same object, + * but we don't support that right now. */ -static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, - struct bpf_reg_state *false_reg, - u64 val, u32 val32, - u8 opcode, bool is_jmp32) +static int reg_set_min_max(struct bpf_verifier_env *env, + struct bpf_reg_state *true_reg1, + struct bpf_reg_state *true_reg2, + struct bpf_reg_state *false_reg1, + struct bpf_reg_state *false_reg2, + u8 opcode, bool is_jmp32) { - /* How can we transform "a <op> b" into "b <op> a"? */ - static const u8 opcode_flip[16] = { - /* these stay the same */ - [BPF_JEQ >> 4] = BPF_JEQ, - [BPF_JNE >> 4] = BPF_JNE, - [BPF_JSET >> 4] = BPF_JSET, - /* these swap "lesser" and "greater" (L and G in the opcodes) */ - [BPF_JGE >> 4] = BPF_JLE, - [BPF_JGT >> 4] = BPF_JLT, - [BPF_JLE >> 4] = BPF_JGE, - [BPF_JLT >> 4] = BPF_JGT, - [BPF_JSGE >> 4] = BPF_JSLE, - [BPF_JSGT >> 4] = BPF_JSLT, - [BPF_JSLE >> 4] = BPF_JSGE, - [BPF_JSLT >> 4] = BPF_JSGT - }; - opcode = opcode_flip[opcode >> 4]; - /* This uses zero as "not present in table"; luckily the zero opcode, - * BPF_JA, can't get here. - */ - if (opcode) - reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); -} - -/* Regs are known to be equal, so intersect their min/max/var_off */ -static void __reg_combine_min_max(struct bpf_reg_state *src_reg, - struct bpf_reg_state *dst_reg) -{ - src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, - dst_reg->umin_value); - src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, - dst_reg->umax_value); - src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, - dst_reg->smin_value); - src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, - dst_reg->smax_value); - src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, - dst_reg->var_off); - /* We might have learned new bounds from the var_off. */ - __update_reg_bounds(src_reg); - __update_reg_bounds(dst_reg); - /* We might have learned something about the sign bit. */ - __reg_deduce_bounds(src_reg); - __reg_deduce_bounds(dst_reg); - /* We might have learned some bits from the bounds. */ - __reg_bound_offset(src_reg); - __reg_bound_offset(dst_reg); - /* Intersecting with the old var_off might have improved our bounds - * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), - * then new var_off is (0; 0x7f...fc) which improves our umax. + int err; + + /* If either register is a pointer, we can't learn anything about its + * variable offset from the compare (unless they were a pointer into + * the same object, but we don't bother with that). */ - __update_reg_bounds(src_reg); - __update_reg_bounds(dst_reg); -} + if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) + return 0; -static void reg_combine_min_max(struct bpf_reg_state *true_src, - struct bpf_reg_state *true_dst, - struct bpf_reg_state *false_src, - struct bpf_reg_state *false_dst, - u8 opcode) -{ - switch (opcode) { - case BPF_JEQ: - __reg_combine_min_max(true_src, true_dst); - break; - case BPF_JNE: - __reg_combine_min_max(false_src, false_dst); - break; - } + /* fallthrough (FALSE) branch */ + regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); + reg_bounds_sync(false_reg1); + reg_bounds_sync(false_reg2); + + /* jump (TRUE) branch */ + regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); + reg_bounds_sync(true_reg1); + reg_bounds_sync(true_reg2); + + err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); + err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); + err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); + err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); + return err; } static void mark_ptr_or_null_reg(struct bpf_func_state *state, struct bpf_reg_state *reg, u32 id, bool is_null) { - if (reg_type_may_be_null(reg->type) && reg->id == id) { - /* Old offset (both fixed and variable parts) should - * have been known-zero, because we don't allow pointer - * arithmetic on pointers that might be NULL. + if (type_may_be_null(reg->type) && reg->id == id && + (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { + /* Old offset (both fixed and variable parts) should have been + * known-zero, because we don't allow pointer arithmetic on + * pointers that might be NULL. If we see this happening, don't + * convert the register. + * + * But in some cases, some helpers that return local kptrs + * advance offset for the returned pointer. In those cases, it + * is fine to expect to see reg->off. */ - if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || - !tnum_equals_const(reg->var_off, 0) || - reg->off)) { - __mark_reg_known_zero(reg); - reg->off = 0; - } + if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) + return; + if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && + WARN_ON_ONCE(reg->off)) + return; + if (is_null) { reg->type = SCALAR_VALUE; - } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { - const struct bpf_map *map = reg->map_ptr; - - if (map->inner_map_meta) { - reg->type = CONST_PTR_TO_MAP; - reg->map_ptr = map->inner_map_meta; - } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { - reg->type = PTR_TO_XDP_SOCK; - } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || - map->map_type == BPF_MAP_TYPE_SOCKHASH) { - reg->type = PTR_TO_SOCKET; - } else { - reg->type = PTR_TO_MAP_VALUE; - } - } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { - reg->type = PTR_TO_SOCKET; - } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { - reg->type = PTR_TO_SOCK_COMMON; - } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { - reg->type = PTR_TO_TCP_SOCK; - } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { - reg->type = PTR_TO_BTF_ID; - } else if (reg->type == PTR_TO_MEM_OR_NULL) { - reg->type = PTR_TO_MEM; - } - if (is_null) { /* We don't need id and ref_obj_id from this point * onwards anymore, thus we should better reset it, * so that state pruning has chances to take effect. */ reg->id = 0; reg->ref_obj_id = 0; - } else if (!reg_may_point_to_spin_lock(reg)) { + + return; + } + + mark_ptr_not_null_reg(reg); + + if (!reg_may_point_to_spin_lock(reg)) { /* For not-NULL ptr, reg->ref_obj_id will be reset - * in release_reg_references(). + * in release_reference(). * * reg->id is still used by spin_lock ptr. Other * than spin_lock ptr type, reg->id can be reset. @@ -6727,22 +15740,6 @@ static void mark_ptr_or_null_reg(struct bpf_func_state *state, } } -static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, - bool is_null) -{ - struct bpf_reg_state *reg; - int i; - - for (i = 0; i < MAX_BPF_REG; i++) - mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); - - bpf_for_each_spilled_reg(i, state, reg) { - if (!reg) - continue; - mark_ptr_or_null_reg(state, reg, id, is_null); - } -} - /* The logic is similar to find_good_pkt_pointers(), both could eventually * be folded together at some point. */ @@ -6750,20 +15747,20 @@ static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, bool is_null) { struct bpf_func_state *state = vstate->frame[vstate->curframe]; - struct bpf_reg_state *regs = state->regs; + struct bpf_reg_state *regs = state->regs, *reg; u32 ref_obj_id = regs[regno].ref_obj_id; u32 id = regs[regno].id; - int i; if (ref_obj_id && ref_obj_id == id && is_null) /* regs[regno] is in the " == NULL" branch. * No one could have freed the reference state before * doing the NULL check. */ - WARN_ON_ONCE(release_reference_state(state, id)); + WARN_ON_ONCE(release_reference_nomark(vstate, id)); - for (i = 0; i <= vstate->curframe; i++) - __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); + bpf_for_each_reg_in_vstate(vstate, state, reg, ({ + mark_ptr_or_null_reg(state, reg, id, is_null); + })); } static bool try_match_pkt_pointers(const struct bpf_insn *insn, @@ -6788,6 +15785,7 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ find_good_pkt_pointers(this_branch, dst_reg, dst_reg->type, false); + mark_pkt_end(other_branch, insn->dst_reg, true); } else if ((dst_reg->type == PTR_TO_PACKET_END && src_reg->type == PTR_TO_PACKET) || (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && @@ -6795,6 +15793,7 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, /* pkt_end > pkt_data', pkt_data > pkt_meta' */ find_good_pkt_pointers(other_branch, src_reg, src_reg->type, true); + mark_pkt_end(this_branch, insn->src_reg, false); } else { return false; } @@ -6807,6 +15806,7 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ find_good_pkt_pointers(other_branch, dst_reg, dst_reg->type, true); + mark_pkt_end(this_branch, insn->dst_reg, false); } else if ((dst_reg->type == PTR_TO_PACKET_END && src_reg->type == PTR_TO_PACKET) || (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && @@ -6814,6 +15814,7 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, /* pkt_end < pkt_data', pkt_data > pkt_meta' */ find_good_pkt_pointers(this_branch, src_reg, src_reg->type, false); + mark_pkt_end(other_branch, insn->src_reg, true); } else { return false; } @@ -6826,6 +15827,7 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ find_good_pkt_pointers(this_branch, dst_reg, dst_reg->type, true); + mark_pkt_end(other_branch, insn->dst_reg, false); } else if ((dst_reg->type == PTR_TO_PACKET_END && src_reg->type == PTR_TO_PACKET) || (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && @@ -6833,6 +15835,7 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ find_good_pkt_pointers(other_branch, src_reg, src_reg->type, false); + mark_pkt_end(this_branch, insn->src_reg, true); } else { return false; } @@ -6845,6 +15848,7 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ find_good_pkt_pointers(other_branch, dst_reg, dst_reg->type, false); + mark_pkt_end(this_branch, insn->dst_reg, true); } else if ((dst_reg->type == PTR_TO_PACKET_END && src_reg->type == PTR_TO_PACKET) || (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && @@ -6852,6 +15856,7 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ find_good_pkt_pointers(this_branch, src_reg, src_reg->type, true); + mark_pkt_end(other_branch, insn->src_reg, false); } else { return false; } @@ -6863,6 +15868,99 @@ static bool try_match_pkt_pointers(const struct bpf_insn *insn, return true; } +static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, + u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) +{ + struct linked_reg *e; + + if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) + return; + + e = linked_regs_push(reg_set); + if (e) { + e->frameno = frameno; + e->is_reg = is_reg; + e->regno = spi_or_reg; + } else { + reg->id = 0; + } +} + +/* For all R being scalar registers or spilled scalar registers + * in verifier state, save R in linked_regs if R->id == id. + * If there are too many Rs sharing same id, reset id for leftover Rs. + */ +static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, + struct linked_regs *linked_regs) +{ + struct bpf_func_state *func; + struct bpf_reg_state *reg; + int i, j; + + id = id & ~BPF_ADD_CONST; + for (i = vstate->curframe; i >= 0; i--) { + func = vstate->frame[i]; + for (j = 0; j < BPF_REG_FP; j++) { + reg = &func->regs[j]; + __collect_linked_regs(linked_regs, reg, id, i, j, true); + } + for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { + if (!is_spilled_reg(&func->stack[j])) + continue; + reg = &func->stack[j].spilled_ptr; + __collect_linked_regs(linked_regs, reg, id, i, j, false); + } + } +} + +/* For all R in linked_regs, copy known_reg range into R + * if R->id == known_reg->id. + */ +static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, + struct linked_regs *linked_regs) +{ + struct bpf_reg_state fake_reg; + struct bpf_reg_state *reg; + struct linked_reg *e; + int i; + + for (i = 0; i < linked_regs->cnt; ++i) { + e = &linked_regs->entries[i]; + reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] + : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; + if (reg->type != SCALAR_VALUE || reg == known_reg) + continue; + if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) + continue; + if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || + reg->off == known_reg->off) { + s32 saved_subreg_def = reg->subreg_def; + + copy_register_state(reg, known_reg); + reg->subreg_def = saved_subreg_def; + } else { + s32 saved_subreg_def = reg->subreg_def; + s32 saved_off = reg->off; + + fake_reg.type = SCALAR_VALUE; + __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); + + /* reg = known_reg; reg += delta */ + copy_register_state(reg, known_reg); + /* + * Must preserve off, id and add_const flag, + * otherwise another sync_linked_regs() will be incorrect. + */ + reg->off = saved_off; + reg->subreg_def = saved_subreg_def; + + scalar32_min_max_add(reg, &fake_reg); + scalar_min_max_add(reg, &fake_reg); + reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); + } + } +} + static int check_cond_jmp_op(struct bpf_verifier_env *env, struct bpf_insn *insn, int *insn_idx) { @@ -6870,17 +15968,49 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env, struct bpf_verifier_state *other_branch; struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; + struct bpf_reg_state *eq_branch_regs; + struct linked_regs linked_regs = {}; u8 opcode = BPF_OP(insn->code); bool is_jmp32; int pred = -1; int err; /* Only conditional jumps are expected to reach here. */ - if (opcode == BPF_JA || opcode > BPF_JSLE) { + if (opcode == BPF_JA || opcode > BPF_JCOND) { verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); return -EINVAL; } + if (opcode == BPF_JCOND) { + struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; + int idx = *insn_idx; + + if (insn->code != (BPF_JMP | BPF_JCOND) || + insn->src_reg != BPF_MAY_GOTO || + insn->dst_reg || insn->imm) { + verbose(env, "invalid may_goto imm %d\n", insn->imm); + return -EINVAL; + } + prev_st = find_prev_entry(env, cur_st->parent, idx); + + /* branch out 'fallthrough' insn as a new state to explore */ + queued_st = push_stack(env, idx + 1, idx, false); + if (!queued_st) + return -ENOMEM; + + queued_st->may_goto_depth++; + if (prev_st) + widen_imprecise_scalars(env, prev_st, queued_st); + *insn_idx += insn->off; + return 0; + } + + /* check src2 operand */ + err = check_reg_arg(env, insn->dst_reg, SRC_OP); + if (err) + return err; + + dst_reg = ®s[insn->dst_reg]; if (BPF_SRC(insn->code) == BPF_X) { if (insn->imm != 0) { verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); @@ -6892,110 +16022,156 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env, if (err) return err; - if (is_pointer_value(env, insn->src_reg)) { + src_reg = ®s[insn->src_reg]; + if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && + is_pointer_value(env, insn->src_reg)) { verbose(env, "R%d pointer comparison prohibited\n", insn->src_reg); return -EACCES; } - src_reg = ®s[insn->src_reg]; } else { if (insn->src_reg != BPF_REG_0) { verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); return -EINVAL; } + src_reg = &env->fake_reg[0]; + memset(src_reg, 0, sizeof(*src_reg)); + src_reg->type = SCALAR_VALUE; + __mark_reg_known(src_reg, insn->imm); } - /* check src2 operand */ - err = check_reg_arg(env, insn->dst_reg, SRC_OP); - if (err) - return err; - - dst_reg = ®s[insn->dst_reg]; is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; - - if (BPF_SRC(insn->code) == BPF_K) { - pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); - } else if (src_reg->type == SCALAR_VALUE && - is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { - pred = is_branch_taken(dst_reg, - tnum_subreg(src_reg->var_off).value, - opcode, - is_jmp32); - } else if (src_reg->type == SCALAR_VALUE && - !is_jmp32 && tnum_is_const(src_reg->var_off)) { - pred = is_branch_taken(dst_reg, - src_reg->var_off.value, - opcode, - is_jmp32); - } - + pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); if (pred >= 0) { /* If we get here with a dst_reg pointer type it is because * above is_branch_taken() special cased the 0 comparison. */ if (!__is_pointer_value(false, dst_reg)) err = mark_chain_precision(env, insn->dst_reg); - if (BPF_SRC(insn->code) == BPF_X && !err) + if (BPF_SRC(insn->code) == BPF_X && !err && + !__is_pointer_value(false, src_reg)) err = mark_chain_precision(env, insn->src_reg); if (err) return err; } + if (pred == 1) { - /* only follow the goto, ignore fall-through */ + /* Only follow the goto, ignore fall-through. If needed, push + * the fall-through branch for simulation under speculative + * execution. + */ + if (!env->bypass_spec_v1 && + !sanitize_speculative_path(env, insn, *insn_idx + 1, + *insn_idx)) + return -EFAULT; + if (env->log.level & BPF_LOG_LEVEL) + print_insn_state(env, this_branch, this_branch->curframe); *insn_idx += insn->off; return 0; } else if (pred == 0) { - /* only follow fall-through branch, since - * that's where the program will go + /* Only follow the fall-through branch, since that's where the + * program will go. If needed, push the goto branch for + * simulation under speculative execution. */ + if (!env->bypass_spec_v1 && + !sanitize_speculative_path(env, insn, + *insn_idx + insn->off + 1, + *insn_idx)) + return -EFAULT; + if (env->log.level & BPF_LOG_LEVEL) + print_insn_state(env, this_branch, this_branch->curframe); return 0; } + /* Push scalar registers sharing same ID to jump history, + * do this before creating 'other_branch', so that both + * 'this_branch' and 'other_branch' share this history + * if parent state is created. + */ + if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) + collect_linked_regs(this_branch, src_reg->id, &linked_regs); + if (dst_reg->type == SCALAR_VALUE && dst_reg->id) + collect_linked_regs(this_branch, dst_reg->id, &linked_regs); + if (linked_regs.cnt > 1) { + err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); + if (err) + return err; + } + other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, false); if (!other_branch) return -EFAULT; other_branch_regs = other_branch->frame[other_branch->curframe]->regs; - /* detect if we are comparing against a constant value so we can adjust - * our min/max values for our dst register. - * this is only legit if both are scalars (or pointers to the same - * object, I suppose, but we don't support that right now), because - * otherwise the different base pointers mean the offsets aren't - * comparable. - */ if (BPF_SRC(insn->code) == BPF_X) { - struct bpf_reg_state *src_reg = ®s[insn->src_reg]; - - if (dst_reg->type == SCALAR_VALUE && - src_reg->type == SCALAR_VALUE) { - if (tnum_is_const(src_reg->var_off) || - (is_jmp32 && - tnum_is_const(tnum_subreg(src_reg->var_off)))) - reg_set_min_max(&other_branch_regs[insn->dst_reg], - dst_reg, - src_reg->var_off.value, - tnum_subreg(src_reg->var_off).value, - opcode, is_jmp32); - else if (tnum_is_const(dst_reg->var_off) || - (is_jmp32 && - tnum_is_const(tnum_subreg(dst_reg->var_off)))) - reg_set_min_max_inv(&other_branch_regs[insn->src_reg], - src_reg, - dst_reg->var_off.value, - tnum_subreg(dst_reg->var_off).value, - opcode, is_jmp32); - else if (!is_jmp32 && - (opcode == BPF_JEQ || opcode == BPF_JNE)) - /* Comparing for equality, we can combine knowledge */ - reg_combine_min_max(&other_branch_regs[insn->src_reg], - &other_branch_regs[insn->dst_reg], - src_reg, dst_reg, opcode); - } - } else if (dst_reg->type == SCALAR_VALUE) { - reg_set_min_max(&other_branch_regs[insn->dst_reg], - dst_reg, insn->imm, (u32)insn->imm, - opcode, is_jmp32); + err = reg_set_min_max(env, + &other_branch_regs[insn->dst_reg], + &other_branch_regs[insn->src_reg], + dst_reg, src_reg, opcode, is_jmp32); + } else /* BPF_SRC(insn->code) == BPF_K */ { + /* reg_set_min_max() can mangle the fake_reg. Make a copy + * so that these are two different memory locations. The + * src_reg is not used beyond here in context of K. + */ + memcpy(&env->fake_reg[1], &env->fake_reg[0], + sizeof(env->fake_reg[0])); + err = reg_set_min_max(env, + &other_branch_regs[insn->dst_reg], + &env->fake_reg[0], + dst_reg, &env->fake_reg[1], + opcode, is_jmp32); + } + if (err) + return err; + + if (BPF_SRC(insn->code) == BPF_X && + src_reg->type == SCALAR_VALUE && src_reg->id && + !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { + sync_linked_regs(this_branch, src_reg, &linked_regs); + sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); + } + if (dst_reg->type == SCALAR_VALUE && dst_reg->id && + !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { + sync_linked_regs(this_branch, dst_reg, &linked_regs); + sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); + } + + /* if one pointer register is compared to another pointer + * register check if PTR_MAYBE_NULL could be lifted. + * E.g. register A - maybe null + * register B - not null + * for JNE A, B, ... - A is not null in the false branch; + * for JEQ A, B, ... - A is not null in the true branch. + * + * Since PTR_TO_BTF_ID points to a kernel struct that does + * not need to be null checked by the BPF program, i.e., + * could be null even without PTR_MAYBE_NULL marking, so + * only propagate nullness when neither reg is that type. + */ + if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && + __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && + type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && + base_type(src_reg->type) != PTR_TO_BTF_ID && + base_type(dst_reg->type) != PTR_TO_BTF_ID) { + eq_branch_regs = NULL; + switch (opcode) { + case BPF_JEQ: + eq_branch_regs = other_branch_regs; + break; + case BPF_JNE: + eq_branch_regs = regs; + break; + default: + /* do nothing */ + break; + } + if (eq_branch_regs) { + if (type_may_be_null(src_reg->type)) + mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); + else + mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); + } } /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). @@ -7004,7 +16180,7 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env, */ if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && - reg_type_may_be_null(dst_reg->type)) { + type_may_be_null(dst_reg->type)) { /* Mark all identical registers in each branch as either * safe or unknown depending R == 0 or R != 0 conditional. */ @@ -7020,7 +16196,7 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env, return -EACCES; } if (env->log.level & BPF_LOG_LEVEL) - print_verifier_state(env, this_branch->frame[this_branch->curframe]); + print_insn_state(env, this_branch, this_branch->curframe); return 0; } @@ -7029,6 +16205,7 @@ static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) { struct bpf_insn_aux_data *aux = cur_aux(env); struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *dst_reg; struct bpf_map *map; int err; @@ -7045,25 +16222,73 @@ static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) if (err) return err; + dst_reg = ®s[insn->dst_reg]; if (insn->src_reg == 0) { u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; - regs[insn->dst_reg].type = SCALAR_VALUE; + dst_reg->type = SCALAR_VALUE; __mark_reg_known(®s[insn->dst_reg], imm); return 0; } - map = env->used_maps[aux->map_index]; + /* All special src_reg cases are listed below. From this point onwards + * we either succeed and assign a corresponding dst_reg->type after + * zeroing the offset, or fail and reject the program. + */ mark_reg_known_zero(env, regs, insn->dst_reg); - regs[insn->dst_reg].map_ptr = map; - - if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { - regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; - regs[insn->dst_reg].off = aux->map_off; - if (map_value_has_spin_lock(map)) - regs[insn->dst_reg].id = ++env->id_gen; - } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { - regs[insn->dst_reg].type = CONST_PTR_TO_MAP; + + if (insn->src_reg == BPF_PSEUDO_BTF_ID) { + dst_reg->type = aux->btf_var.reg_type; + switch (base_type(dst_reg->type)) { + case PTR_TO_MEM: + dst_reg->mem_size = aux->btf_var.mem_size; + break; + case PTR_TO_BTF_ID: + dst_reg->btf = aux->btf_var.btf; + dst_reg->btf_id = aux->btf_var.btf_id; + break; + default: + verbose(env, "bpf verifier is misconfigured\n"); + return -EFAULT; + } + return 0; + } + + if (insn->src_reg == BPF_PSEUDO_FUNC) { + struct bpf_prog_aux *aux = env->prog->aux; + u32 subprogno = find_subprog(env, + env->insn_idx + insn->imm + 1); + + if (!aux->func_info) { + verbose(env, "missing btf func_info\n"); + return -EINVAL; + } + if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { + verbose(env, "callback function not static\n"); + return -EINVAL; + } + + dst_reg->type = PTR_TO_FUNC; + dst_reg->subprogno = subprogno; + return 0; + } + + map = env->used_maps[aux->map_index]; + dst_reg->map_ptr = map; + + if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || + insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { + if (map->map_type == BPF_MAP_TYPE_ARENA) { + __mark_reg_unknown(env, dst_reg); + return 0; + } + dst_reg->type = PTR_TO_MAP_VALUE; + dst_reg->off = aux->map_off; + WARN_ON_ONCE(map->max_entries != 1); + /* We want reg->id to be same (0) as map_value is not distinct */ + } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || + insn->src_reg == BPF_PSEUDO_MAP_IDX) { + dst_reg->type = CONST_PTR_TO_MAP; } else { verbose(env, "bpf verifier is misconfigured\n"); return -EINVAL; @@ -7106,7 +16331,7 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) u8 mode = BPF_MODE(insn->code); int i, err; - if (!may_access_skb(env->prog->type)) { + if (!may_access_skb(resolve_prog_type(env->prog))) { verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); return -EINVAL; } @@ -7116,18 +16341,6 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) return -EINVAL; } - if (env->subprog_cnt > 1) { - /* when program has LD_ABS insn JITs and interpreter assume - * that r1 == ctx == skb which is not the case for callees - * that can have arbitrary arguments. It's problematic - * for main prog as well since JITs would need to analyze - * all functions in order to make proper register save/restore - * decisions in the main prog. Hence disallow LD_ABS with calls - */ - verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); - return -EINVAL; - } - if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || BPF_SIZE(insn->code) == BPF_DW || (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { @@ -7144,16 +16357,9 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) * gen_ld_abs() may terminate the program at runtime, leading to * reference leak. */ - err = check_reference_leak(env); - if (err) { - verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); + err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); + if (err) return err; - } - - if (env->cur_state->active_spin_lock) { - verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); - return -EINVAL; - } if (regs[ctx_reg].type != PTR_TO_CTX) { verbose(env, @@ -7168,7 +16374,7 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) return err; } - err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); + err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); if (err < 0) return err; @@ -7188,48 +16394,88 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) return 0; } -static int check_return_code(struct bpf_verifier_env *env) +static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) { + const char *exit_ctx = "At program exit"; struct tnum enforce_attach_type_range = tnum_unknown; const struct bpf_prog *prog = env->prog; struct bpf_reg_state *reg; - struct tnum range = tnum_range(0, 1); + struct bpf_retval_range range = retval_range(0, 1); + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); int err; + struct bpf_func_state *frame = env->cur_state->frame[0]; + const bool is_subprog = frame->subprogno; + bool return_32bit = false; /* LSM and struct_ops func-ptr's return type could be "void" */ - if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || - env->prog->type == BPF_PROG_TYPE_LSM) && - !prog->aux->attach_func_proto->type) - return 0; + if (!is_subprog || frame->in_exception_callback_fn) { + switch (prog_type) { + case BPF_PROG_TYPE_LSM: + if (prog->expected_attach_type == BPF_LSM_CGROUP) + /* See below, can be 0 or 0-1 depending on hook. */ + break; + fallthrough; + case BPF_PROG_TYPE_STRUCT_OPS: + if (!prog->aux->attach_func_proto->type) + return 0; + break; + default: + break; + } + } - /* eBPF calling convetion is such that R0 is used + /* eBPF calling convention is such that R0 is used * to return the value from eBPF program. * Make sure that it's readable at this time * of bpf_exit, which means that program wrote * something into it earlier */ - err = check_reg_arg(env, BPF_REG_0, SRC_OP); + err = check_reg_arg(env, regno, SRC_OP); if (err) return err; - if (is_pointer_value(env, BPF_REG_0)) { - verbose(env, "R0 leaks addr as return value\n"); + if (is_pointer_value(env, regno)) { + verbose(env, "R%d leaks addr as return value\n", regno); return -EACCES; } - switch (env->prog->type) { + reg = cur_regs(env) + regno; + + if (frame->in_async_callback_fn) { + /* enforce return zero from async callbacks like timer */ + exit_ctx = "At async callback return"; + range = retval_range(0, 0); + goto enforce_retval; + } + + if (is_subprog && !frame->in_exception_callback_fn) { + if (reg->type != SCALAR_VALUE) { + verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", + regno, reg_type_str(env, reg->type)); + return -EINVAL; + } + return 0; + } + + switch (prog_type) { case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || - env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) - range = tnum_range(1, 1); + env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) + range = retval_range(1, 1); + if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || + env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) + range = retval_range(0, 3); break; case BPF_PROG_TYPE_CGROUP_SKB: if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { - range = tnum_range(0, 3); + range = retval_range(0, 3); enforce_attach_type_range = tnum_range(2, 3); } break; @@ -7242,13 +16488,13 @@ static int check_return_code(struct bpf_verifier_env *env) case BPF_PROG_TYPE_RAW_TRACEPOINT: if (!env->prog->aux->attach_btf_id) return 0; - range = tnum_const(0); + range = retval_range(0, 0); break; case BPF_PROG_TYPE_TRACING: switch (env->prog->expected_attach_type) { case BPF_TRACE_FENTRY: case BPF_TRACE_FEXIT: - range = tnum_const(0); + range = retval_range(0, 0); break; case BPF_TRACE_RAW_TP: case BPF_MODIFY_RETURN: @@ -7259,6 +16505,40 @@ static int check_return_code(struct bpf_verifier_env *env) return -ENOTSUPP; } break; + case BPF_PROG_TYPE_KPROBE: + switch (env->prog->expected_attach_type) { + case BPF_TRACE_KPROBE_SESSION: + case BPF_TRACE_UPROBE_SESSION: + range = retval_range(0, 1); + break; + default: + return 0; + } + break; + case BPF_PROG_TYPE_SK_LOOKUP: + range = retval_range(SK_DROP, SK_PASS); + break; + + case BPF_PROG_TYPE_LSM: + if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { + /* no range found, any return value is allowed */ + if (!get_func_retval_range(env->prog, &range)) + return 0; + /* no restricted range, any return value is allowed */ + if (range.minval == S32_MIN && range.maxval == S32_MAX) + return 0; + return_32bit = true; + } else if (!env->prog->aux->attach_func_proto->type) { + /* Make sure programs that attach to void + * hooks don't try to modify return value. + */ + range = retval_range(1, 1); + } + break; + + case BPF_PROG_TYPE_NETFILTER: + range = retval_range(NF_DROP, NF_ACCEPT); + break; case BPF_PROG_TYPE_EXT: /* freplace program can return anything as its return value * depends on the to-be-replaced kernel func or bpf program. @@ -7267,25 +16547,24 @@ static int check_return_code(struct bpf_verifier_env *env) return 0; } - reg = cur_regs(env) + BPF_REG_0; +enforce_retval: if (reg->type != SCALAR_VALUE) { - verbose(env, "At program exit the register R0 is not a known value (%s)\n", - reg_type_str[reg->type]); + verbose(env, "%s the register R%d is not a known value (%s)\n", + exit_ctx, regno, reg_type_str(env, reg->type)); return -EINVAL; } - if (!tnum_in(range, reg->var_off)) { - char tn_buf[48]; + err = mark_chain_precision(env, regno); + if (err) + return err; - verbose(env, "At program exit the register R0 "); - if (!tnum_is_unknown(reg->var_off)) { - tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); - verbose(env, "has value %s", tn_buf); - } else { - verbose(env, "has unknown scalar value"); - } - tnum_strn(tn_buf, sizeof(tn_buf), range); - verbose(env, " should have been in %s\n", tn_buf); + if (!retval_range_within(range, reg, return_32bit)) { + verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); + if (!is_subprog && + prog->expected_attach_type == BPF_LSM_CGROUP && + prog_type == BPF_PROG_TYPE_LSM && + !prog->aux->attach_func_proto->type) + verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); return -EINVAL; } @@ -7295,13 +16574,36 @@ static int check_return_code(struct bpf_verifier_env *env) return 0; } +static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) +{ + struct bpf_subprog_info *subprog; + + subprog = find_containing_subprog(env, off); + subprog->changes_pkt_data = true; +} + +/* 't' is an index of a call-site. + * 'w' is a callee entry point. + * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. + * Rely on DFS traversal order and absence of recursive calls to guarantee that + * callee's change_pkt_data marks would be correct at that moment. + */ +static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) +{ + struct bpf_subprog_info *caller, *callee; + + caller = find_containing_subprog(env, t); + callee = find_containing_subprog(env, w); + caller->changes_pkt_data |= callee->changes_pkt_data; +} + /* non-recursive DFS pseudo code * 1 procedure DFS-iterative(G,v): * 2 label v as discovered * 3 let S be a stack * 4 S.push(v) * 5 while S is not empty - * 6 t <- S.pop() + * 6 t <- S.peek() * 7 if t is what we're looking for: * 8 return t * 9 for all edges e in G.adjacentEdges(t) do @@ -7335,42 +16637,56 @@ enum { BRANCH = 2, }; -static u32 state_htab_size(struct bpf_verifier_env *env) +static void mark_prune_point(struct bpf_verifier_env *env, int idx) { - return env->prog->len; + env->insn_aux_data[idx].prune_point = true; } -static struct bpf_verifier_state_list **explored_state( - struct bpf_verifier_env *env, - int idx) +static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) { - struct bpf_verifier_state *cur = env->cur_state; - struct bpf_func_state *state = cur->frame[cur->curframe]; + return env->insn_aux_data[insn_idx].prune_point; +} - return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; +static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) +{ + env->insn_aux_data[idx].force_checkpoint = true; } -static void init_explored_state(struct bpf_verifier_env *env, int idx) +static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) { - env->insn_aux_data[idx].prune_point = true; + return env->insn_aux_data[insn_idx].force_checkpoint; } +static void mark_calls_callback(struct bpf_verifier_env *env, int idx) +{ + env->insn_aux_data[idx].calls_callback = true; +} + +static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) +{ + return env->insn_aux_data[insn_idx].calls_callback; +} + +enum { + DONE_EXPLORING = 0, + KEEP_EXPLORING = 1, +}; + /* t, w, e - match pseudo-code above: * t - index of current instruction * w - next instruction * e - edge */ -static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, - bool loop_ok) +static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) { int *insn_stack = env->cfg.insn_stack; int *insn_state = env->cfg.insn_state; if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) - return 0; + return DONE_EXPLORING; if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) - return 0; + return DONE_EXPLORING; if (w < 0 || w >= env->prog->len) { verbose_linfo(env, t, "%d: ", t); @@ -7378,9 +16694,11 @@ static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, return -EINVAL; } - if (e == BRANCH) + if (e == BRANCH) { /* mark branch target for state pruning */ - init_explored_state(env, w); + mark_prune_point(env, w); + mark_jmp_point(env, w); + } if (insn_state[w] == 0) { /* tree-edge */ @@ -7389,10 +16707,10 @@ static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, if (env->cfg.cur_stack >= env->prog->len) return -E2BIG; insn_stack[env->cfg.cur_stack++] = w; - return 1; + return KEEP_EXPLORING; } else if ((insn_state[w] & 0xF0) == DISCOVERED) { - if (loop_ok && env->bpf_capable) - return 0; + if (env->bpf_capable) + return DONE_EXPLORING; verbose_linfo(env, t, "%d: ", t); verbose_linfo(env, w, "%d: ", w); verbose(env, "back-edge from insn %d to %d\n", t, w); @@ -7404,19 +16722,412 @@ static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, verbose(env, "insn state internal bug\n"); return -EFAULT; } + return DONE_EXPLORING; +} + +static int visit_func_call_insn(int t, struct bpf_insn *insns, + struct bpf_verifier_env *env, + bool visit_callee) +{ + int ret, insn_sz; + int w; + + insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; + ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); + if (ret) + return ret; + + mark_prune_point(env, t + insn_sz); + /* when we exit from subprog, we need to record non-linear history */ + mark_jmp_point(env, t + insn_sz); + + if (visit_callee) { + w = t + insns[t].imm + 1; + mark_prune_point(env, t); + merge_callee_effects(env, t, w); + ret = push_insn(t, w, BRANCH, env); + } + return ret; +} + +/* Bitmask with 1s for all caller saved registers */ +#define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) + +/* Return a bitmask specifying which caller saved registers are + * clobbered by a call to a helper *as if* this helper follows + * bpf_fastcall contract: + * - includes R0 if function is non-void; + * - includes R1-R5 if corresponding parameter has is described + * in the function prototype. + */ +static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn) +{ + u32 mask; + int i; + + mask = 0; + if (fn->ret_type != RET_VOID) + mask |= BIT(BPF_REG_0); + for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) + if (fn->arg_type[i] != ARG_DONTCARE) + mask |= BIT(BPF_REG_1 + i); + return mask; +} + +/* True if do_misc_fixups() replaces calls to helper number 'imm', + * replacement patch is presumed to follow bpf_fastcall contract + * (see mark_fastcall_pattern_for_call() below). + */ +static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) +{ + switch (imm) { +#ifdef CONFIG_X86_64 + case BPF_FUNC_get_smp_processor_id: + return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); +#endif + default: + return false; + } +} + +/* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */ +static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta) +{ + u32 vlen, i, mask; + + vlen = btf_type_vlen(meta->func_proto); + mask = 0; + if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type))) + mask |= BIT(BPF_REG_0); + for (i = 0; i < vlen; ++i) + mask |= BIT(BPF_REG_1 + i); + return mask; +} + +/* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */ +static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_FASTCALL; +} + +/* LLVM define a bpf_fastcall function attribute. + * This attribute means that function scratches only some of + * the caller saved registers defined by ABI. + * For BPF the set of such registers could be defined as follows: + * - R0 is scratched only if function is non-void; + * - R1-R5 are scratched only if corresponding parameter type is defined + * in the function prototype. + * + * The contract between kernel and clang allows to simultaneously use + * such functions and maintain backwards compatibility with old + * kernels that don't understand bpf_fastcall calls: + * + * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 + * registers are not scratched by the call; + * + * - as a post-processing step, clang visits each bpf_fastcall call and adds + * spill/fill for every live r0-r5; + * + * - stack offsets used for the spill/fill are allocated as lowest + * stack offsets in whole function and are not used for any other + * purposes; + * + * - when kernel loads a program, it looks for such patterns + * (bpf_fastcall function surrounded by spills/fills) and checks if + * spill/fill stack offsets are used exclusively in fastcall patterns; + * + * - if so, and if verifier or current JIT inlines the call to the + * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary + * spill/fill pairs; + * + * - when old kernel loads a program, presence of spill/fill pairs + * keeps BPF program valid, albeit slightly less efficient. + * + * For example: + * + * r1 = 1; + * r2 = 2; + * *(u64 *)(r10 - 8) = r1; r1 = 1; + * *(u64 *)(r10 - 16) = r2; r2 = 2; + * call %[to_be_inlined] --> call %[to_be_inlined] + * r2 = *(u64 *)(r10 - 16); r0 = r1; + * r1 = *(u64 *)(r10 - 8); r0 += r2; + * r0 = r1; exit; + * r0 += r2; + * exit; + * + * The purpose of mark_fastcall_pattern_for_call is to: + * - look for such patterns; + * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; + * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; + * - update env->subprog_info[*]->fastcall_stack_off to find an offset + * at which bpf_fastcall spill/fill stack slots start; + * - update env->subprog_info[*]->keep_fastcall_stack. + * + * The .fastcall_pattern and .fastcall_stack_off are used by + * check_fastcall_stack_contract() to check if every stack access to + * fastcall spill/fill stack slot originates from spill/fill + * instructions, members of fastcall patterns. + * + * If such condition holds true for a subprogram, fastcall patterns could + * be rewritten by remove_fastcall_spills_fills(). + * Otherwise bpf_fastcall patterns are not changed in the subprogram + * (code, presumably, generated by an older clang version). + * + * For example, it is *not* safe to remove spill/fill below: + * + * r1 = 1; + * *(u64 *)(r10 - 8) = r1; r1 = 1; + * call %[to_be_inlined] --> call %[to_be_inlined] + * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! + * r0 = *(u64 *)(r10 - 8); r0 += r1; + * r0 += r1; exit; + * exit; + */ +static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, + struct bpf_subprog_info *subprog, + int insn_idx, s16 lowest_off) +{ + struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; + struct bpf_insn *call = &env->prog->insnsi[insn_idx]; + const struct bpf_func_proto *fn; + u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS; + u32 expected_regs_mask; + bool can_be_inlined = false; + s16 off; + int i; + + if (bpf_helper_call(call)) { + if (get_helper_proto(env, call->imm, &fn) < 0) + /* error would be reported later */ + return; + clobbered_regs_mask = helper_fastcall_clobber_mask(fn); + can_be_inlined = fn->allow_fastcall && + (verifier_inlines_helper_call(env, call->imm) || + bpf_jit_inlines_helper_call(call->imm)); + } + + if (bpf_pseudo_kfunc_call(call)) { + struct bpf_kfunc_call_arg_meta meta; + int err; + + err = fetch_kfunc_meta(env, call, &meta, NULL); + if (err < 0) + /* error would be reported later */ + return; + + clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta); + can_be_inlined = is_fastcall_kfunc_call(&meta); + } + + if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS) + return; + + /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ + expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; + + /* match pairs of form: + * + * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) + * ... + * call %[to_be_inlined] + * ... + * rX = *(u64 *)(r10 - Y) + */ + for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { + if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) + break; + stx = &insns[insn_idx - i]; + ldx = &insns[insn_idx + i]; + /* must be a stack spill/fill pair */ + if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || + ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || + stx->dst_reg != BPF_REG_10 || + ldx->src_reg != BPF_REG_10) + break; + /* must be a spill/fill for the same reg */ + if (stx->src_reg != ldx->dst_reg) + break; + /* must be one of the previously unseen registers */ + if ((BIT(stx->src_reg) & expected_regs_mask) == 0) + break; + /* must be a spill/fill for the same expected offset, + * no need to check offset alignment, BPF_DW stack access + * is always 8-byte aligned. + */ + if (stx->off != off || ldx->off != off) + break; + expected_regs_mask &= ~BIT(stx->src_reg); + env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; + env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; + } + if (i == 1) + return; + + /* Conditionally set 'fastcall_spills_num' to allow forward + * compatibility when more helper functions are marked as + * bpf_fastcall at compile time than current kernel supports, e.g: + * + * 1: *(u64 *)(r10 - 8) = r1 + * 2: call A ;; assume A is bpf_fastcall for current kernel + * 3: r1 = *(u64 *)(r10 - 8) + * 4: *(u64 *)(r10 - 8) = r1 + * 5: call B ;; assume B is not bpf_fastcall for current kernel + * 6: r1 = *(u64 *)(r10 - 8) + * + * There is no need to block bpf_fastcall rewrite for such program. + * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, + * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() + * does not remove spill/fill pair {4,6}. + */ + if (can_be_inlined) + env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; + else + subprog->keep_fastcall_stack = 1; + subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); +} + +static int mark_fastcall_patterns(struct bpf_verifier_env *env) +{ + struct bpf_subprog_info *subprog = env->subprog_info; + struct bpf_insn *insn; + s16 lowest_off; + int s, i; + + for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { + /* find lowest stack spill offset used in this subprog */ + lowest_off = 0; + for (i = subprog->start; i < (subprog + 1)->start; ++i) { + insn = env->prog->insnsi + i; + if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || + insn->dst_reg != BPF_REG_10) + continue; + lowest_off = min(lowest_off, insn->off); + } + /* use this offset to find fastcall patterns */ + for (i = subprog->start; i < (subprog + 1)->start; ++i) { + insn = env->prog->insnsi + i; + if (insn->code != (BPF_JMP | BPF_CALL)) + continue; + mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); + } + } return 0; } +/* Visits the instruction at index t and returns one of the following: + * < 0 - an error occurred + * DONE_EXPLORING - the instruction was fully explored + * KEEP_EXPLORING - there is still work to be done before it is fully explored + */ +static int visit_insn(int t, struct bpf_verifier_env *env) +{ + struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; + int ret, off, insn_sz; + + if (bpf_pseudo_func(insn)) + return visit_func_call_insn(t, insns, env, true); + + /* All non-branch instructions have a single fall-through edge. */ + if (BPF_CLASS(insn->code) != BPF_JMP && + BPF_CLASS(insn->code) != BPF_JMP32) { + insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; + return push_insn(t, t + insn_sz, FALLTHROUGH, env); + } + + switch (BPF_OP(insn->code)) { + case BPF_EXIT: + return DONE_EXPLORING; + + case BPF_CALL: + if (is_async_callback_calling_insn(insn)) + /* Mark this call insn as a prune point to trigger + * is_state_visited() check before call itself is + * processed by __check_func_call(). Otherwise new + * async state will be pushed for further exploration. + */ + mark_prune_point(env, t); + /* For functions that invoke callbacks it is not known how many times + * callback would be called. Verifier models callback calling functions + * by repeatedly visiting callback bodies and returning to origin call + * instruction. + * In order to stop such iteration verifier needs to identify when a + * state identical some state from a previous iteration is reached. + * Check below forces creation of checkpoint before callback calling + * instruction to allow search for such identical states. + */ + if (is_sync_callback_calling_insn(insn)) { + mark_calls_callback(env, t); + mark_force_checkpoint(env, t); + mark_prune_point(env, t); + mark_jmp_point(env, t); + } + if (bpf_helper_call(insn) && bpf_helper_changes_pkt_data(insn->imm)) + mark_subprog_changes_pkt_data(env, t); + if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { + struct bpf_kfunc_call_arg_meta meta; + + ret = fetch_kfunc_meta(env, insn, &meta, NULL); + if (ret == 0 && is_iter_next_kfunc(&meta)) { + mark_prune_point(env, t); + /* Checking and saving state checkpoints at iter_next() call + * is crucial for fast convergence of open-coded iterator loop + * logic, so we need to force it. If we don't do that, + * is_state_visited() might skip saving a checkpoint, causing + * unnecessarily long sequence of not checkpointed + * instructions and jumps, leading to exhaustion of jump + * history buffer, and potentially other undesired outcomes. + * It is expected that with correct open-coded iterators + * convergence will happen quickly, so we don't run a risk of + * exhausting memory. + */ + mark_force_checkpoint(env, t); + } + } + return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); + + case BPF_JA: + if (BPF_SRC(insn->code) != BPF_K) + return -EINVAL; + + if (BPF_CLASS(insn->code) == BPF_JMP) + off = insn->off; + else + off = insn->imm; + + /* unconditional jump with single edge */ + ret = push_insn(t, t + off + 1, FALLTHROUGH, env); + if (ret) + return ret; + + mark_prune_point(env, t + off + 1); + mark_jmp_point(env, t + off + 1); + + return ret; + + default: + /* conditional jump with two edges */ + mark_prune_point(env, t); + if (is_may_goto_insn(insn)) + mark_force_checkpoint(env, t); + + ret = push_insn(t, t + 1, FALLTHROUGH, env); + if (ret) + return ret; + + return push_insn(t, t + insn->off + 1, BRANCH, env); + } +} + /* non-recursive depth-first-search to detect loops in BPF program * loop == back-edge in directed graph */ static int check_cfg(struct bpf_verifier_env *env) { - struct bpf_insn *insns = env->prog->insnsi; int insn_cnt = env->prog->len; int *insn_stack, *insn_state; - int ret = 0; - int i, t; + int ex_insn_beg, i, ret = 0; + bool ex_done = false; insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); if (!insn_state) @@ -7432,100 +17143,62 @@ static int check_cfg(struct bpf_verifier_env *env) insn_stack[0] = 0; /* 0 is the first instruction */ env->cfg.cur_stack = 1; -peek_stack: - if (env->cfg.cur_stack == 0) - goto check_state; - t = insn_stack[env->cfg.cur_stack - 1]; +walk_cfg: + while (env->cfg.cur_stack > 0) { + int t = insn_stack[env->cfg.cur_stack - 1]; - if (BPF_CLASS(insns[t].code) == BPF_JMP || - BPF_CLASS(insns[t].code) == BPF_JMP32) { - u8 opcode = BPF_OP(insns[t].code); - - if (opcode == BPF_EXIT) { - goto mark_explored; - } else if (opcode == BPF_CALL) { - ret = push_insn(t, t + 1, FALLTHROUGH, env, false); - if (ret == 1) - goto peek_stack; - else if (ret < 0) - goto err_free; - if (t + 1 < insn_cnt) - init_explored_state(env, t + 1); - if (insns[t].src_reg == BPF_PSEUDO_CALL) { - init_explored_state(env, t); - ret = push_insn(t, t + insns[t].imm + 1, BRANCH, - env, false); - if (ret == 1) - goto peek_stack; - else if (ret < 0) - goto err_free; - } - } else if (opcode == BPF_JA) { - if (BPF_SRC(insns[t].code) != BPF_K) { - ret = -EINVAL; - goto err_free; + ret = visit_insn(t, env); + switch (ret) { + case DONE_EXPLORING: + insn_state[t] = EXPLORED; + env->cfg.cur_stack--; + break; + case KEEP_EXPLORING: + break; + default: + if (ret > 0) { + verbose(env, "visit_insn internal bug\n"); + ret = -EFAULT; } - /* unconditional jump with single edge */ - ret = push_insn(t, t + insns[t].off + 1, - FALLTHROUGH, env, true); - if (ret == 1) - goto peek_stack; - else if (ret < 0) - goto err_free; - /* unconditional jmp is not a good pruning point, - * but it's marked, since backtracking needs - * to record jmp history in is_state_visited(). - */ - init_explored_state(env, t + insns[t].off + 1); - /* tell verifier to check for equivalent states - * after every call and jump - */ - if (t + 1 < insn_cnt) - init_explored_state(env, t + 1); - } else { - /* conditional jump with two edges */ - init_explored_state(env, t); - ret = push_insn(t, t + 1, FALLTHROUGH, env, true); - if (ret == 1) - goto peek_stack; - else if (ret < 0) - goto err_free; - - ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); - if (ret == 1) - goto peek_stack; - else if (ret < 0) - goto err_free; - } - } else { - /* all other non-branch instructions with single - * fall-through edge - */ - ret = push_insn(t, t + 1, FALLTHROUGH, env, false); - if (ret == 1) - goto peek_stack; - else if (ret < 0) goto err_free; + } } -mark_explored: - insn_state[t] = EXPLORED; - if (env->cfg.cur_stack-- <= 0) { + if (env->cfg.cur_stack < 0) { verbose(env, "pop stack internal bug\n"); ret = -EFAULT; goto err_free; } - goto peek_stack; -check_state: + if (env->exception_callback_subprog && !ex_done) { + ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; + + insn_state[ex_insn_beg] = DISCOVERED; + insn_stack[0] = ex_insn_beg; + env->cfg.cur_stack = 1; + ex_done = true; + goto walk_cfg; + } + for (i = 0; i < insn_cnt; i++) { + struct bpf_insn *insn = &env->prog->insnsi[i]; + if (insn_state[i] != EXPLORED) { verbose(env, "unreachable insn %d\n", i); ret = -EINVAL; goto err_free; } + if (bpf_is_ldimm64(insn)) { + if (insn_state[i + 1] != 0) { + verbose(env, "jump into the middle of ldimm64 insn %d\n", i); + ret = -EINVAL; + goto err_free; + } + i++; /* skip second half of ldimm64 */ + } } ret = 0; /* cfg looks good */ + env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; err_free: kvfree(insn_state); @@ -7534,32 +17207,46 @@ err_free: return ret; } +static int check_abnormal_return(struct bpf_verifier_env *env) +{ + int i; + + for (i = 1; i < env->subprog_cnt; i++) { + if (env->subprog_info[i].has_ld_abs) { + verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); + return -EINVAL; + } + if (env->subprog_info[i].has_tail_call) { + verbose(env, "tail_call is not allowed in subprogs without BTF\n"); + return -EINVAL; + } + } + return 0; +} + /* The minimum supported BTF func info size */ #define MIN_BPF_FUNCINFO_SIZE 8 #define MAX_FUNCINFO_REC_SIZE 252 -static int check_btf_func(struct bpf_verifier_env *env, - const union bpf_attr *attr, - union bpf_attr __user *uattr) +static int check_btf_func_early(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) { - u32 i, nfuncs, urec_size, min_size; u32 krec_size = sizeof(struct bpf_func_info); + const struct btf_type *type, *func_proto; + u32 i, nfuncs, urec_size, min_size; struct bpf_func_info *krecord; - struct bpf_func_info_aux *info_aux = NULL; - const struct btf_type *type; struct bpf_prog *prog; const struct btf *btf; - void __user *urecord; u32 prev_offset = 0; + bpfptr_t urecord; int ret = -ENOMEM; nfuncs = attr->func_info_cnt; - if (!nfuncs) + if (!nfuncs) { + if (check_abnormal_return(env)) + return -EINVAL; return 0; - - if (nfuncs != env->subprog_cnt) { - verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); - return -EINVAL; } urec_size = attr->func_info_rec_size; @@ -7573,15 +17260,12 @@ static int check_btf_func(struct bpf_verifier_env *env, prog = env->prog; btf = prog->aux->btf; - urecord = u64_to_user_ptr(attr->func_info); + urecord = make_bpfptr(attr->func_info, uattr.is_kernel); min_size = min_t(u32, krec_size, urec_size); krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); if (!krecord) return -ENOMEM; - info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); - if (!info_aux) - goto err_free; for (i = 0; i < nfuncs; i++) { ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); @@ -7591,37 +17275,32 @@ static int check_btf_func(struct bpf_verifier_env *env, /* set the size kernel expects so loader can zero * out the rest of the record. */ - if (put_user(min_size, &uattr->func_info_rec_size)) + if (copy_to_bpfptr_offset(uattr, + offsetof(union bpf_attr, func_info_rec_size), + &min_size, sizeof(min_size))) ret = -EFAULT; } goto err_free; } - if (copy_from_user(&krecord[i], urecord, min_size)) { + if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { ret = -EFAULT; goto err_free; } /* check insn_off */ + ret = -EINVAL; if (i == 0) { if (krecord[i].insn_off) { verbose(env, "nonzero insn_off %u for the first func info record", krecord[i].insn_off); - ret = -EINVAL; goto err_free; } } else if (krecord[i].insn_off <= prev_offset) { verbose(env, "same or smaller insn offset (%u) than previous func info record (%u)", krecord[i].insn_off, prev_offset); - ret = -EINVAL; - goto err_free; - } - - if (env->subprog_info[i].start != krecord[i].insn_off) { - verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); - ret = -EINVAL; goto err_free; } @@ -7630,21 +17309,98 @@ static int check_btf_func(struct bpf_verifier_env *env, if (!type || !btf_type_is_func(type)) { verbose(env, "invalid type id %d in func info", krecord[i].type_id); - ret = -EINVAL; goto err_free; } - info_aux[i].linkage = BTF_INFO_VLEN(type->info); + + func_proto = btf_type_by_id(btf, type->type); + if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) + /* btf_func_check() already verified it during BTF load */ + goto err_free; + prev_offset = krecord[i].insn_off; - urecord += urec_size; + bpfptr_add(&urecord, urec_size); } prog->aux->func_info = krecord; prog->aux->func_info_cnt = nfuncs; - prog->aux->func_info_aux = info_aux; return 0; err_free: kvfree(krecord); + return ret; +} + +static int check_btf_func(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + const struct btf_type *type, *func_proto, *ret_type; + u32 i, nfuncs, urec_size; + struct bpf_func_info *krecord; + struct bpf_func_info_aux *info_aux = NULL; + struct bpf_prog *prog; + const struct btf *btf; + bpfptr_t urecord; + bool scalar_return; + int ret = -ENOMEM; + + nfuncs = attr->func_info_cnt; + if (!nfuncs) { + if (check_abnormal_return(env)) + return -EINVAL; + return 0; + } + if (nfuncs != env->subprog_cnt) { + verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); + return -EINVAL; + } + + urec_size = attr->func_info_rec_size; + + prog = env->prog; + btf = prog->aux->btf; + + urecord = make_bpfptr(attr->func_info, uattr.is_kernel); + + krecord = prog->aux->func_info; + info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); + if (!info_aux) + return -ENOMEM; + + for (i = 0; i < nfuncs; i++) { + /* check insn_off */ + ret = -EINVAL; + + if (env->subprog_info[i].start != krecord[i].insn_off) { + verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); + goto err_free; + } + + /* Already checked type_id */ + type = btf_type_by_id(btf, krecord[i].type_id); + info_aux[i].linkage = BTF_INFO_VLEN(type->info); + /* Already checked func_proto */ + func_proto = btf_type_by_id(btf, type->type); + + ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); + scalar_return = + btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); + if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { + verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); + goto err_free; + } + if (i && !scalar_return && env->subprog_info[i].has_tail_call) { + verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); + goto err_free; + } + + bpfptr_add(&urecord, urec_size); + } + + prog->aux->func_info_aux = info_aux; + return 0; + +err_free: kfree(info_aux); return ret; } @@ -7657,29 +17413,31 @@ static void adjust_btf_func(struct bpf_verifier_env *env) if (!aux->func_info) return; - for (i = 0; i < env->subprog_cnt; i++) + /* func_info is not available for hidden subprogs */ + for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) aux->func_info[i].insn_off = env->subprog_info[i].start; } -#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ - sizeof(((struct bpf_line_info *)(0))->line_col)) +#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE static int check_btf_line(struct bpf_verifier_env *env, const union bpf_attr *attr, - union bpf_attr __user *uattr) + bpfptr_t uattr) { u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; struct bpf_subprog_info *sub; struct bpf_line_info *linfo; struct bpf_prog *prog; const struct btf *btf; - void __user *ulinfo; + bpfptr_t ulinfo; int err; nr_linfo = attr->line_info_cnt; if (!nr_linfo) return 0; + if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) + return -EINVAL; rec_size = attr->line_info_rec_size; if (rec_size < MIN_BPF_LINEINFO_SIZE || @@ -7700,7 +17458,7 @@ static int check_btf_line(struct bpf_verifier_env *env, s = 0; sub = env->subprog_info; - ulinfo = u64_to_user_ptr(attr->line_info); + ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); expected_size = sizeof(struct bpf_line_info); ncopy = min_t(u32, expected_size, rec_size); for (i = 0; i < nr_linfo; i++) { @@ -7708,14 +17466,15 @@ static int check_btf_line(struct bpf_verifier_env *env, if (err) { if (err == -E2BIG) { verbose(env, "nonzero tailing record in line_info"); - if (put_user(expected_size, - &uattr->line_info_rec_size)) + if (copy_to_bpfptr_offset(uattr, + offsetof(union bpf_attr, line_info_rec_size), + &expected_size, sizeof(expected_size))) err = -EFAULT; } goto err_free; } - if (copy_from_user(&linfo[i], ulinfo, ncopy)) { + if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { err = -EFAULT; goto err_free; } @@ -7767,7 +17526,7 @@ static int check_btf_line(struct bpf_verifier_env *env, } prev_offset = linfo[i].insn_off; - ulinfo += rec_size; + bpfptr_add(&ulinfo, rec_size); } if (s != env->subprog_cnt) { @@ -7787,21 +17546,118 @@ err_free: return err; } -static int check_btf_info(struct bpf_verifier_env *env, - const union bpf_attr *attr, - union bpf_attr __user *uattr) +#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) +#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE + +static int check_core_relo(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + u32 i, nr_core_relo, ncopy, expected_size, rec_size; + struct bpf_core_relo core_relo = {}; + struct bpf_prog *prog = env->prog; + const struct btf *btf = prog->aux->btf; + struct bpf_core_ctx ctx = { + .log = &env->log, + .btf = btf, + }; + bpfptr_t u_core_relo; + int err; + + nr_core_relo = attr->core_relo_cnt; + if (!nr_core_relo) + return 0; + if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) + return -EINVAL; + + rec_size = attr->core_relo_rec_size; + if (rec_size < MIN_CORE_RELO_SIZE || + rec_size > MAX_CORE_RELO_SIZE || + rec_size % sizeof(u32)) + return -EINVAL; + + u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); + expected_size = sizeof(struct bpf_core_relo); + ncopy = min_t(u32, expected_size, rec_size); + + /* Unlike func_info and line_info, copy and apply each CO-RE + * relocation record one at a time. + */ + for (i = 0; i < nr_core_relo; i++) { + /* future proofing when sizeof(bpf_core_relo) changes */ + err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); + if (err) { + if (err == -E2BIG) { + verbose(env, "nonzero tailing record in core_relo"); + if (copy_to_bpfptr_offset(uattr, + offsetof(union bpf_attr, core_relo_rec_size), + &expected_size, sizeof(expected_size))) + err = -EFAULT; + } + break; + } + + if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { + err = -EFAULT; + break; + } + + if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { + verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", + i, core_relo.insn_off, prog->len); + err = -EINVAL; + break; + } + + err = bpf_core_apply(&ctx, &core_relo, i, + &prog->insnsi[core_relo.insn_off / 8]); + if (err) + break; + bpfptr_add(&u_core_relo, rec_size); + } + return err; +} + +static int check_btf_info_early(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) { struct btf *btf; int err; - if (!attr->func_info_cnt && !attr->line_info_cnt) + if (!attr->func_info_cnt && !attr->line_info_cnt) { + if (check_abnormal_return(env)) + return -EINVAL; return 0; + } btf = btf_get_by_fd(attr->prog_btf_fd); if (IS_ERR(btf)) return PTR_ERR(btf); + if (btf_is_kernel(btf)) { + btf_put(btf); + return -EACCES; + } env->prog->aux->btf = btf; + err = check_btf_func_early(env, attr, uattr); + if (err) + return err; + return 0; +} + +static int check_btf_info(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + int err; + + if (!attr->func_info_cnt && !attr->line_info_cnt) { + if (check_abnormal_return(env)) + return -EINVAL; + return 0; + } + err = check_btf_func(env, attr, uattr); if (err) return err; @@ -7810,26 +17666,27 @@ static int check_btf_info(struct bpf_verifier_env *env, if (err) return err; + err = check_core_relo(env, attr, uattr); + if (err) + return err; + return 0; } /* check %cur's range satisfies %old's */ -static bool range_within(struct bpf_reg_state *old, - struct bpf_reg_state *cur) +static bool range_within(const struct bpf_reg_state *old, + const struct bpf_reg_state *cur) { return old->umin_value <= cur->umin_value && old->umax_value >= cur->umax_value && old->smin_value <= cur->smin_value && - old->smax_value >= cur->smax_value; + old->smax_value >= cur->smax_value && + old->u32_min_value <= cur->u32_min_value && + old->u32_max_value >= cur->u32_max_value && + old->s32_min_value <= cur->s32_min_value && + old->s32_max_value >= cur->s32_max_value; } -/* Maximum number of register states that can exist at once */ -#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) -struct idpair { - u32 old; - u32 cur; -}; - /* If in the old state two registers had the same id, then they need to have * the same id in the new state as well. But that id could be different from * the old state, so we need to track the mapping from old to new ids. @@ -7840,25 +17697,47 @@ struct idpair { * So we look through our idmap to see if this old id has been seen before. If * so, we require the new id to match; otherwise, we add the id pair to the map. */ -static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) +static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) { + struct bpf_id_pair *map = idmap->map; unsigned int i; - for (i = 0; i < ID_MAP_SIZE; i++) { - if (!idmap[i].old) { + /* either both IDs should be set or both should be zero */ + if (!!old_id != !!cur_id) + return false; + + if (old_id == 0) /* cur_id == 0 as well */ + return true; + + for (i = 0; i < BPF_ID_MAP_SIZE; i++) { + if (!map[i].old) { /* Reached an empty slot; haven't seen this id before */ - idmap[i].old = old_id; - idmap[i].cur = cur_id; + map[i].old = old_id; + map[i].cur = cur_id; return true; } - if (idmap[i].old == old_id) - return idmap[i].cur == cur_id; + if (map[i].old == old_id) + return map[i].cur == cur_id; + if (map[i].cur == cur_id) + return false; } /* We ran out of idmap slots, which should be impossible */ WARN_ON_ONCE(1); return false; } +/* Similar to check_ids(), but allocate a unique temporary ID + * for 'old_id' or 'cur_id' of zero. + * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. + */ +static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) +{ + old_id = old_id ? old_id : ++idmap->tmp_id_gen; + cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; + + return check_ids(old_id, cur_id, idmap); +} + static void clean_func_state(struct bpf_verifier_env *env, struct bpf_func_state *st) { @@ -7921,7 +17800,7 @@ static void clean_verifier_state(struct bpf_verifier_env *env, * Since the verifier pushes the branch states as it sees them while exploring * the program the condition of walking the branch instruction for the second * time means that all states below this branch were already explored and - * their final liveness markes are already propagated. + * their final liveness marks are already propagated. * Hence when the verifier completes the search of state list in is_state_visited() * we can call this clean_live_states() function to mark all liveness states * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' @@ -7937,98 +17816,133 @@ static void clean_live_states(struct bpf_verifier_env *env, int insn, struct bpf_verifier_state *cur) { struct bpf_verifier_state_list *sl; - int i; sl = *explored_state(env, insn); while (sl) { if (sl->state.branches) goto next; if (sl->state.insn_idx != insn || - sl->state.curframe != cur->curframe) + !same_callsites(&sl->state, cur)) goto next; - for (i = 0; i <= cur->curframe; i++) - if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) - goto next; clean_verifier_state(env, &sl->state); next: sl = sl->next; } } -/* Returns true if (rold safe implies rcur safe) */ -static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, - struct idpair *idmap) +static bool regs_exact(const struct bpf_reg_state *rold, + const struct bpf_reg_state *rcur, + struct bpf_idmap *idmap) { - bool equal; - - if (!(rold->live & REG_LIVE_READ)) - /* explored state didn't use this */ - return true; + return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && + check_ids(rold->id, rcur->id, idmap) && + check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); +} - equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; +enum exact_level { + NOT_EXACT, + EXACT, + RANGE_WITHIN +}; - if (rold->type == PTR_TO_STACK) - /* two stack pointers are equal only if they're pointing to - * the same stack frame, since fp-8 in foo != fp-8 in bar - */ - return equal && rold->frameno == rcur->frameno; +/* Returns true if (rold safe implies rcur safe) */ +static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, + struct bpf_reg_state *rcur, struct bpf_idmap *idmap, + enum exact_level exact) +{ + if (exact == EXACT) + return regs_exact(rold, rcur, idmap); - if (equal) + if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) + /* explored state didn't use this */ return true; + if (rold->type == NOT_INIT) { + if (exact == NOT_EXACT || rcur->type == NOT_INIT) + /* explored state can't have used this */ + return true; + } - if (rold->type == NOT_INIT) - /* explored state can't have used this */ - return true; - if (rcur->type == NOT_INIT) + /* Enforce that register types have to match exactly, including their + * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general + * rule. + * + * One can make a point that using a pointer register as unbounded + * SCALAR would be technically acceptable, but this could lead to + * pointer leaks because scalars are allowed to leak while pointers + * are not. We could make this safe in special cases if root is + * calling us, but it's probably not worth the hassle. + * + * Also, register types that are *not* MAYBE_NULL could technically be + * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE + * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point + * to the same map). + * However, if the old MAYBE_NULL register then got NULL checked, + * doing so could have affected others with the same id, and we can't + * check for that because we lost the id when we converted to + * a non-MAYBE_NULL variant. + * So, as a general rule we don't allow mixing MAYBE_NULL and + * non-MAYBE_NULL registers as well. + */ + if (rold->type != rcur->type) return false; - switch (rold->type) { + + switch (base_type(rold->type)) { case SCALAR_VALUE: - if (rcur->type == SCALAR_VALUE) { - if (!rold->precise && !rcur->precise) - return true; - /* new val must satisfy old val knowledge */ - return range_within(rold, rcur) && - tnum_in(rold->var_off, rcur->var_off); - } else { - /* We're trying to use a pointer in place of a scalar. - * Even if the scalar was unbounded, this could lead to - * pointer leaks because scalars are allowed to leak - * while pointers are not. We could make this safe in - * special cases if root is calling us, but it's - * probably not worth the hassle. + if (env->explore_alu_limits) { + /* explore_alu_limits disables tnum_in() and range_within() + * logic and requires everything to be strict */ - return false; + return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && + check_scalar_ids(rold->id, rcur->id, idmap); } + if (!rold->precise && exact == NOT_EXACT) + return true; + if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) + return false; + if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) + return false; + /* Why check_ids() for scalar registers? + * + * Consider the following BPF code: + * 1: r6 = ... unbound scalar, ID=a ... + * 2: r7 = ... unbound scalar, ID=b ... + * 3: if (r6 > r7) goto +1 + * 4: r6 = r7 + * 5: if (r6 > X) goto ... + * 6: ... memory operation using r7 ... + * + * First verification path is [1-6]: + * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; + * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark + * r7 <= X, because r6 and r7 share same id. + * Next verification path is [1-4, 6]. + * + * Instruction (6) would be reached in two states: + * I. r6{.id=b}, r7{.id=b} via path 1-6; + * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. + * + * Use check_ids() to distinguish these states. + * --- + * Also verify that new value satisfies old value range knowledge. + */ + return range_within(rold, rcur) && + tnum_in(rold->var_off, rcur->var_off) && + check_scalar_ids(rold->id, rcur->id, idmap); + case PTR_TO_MAP_KEY: case PTR_TO_MAP_VALUE: + case PTR_TO_MEM: + case PTR_TO_BUF: + case PTR_TO_TP_BUFFER: /* If the new min/max/var_off satisfy the old ones and * everything else matches, we are OK. - * 'id' is not compared, since it's only used for maps with - * bpf_spin_lock inside map element and in such cases if - * the rest of the prog is valid for one map element then - * it's valid for all map elements regardless of the key - * used in bpf_map_lookup() */ - return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && + return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && range_within(rold, rcur) && - tnum_in(rold->var_off, rcur->var_off); - case PTR_TO_MAP_VALUE_OR_NULL: - /* a PTR_TO_MAP_VALUE could be safe to use as a - * PTR_TO_MAP_VALUE_OR_NULL into the same map. - * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- - * checked, doing so could have affected others with the same - * id, and we can't check for that because we lost the id when - * we converted to a PTR_TO_MAP_VALUE. - */ - if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) - return false; - if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) - return false; - /* Check our ids match any regs they're supposed to */ - return check_ids(rold->id, rcur->id, idmap); + tnum_in(rold->var_off, rcur->var_off) && + check_ids(rold->id, rcur->id, idmap) && + check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); case PTR_TO_PACKET_META: case PTR_TO_PACKET: - if (rcur->type != rold->type) - return false; /* We must have at least as much range as the old ptr * did, so that any accesses which were safe before are * still safe. This is true even if old range < old off, @@ -8043,38 +17957,63 @@ static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, if (rold->off != rcur->off) return false; /* id relations must be preserved */ - if (rold->id && !check_ids(rold->id, rcur->id, idmap)) + if (!check_ids(rold->id, rcur->id, idmap)) return false; /* new val must satisfy old val knowledge */ return range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off); - case PTR_TO_CTX: - case CONST_PTR_TO_MAP: - case PTR_TO_PACKET_END: - case PTR_TO_FLOW_KEYS: - case PTR_TO_SOCKET: - case PTR_TO_SOCKET_OR_NULL: - case PTR_TO_SOCK_COMMON: - case PTR_TO_SOCK_COMMON_OR_NULL: - case PTR_TO_TCP_SOCK: - case PTR_TO_TCP_SOCK_OR_NULL: - case PTR_TO_XDP_SOCK: - /* Only valid matches are exact, which memcmp() above - * would have accepted + case PTR_TO_STACK: + /* two stack pointers are equal only if they're pointing to + * the same stack frame, since fp-8 in foo != fp-8 in bar */ + return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; + case PTR_TO_ARENA: + return true; default: - /* Don't know what's going on, just say it's not safe */ + return regs_exact(rold, rcur, idmap); + } +} + +static struct bpf_reg_state unbound_reg; + +static __init int unbound_reg_init(void) +{ + __mark_reg_unknown_imprecise(&unbound_reg); + unbound_reg.live |= REG_LIVE_READ; + return 0; +} +late_initcall(unbound_reg_init); + +static bool is_stack_all_misc(struct bpf_verifier_env *env, + struct bpf_stack_state *stack) +{ + u32 i; + + for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { + if ((stack->slot_type[i] == STACK_MISC) || + (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) + continue; return false; } - /* Shouldn't get here; if we do, say it's not safe */ - WARN_ON_ONCE(1); - return false; + return true; } -static bool stacksafe(struct bpf_func_state *old, - struct bpf_func_state *cur, - struct idpair *idmap) +static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, + struct bpf_stack_state *stack) +{ + if (is_spilled_scalar_reg64(stack)) + return &stack->spilled_ptr; + + if (is_stack_all_misc(env, stack)) + return &unbound_reg; + + return NULL; +} + +static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, + struct bpf_func_state *cur, struct bpf_idmap *idmap, + enum exact_level exact) { int i, spi; @@ -8083,9 +18022,18 @@ static bool stacksafe(struct bpf_func_state *old, * didn't use them */ for (i = 0; i < old->allocated_stack; i++) { + struct bpf_reg_state *old_reg, *cur_reg; + spi = i / BPF_REG_SIZE; - if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { + if (exact != NOT_EXACT && + (i >= cur->allocated_stack || + old->stack[spi].slot_type[i % BPF_REG_SIZE] != + cur->stack[spi].slot_type[i % BPF_REG_SIZE])) + return false; + + if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) + && exact == NOT_EXACT) { i += BPF_REG_SIZE - 1; /* explored state didn't use this */ continue; @@ -8094,12 +18042,30 @@ static bool stacksafe(struct bpf_func_state *old, if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) continue; + if (env->allow_uninit_stack && + old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) + continue; + /* explored stack has more populated slots than current stack * and these slots were used */ if (i >= cur->allocated_stack) return false; + /* 64-bit scalar spill vs all slots MISC and vice versa. + * Load from all slots MISC produces unbound scalar. + * Construct a fake register for such stack and call + * regsafe() to ensure scalar ids are compared. + */ + old_reg = scalar_reg_for_stack(env, &old->stack[spi]); + cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); + if (old_reg && cur_reg) { + if (!regsafe(env, old_reg, cur_reg, idmap, exact)) + return false; + i += BPF_REG_SIZE - 1; + continue; + } + /* if old state was safe with misc data in the stack * it will be safe with zero-initialized stack. * The opposite is not true @@ -8110,18 +18076,16 @@ static bool stacksafe(struct bpf_func_state *old, if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != cur->stack[spi].slot_type[i % BPF_REG_SIZE]) /* Ex: old explored (safe) state has STACK_SPILL in - * this stack slot, but current has has STACK_MISC -> + * this stack slot, but current has STACK_MISC -> * this verifier states are not equivalent, * return false to continue verification of this path */ return false; - if (i % BPF_REG_SIZE) + if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) continue; - if (old->stack[spi].slot_type[0] != STACK_SPILL) - continue; - if (!regsafe(&old->stack[spi].spilled_ptr, - &cur->stack[spi].spilled_ptr, - idmap)) + /* Both old and cur are having same slot_type */ + switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { + case STACK_SPILL: /* when explored and current stack slot are both storing * spilled registers, check that stored pointers types * are the same as well. @@ -8132,17 +18096,91 @@ static bool stacksafe(struct bpf_func_state *old, * such verifier states are not equivalent. * return false to continue verification of this path */ + if (!regsafe(env, &old->stack[spi].spilled_ptr, + &cur->stack[spi].spilled_ptr, idmap, exact)) + return false; + break; + case STACK_DYNPTR: + old_reg = &old->stack[spi].spilled_ptr; + cur_reg = &cur->stack[spi].spilled_ptr; + if (old_reg->dynptr.type != cur_reg->dynptr.type || + old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || + !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) + return false; + break; + case STACK_ITER: + old_reg = &old->stack[spi].spilled_ptr; + cur_reg = &cur->stack[spi].spilled_ptr; + /* iter.depth is not compared between states as it + * doesn't matter for correctness and would otherwise + * prevent convergence; we maintain it only to prevent + * infinite loop check triggering, see + * iter_active_depths_differ() + */ + if (old_reg->iter.btf != cur_reg->iter.btf || + old_reg->iter.btf_id != cur_reg->iter.btf_id || + old_reg->iter.state != cur_reg->iter.state || + /* ignore {old_reg,cur_reg}->iter.depth, see above */ + !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) + return false; + break; + case STACK_IRQ_FLAG: + old_reg = &old->stack[spi].spilled_ptr; + cur_reg = &cur->stack[spi].spilled_ptr; + if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) + return false; + break; + case STACK_MISC: + case STACK_ZERO: + case STACK_INVALID: + continue; + /* Ensure that new unhandled slot types return false by default */ + default: return false; + } } return true; } -static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) +static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, + struct bpf_idmap *idmap) { + int i; + if (old->acquired_refs != cur->acquired_refs) return false; - return !memcmp(old->refs, cur->refs, - sizeof(*old->refs) * old->acquired_refs); + + if (old->active_locks != cur->active_locks) + return false; + + if (old->active_preempt_locks != cur->active_preempt_locks) + return false; + + if (old->active_rcu_lock != cur->active_rcu_lock) + return false; + + if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) + return false; + + for (i = 0; i < old->acquired_refs; i++) { + if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || + old->refs[i].type != cur->refs[i].type) + return false; + switch (old->refs[i].type) { + case REF_TYPE_PTR: + case REF_TYPE_IRQ: + break; + case REF_TYPE_LOCK: + if (old->refs[i].ptr != cur->refs[i].ptr) + return false; + break; + default: + WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); + return false; + } + } + + return true; } /* compare two verifier states @@ -8171,50 +18209,53 @@ static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) * whereas register type in current state is meaningful, it means that * the current state will reach 'bpf_exit' instruction safely */ -static bool func_states_equal(struct bpf_func_state *old, - struct bpf_func_state *cur) +static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, + struct bpf_func_state *cur, enum exact_level exact) { - struct idpair *idmap; - bool ret = false; int i; - idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); - /* If we failed to allocate the idmap, just say it's not safe */ - if (!idmap) + if (old->callback_depth > cur->callback_depth) return false; - for (i = 0; i < MAX_BPF_REG; i++) { - if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) - goto out_free; - } + for (i = 0; i < MAX_BPF_REG; i++) + if (!regsafe(env, &old->regs[i], &cur->regs[i], + &env->idmap_scratch, exact)) + return false; - if (!stacksafe(old, cur, idmap)) - goto out_free; + if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) + return false; - if (!refsafe(old, cur)) - goto out_free; - ret = true; -out_free: - kfree(idmap); - return ret; + return true; +} + +static void reset_idmap_scratch(struct bpf_verifier_env *env) +{ + env->idmap_scratch.tmp_id_gen = env->id_gen; + memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); } static bool states_equal(struct bpf_verifier_env *env, struct bpf_verifier_state *old, - struct bpf_verifier_state *cur) + struct bpf_verifier_state *cur, + enum exact_level exact) { int i; if (old->curframe != cur->curframe) return false; + reset_idmap_scratch(env); + /* Verification state from speculative execution simulation * must never prune a non-speculative execution one. */ if (old->speculative && !cur->speculative) return false; - if (old->active_spin_lock != cur->active_spin_lock) + if (old->in_sleepable != cur->in_sleepable) + return false; + + if (!refsafe(old, cur, &env->idmap_scratch)) return false; /* for states to be equal callsites have to be the same @@ -8223,7 +18264,7 @@ static bool states_equal(struct bpf_verifier_env *env, for (i = 0; i <= old->curframe; i++) { if (old->frame[i]->callsite != cur->frame[i]->callsite) return false; - if (!func_states_equal(old->frame[i], cur->frame[i])) + if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) return false; } return true; @@ -8317,35 +18358,54 @@ static int propagate_precision(struct bpf_verifier_env *env, { struct bpf_reg_state *state_reg; struct bpf_func_state *state; - int i, err = 0; + int i, err = 0, fr; + bool first; - state = old->frame[old->curframe]; - state_reg = state->regs; - for (i = 0; i < BPF_REG_FP; i++, state_reg++) { - if (state_reg->type != SCALAR_VALUE || - !state_reg->precise) - continue; - if (env->log.level & BPF_LOG_LEVEL2) - verbose(env, "propagating r%d\n", i); - err = mark_chain_precision(env, i); - if (err < 0) - return err; - } + for (fr = old->curframe; fr >= 0; fr--) { + state = old->frame[fr]; + state_reg = state->regs; + first = true; + for (i = 0; i < BPF_REG_FP; i++, state_reg++) { + if (state_reg->type != SCALAR_VALUE || + !state_reg->precise || + !(state_reg->live & REG_LIVE_READ)) + continue; + if (env->log.level & BPF_LOG_LEVEL2) { + if (first) + verbose(env, "frame %d: propagating r%d", fr, i); + else + verbose(env, ",r%d", i); + } + bt_set_frame_reg(&env->bt, fr, i); + first = false; + } - for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { - if (state->stack[i].slot_type[0] != STACK_SPILL) - continue; - state_reg = &state->stack[i].spilled_ptr; - if (state_reg->type != SCALAR_VALUE || - !state_reg->precise) - continue; - if (env->log.level & BPF_LOG_LEVEL2) - verbose(env, "propagating fp%d\n", - (-i - 1) * BPF_REG_SIZE); - err = mark_chain_precision_stack(env, i); - if (err < 0) - return err; + for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { + if (!is_spilled_reg(&state->stack[i])) + continue; + state_reg = &state->stack[i].spilled_ptr; + if (state_reg->type != SCALAR_VALUE || + !state_reg->precise || + !(state_reg->live & REG_LIVE_READ)) + continue; + if (env->log.level & BPF_LOG_LEVEL2) { + if (first) + verbose(env, "frame %d: propagating fp%d", + fr, (-i - 1) * BPF_REG_SIZE); + else + verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); + } + bt_set_frame_slot(&env->bt, fr, i); + first = false; + } + if (!first) + verbose(env, "\n"); } + + err = mark_chain_precision_batch(env); + if (err < 0) + return err; + return 0; } @@ -8367,21 +18427,104 @@ static bool states_maybe_looping(struct bpf_verifier_state *old, return true; } +static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) +{ + return env->insn_aux_data[insn_idx].is_iter_next; +} + +/* is_state_visited() handles iter_next() (see process_iter_next_call() for + * terminology) calls specially: as opposed to bounded BPF loops, it *expects* + * states to match, which otherwise would look like an infinite loop. So while + * iter_next() calls are taken care of, we still need to be careful and + * prevent erroneous and too eager declaration of "ininite loop", when + * iterators are involved. + * + * Here's a situation in pseudo-BPF assembly form: + * + * 0: again: ; set up iter_next() call args + * 1: r1 = &it ; <CHECKPOINT HERE> + * 2: call bpf_iter_num_next ; this is iter_next() call + * 3: if r0 == 0 goto done + * 4: ... something useful here ... + * 5: goto again ; another iteration + * 6: done: + * 7: r1 = &it + * 8: call bpf_iter_num_destroy ; clean up iter state + * 9: exit + * + * This is a typical loop. Let's assume that we have a prune point at 1:, + * before we get to `call bpf_iter_num_next` (e.g., because of that `goto + * again`, assuming other heuristics don't get in a way). + * + * When we first time come to 1:, let's say we have some state X. We proceed + * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. + * Now we come back to validate that forked ACTIVE state. We proceed through + * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we + * are converging. But the problem is that we don't know that yet, as this + * convergence has to happen at iter_next() call site only. So if nothing is + * done, at 1: verifier will use bounded loop logic and declare infinite + * looping (and would be *technically* correct, if not for iterator's + * "eventual sticky NULL" contract, see process_iter_next_call()). But we + * don't want that. So what we do in process_iter_next_call() when we go on + * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's + * a different iteration. So when we suspect an infinite loop, we additionally + * check if any of the *ACTIVE* iterator states depths differ. If yes, we + * pretend we are not looping and wait for next iter_next() call. + * + * This only applies to ACTIVE state. In DRAINED state we don't expect to + * loop, because that would actually mean infinite loop, as DRAINED state is + * "sticky", and so we'll keep returning into the same instruction with the + * same state (at least in one of possible code paths). + * + * This approach allows to keep infinite loop heuristic even in the face of + * active iterator. E.g., C snippet below is and will be detected as + * inifintely looping: + * + * struct bpf_iter_num it; + * int *p, x; + * + * bpf_iter_num_new(&it, 0, 10); + * while ((p = bpf_iter_num_next(&t))) { + * x = p; + * while (x--) {} // <<-- infinite loop here + * } + * + */ +static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) +{ + struct bpf_reg_state *slot, *cur_slot; + struct bpf_func_state *state; + int i, fr; + + for (fr = old->curframe; fr >= 0; fr--) { + state = old->frame[fr]; + for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { + if (state->stack[i].slot_type[0] != STACK_ITER) + continue; + + slot = &state->stack[i].spilled_ptr; + if (slot->iter.state != BPF_ITER_STATE_ACTIVE) + continue; + + cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; + if (cur_slot->iter.depth != slot->iter.depth) + return true; + } + } + return false; +} static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) { struct bpf_verifier_state_list *new_sl; struct bpf_verifier_state_list *sl, **pprev; - struct bpf_verifier_state *cur = env->cur_state, *new; - int i, j, err, states_cnt = 0; - bool add_new_state = env->test_state_freq ? true : false; - - cur->last_insn_idx = env->prev_insn_idx; - if (!env->insn_aux_data[insn_idx].prune_point) - /* this 'insn_idx' instruction wasn't marked, so we will not - * be doing state search here - */ - return 0; + struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; + int i, j, n, err, states_cnt = 0; + bool force_new_state, add_new_state, force_exact; + + force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || + /* Avoid accumulating infinitely long jmp history */ + cur->insn_hist_end - cur->insn_hist_start > 40; /* bpf progs typically have pruning point every 4 instructions * http://vger.kernel.org/bpfconf2019.html#session-1 @@ -8391,6 +18534,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) * In tests that amounts to up to 50% reduction into total verifier * memory consumption and 20% verifier time speedup. */ + add_new_state = force_new_state; if (env->jmps_processed - env->prev_jmps_processed >= 2 && env->insn_processed - env->prev_insn_processed >= 8) add_new_state = true; @@ -8404,11 +18548,109 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) states_cnt++; if (sl->state.insn_idx != insn_idx) goto next; + if (sl->state.branches) { + struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; + + if (frame->in_async_callback_fn && + frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { + /* Different async_entry_cnt means that the verifier is + * processing another entry into async callback. + * Seeing the same state is not an indication of infinite + * loop or infinite recursion. + * But finding the same state doesn't mean that it's safe + * to stop processing the current state. The previous state + * hasn't yet reached bpf_exit, since state.branches > 0. + * Checking in_async_callback_fn alone is not enough either. + * Since the verifier still needs to catch infinite loops + * inside async callbacks. + */ + goto skip_inf_loop_check; + } + /* BPF open-coded iterators loop detection is special. + * states_maybe_looping() logic is too simplistic in detecting + * states that *might* be equivalent, because it doesn't know + * about ID remapping, so don't even perform it. + * See process_iter_next_call() and iter_active_depths_differ() + * for overview of the logic. When current and one of parent + * states are detected as equivalent, it's a good thing: we prove + * convergence and can stop simulating further iterations. + * It's safe to assume that iterator loop will finish, taking into + * account iter_next() contract of eventually returning + * sticky NULL result. + * + * Note, that states have to be compared exactly in this case because + * read and precision marks might not be finalized inside the loop. + * E.g. as in the program below: + * + * 1. r7 = -16 + * 2. r6 = bpf_get_prandom_u32() + * 3. while (bpf_iter_num_next(&fp[-8])) { + * 4. if (r6 != 42) { + * 5. r7 = -32 + * 6. r6 = bpf_get_prandom_u32() + * 7. continue + * 8. } + * 9. r0 = r10 + * 10. r0 += r7 + * 11. r8 = *(u64 *)(r0 + 0) + * 12. r6 = bpf_get_prandom_u32() + * 13. } + * + * Here verifier would first visit path 1-3, create a checkpoint at 3 + * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does + * not have read or precision mark for r7 yet, thus inexact states + * comparison would discard current state with r7=-32 + * => unsafe memory access at 11 would not be caught. + */ + if (is_iter_next_insn(env, insn_idx)) { + if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { + struct bpf_func_state *cur_frame; + struct bpf_reg_state *iter_state, *iter_reg; + int spi; + + cur_frame = cur->frame[cur->curframe]; + /* btf_check_iter_kfuncs() enforces that + * iter state pointer is always the first arg + */ + iter_reg = &cur_frame->regs[BPF_REG_1]; + /* current state is valid due to states_equal(), + * so we can assume valid iter and reg state, + * no need for extra (re-)validations + */ + spi = __get_spi(iter_reg->off + iter_reg->var_off.value); + iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; + if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { + update_loop_entry(cur, &sl->state); + goto hit; + } + } + goto skip_inf_loop_check; + } + if (is_may_goto_insn_at(env, insn_idx)) { + if (sl->state.may_goto_depth != cur->may_goto_depth && + states_equal(env, &sl->state, cur, RANGE_WITHIN)) { + update_loop_entry(cur, &sl->state); + goto hit; + } + } + if (calls_callback(env, insn_idx)) { + if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) + goto hit; + goto skip_inf_loop_check; + } + /* attempt to detect infinite loop to avoid unnecessary doomed work */ if (states_maybe_looping(&sl->state, cur) && - states_equal(env, &sl->state, cur)) { + states_equal(env, &sl->state, cur, EXACT) && + !iter_active_depths_differ(&sl->state, cur) && + sl->state.may_goto_depth == cur->may_goto_depth && + sl->state.callback_unroll_depth == cur->callback_unroll_depth) { verbose_linfo(env, insn_idx, "; "); verbose(env, "infinite loop detected at insn %d\n", insn_idx); + verbose(env, "cur state:"); + print_verifier_state(env, cur, cur->curframe, true); + verbose(env, "old state:"); + print_verifier_state(env, &sl->state, cur->curframe, true); return -EINVAL; } /* if the verifier is processing a loop, avoid adding new state @@ -8423,12 +18665,44 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) * This threshold shouldn't be too high either, since states * at the end of the loop are likely to be useful in pruning. */ - if (env->jmps_processed - env->prev_jmps_processed < 20 && +skip_inf_loop_check: + if (!force_new_state && + env->jmps_processed - env->prev_jmps_processed < 20 && env->insn_processed - env->prev_insn_processed < 100) add_new_state = false; goto miss; } - if (states_equal(env, &sl->state, cur)) { + /* If sl->state is a part of a loop and this loop's entry is a part of + * current verification path then states have to be compared exactly. + * 'force_exact' is needed to catch the following case: + * + * initial Here state 'succ' was processed first, + * | it was eventually tracked to produce a + * V state identical to 'hdr'. + * .---------> hdr All branches from 'succ' had been explored + * | | and thus 'succ' has its .branches == 0. + * | V + * | .------... Suppose states 'cur' and 'succ' correspond + * | | | to the same instruction + callsites. + * | V V In such case it is necessary to check + * | ... ... if 'succ' and 'cur' are states_equal(). + * | | | If 'succ' and 'cur' are a part of the + * | V V same loop exact flag has to be set. + * | succ <- cur To check if that is the case, verify + * | | if loop entry of 'succ' is in current + * | V DFS path. + * | ... + * | | + * '----' + * + * Additional details are in the comment before get_loop_entry(). + */ + loop_entry = get_loop_entry(&sl->state); + force_exact = loop_entry && loop_entry->branches > 0; + if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { + if (force_exact) + update_loop_entry(cur, loop_entry); +hit: sl->hit_cnt++; /* reached equivalent register/stack state, * prune the search. @@ -8443,11 +18717,12 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) err = propagate_liveness(env, &sl->state, cur); /* if previous state reached the exit with precision and - * current state is equivalent to it (except precsion marks) + * current state is equivalent to it (except precision marks) * the precision needs to be propagated back in * the current state. */ - err = err ? : push_jmp_history(env, cur); + if (is_jmp_point(env, env->insn_idx)) + err = err ? : push_insn_history(env, cur, 0, 0); err = err ? : propagate_precision(env, &sl->state); if (err) return err; @@ -8466,13 +18741,18 @@ miss: * to keep checking from state equivalence point of view. * Higher numbers increase max_states_per_insn and verification time, * but do not meaningfully decrease insn_processed. + * 'n' controls how many times state could miss before eviction. + * Use bigger 'n' for checkpoints because evicting checkpoint states + * too early would hinder iterator convergence. */ - if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { + n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; + if (sl->miss_cnt > sl->hit_cnt * n + n) { /* the state is unlikely to be useful. Remove it to * speed up verification */ *pprev = sl->next; - if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { + if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && + !sl->state.used_as_loop_entry) { u32 br = sl->state.branches; WARN_ONCE(br, @@ -8501,10 +18781,10 @@ next: env->max_states_per_insn = states_cnt; if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) - return push_jmp_history(env, cur); + return 0; if (!add_new_state) - return push_jmp_history(env, cur); + return 0; /* There were no equivalent states, remember the current one. * Technically the current state is not proven to be safe yet, @@ -8523,6 +18803,10 @@ next: env->prev_jmps_processed = env->jmps_processed; env->prev_insn_processed = env->insn_processed; + /* forget precise markings we inherited, see __mark_chain_precision */ + if (env->bpf_capable) + mark_all_scalars_imprecise(env, cur); + /* add new state to the head of linked list */ new = &new_sl->state; err = copy_verifier_state(new, cur); @@ -8537,7 +18821,8 @@ next: cur->parent = new; cur->first_insn_idx = insn_idx; - clear_jmp_history(cur); + cur->insn_hist_start = cur->insn_hist_end; + cur->dfs_depth = new->dfs_depth + 1; new_sl->next = *explored_state(env, insn_idx); *explored_state(env, insn_idx) = new_sl; /* connect new state to parentage chain. Current frame needs all @@ -8577,17 +18862,14 @@ next: /* Return true if it's OK to have the same insn return a different type. */ static bool reg_type_mismatch_ok(enum bpf_reg_type type) { - switch (type) { + switch (base_type(type)) { case PTR_TO_CTX: case PTR_TO_SOCKET: - case PTR_TO_SOCKET_OR_NULL: case PTR_TO_SOCK_COMMON: - case PTR_TO_SOCK_COMMON_OR_NULL: case PTR_TO_TCP_SOCK: - case PTR_TO_TCP_SOCK_OR_NULL: case PTR_TO_XDP_SOCK: case PTR_TO_BTF_ID: - case PTR_TO_BTF_ID_OR_NULL: + case PTR_TO_ARENA: return false; default: return true; @@ -8612,6 +18894,44 @@ static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) !reg_type_mismatch_ok(prev)); } +static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, + bool allow_trust_mismatch) +{ + enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; + + if (*prev_type == NOT_INIT) { + /* Saw a valid insn + * dst_reg = *(u32 *)(src_reg + off) + * save type to validate intersecting paths + */ + *prev_type = type; + } else if (reg_type_mismatch(type, *prev_type)) { + /* Abuser program is trying to use the same insn + * dst_reg = *(u32*) (src_reg + off) + * with different pointer types: + * src_reg == ctx in one branch and + * src_reg == stack|map in some other branch. + * Reject it. + */ + if (allow_trust_mismatch && + base_type(type) == PTR_TO_BTF_ID && + base_type(*prev_type) == PTR_TO_BTF_ID) { + /* + * Have to support a use case when one path through + * the program yields TRUSTED pointer while another + * is UNTRUSTED. Fallback to UNTRUSTED to generate + * BPF_PROBE_MEM/BPF_PROBE_MEMSX. + */ + *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; + } else { + verbose(env, "same insn cannot be used with different pointers\n"); + return -EINVAL; + } + } + + return 0; +} + static int do_check(struct bpf_verifier_env *env) { bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); @@ -8623,10 +18943,14 @@ static int do_check(struct bpf_verifier_env *env) int prev_insn_idx = -1; for (;;) { + bool exception_exit = false; struct bpf_insn *insn; u8 class; int err; + /* reset current history entry on each new instruction */ + env->cur_hist_ent = NULL; + env->prev_insn_idx = prev_insn_idx; if (env->insn_idx >= insn_cnt) { verbose(env, "invalid insn idx %d insn_cnt %d\n", @@ -8644,21 +18968,31 @@ static int do_check(struct bpf_verifier_env *env) return -E2BIG; } - err = is_state_visited(env, env->insn_idx); - if (err < 0) - return err; - if (err == 1) { - /* found equivalent state, can prune the search */ - if (env->log.level & BPF_LOG_LEVEL) { - if (do_print_state) - verbose(env, "\nfrom %d to %d%s: safe\n", - env->prev_insn_idx, env->insn_idx, - env->cur_state->speculative ? - " (speculative execution)" : ""); - else - verbose(env, "%d: safe\n", env->insn_idx); + state->last_insn_idx = env->prev_insn_idx; + + if (is_prune_point(env, env->insn_idx)) { + err = is_state_visited(env, env->insn_idx); + if (err < 0) + return err; + if (err == 1) { + /* found equivalent state, can prune the search */ + if (env->log.level & BPF_LOG_LEVEL) { + if (do_print_state) + verbose(env, "\nfrom %d to %d%s: safe\n", + env->prev_insn_idx, env->insn_idx, + env->cur_state->speculative ? + " (speculative execution)" : ""); + else + verbose(env, "%d: safe\n", env->insn_idx); + } + goto process_bpf_exit; } - goto process_bpf_exit; + } + + if (is_jmp_point(env, env->insn_idx)) { + err = push_insn_history(env, state, 0, 0); + if (err) + return err; } if (signal_pending(current)) @@ -8667,31 +19001,34 @@ static int do_check(struct bpf_verifier_env *env) if (need_resched()) cond_resched(); - if (env->log.level & BPF_LOG_LEVEL2 || - (env->log.level & BPF_LOG_LEVEL && do_print_state)) { - if (env->log.level & BPF_LOG_LEVEL2) - verbose(env, "%d:", env->insn_idx); - else - verbose(env, "\nfrom %d to %d%s:", - env->prev_insn_idx, env->insn_idx, - env->cur_state->speculative ? - " (speculative execution)" : ""); - print_verifier_state(env, state->frame[state->curframe]); + if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { + verbose(env, "\nfrom %d to %d%s:", + env->prev_insn_idx, env->insn_idx, + env->cur_state->speculative ? + " (speculative execution)" : ""); + print_verifier_state(env, state, state->curframe, true); do_print_state = false; } if (env->log.level & BPF_LOG_LEVEL) { const struct bpf_insn_cbs cbs = { + .cb_call = disasm_kfunc_name, .cb_print = verbose, .private_data = env, }; + if (verifier_state_scratched(env)) + print_insn_state(env, state, state->curframe); + verbose_linfo(env, env->insn_idx, "; "); + env->prev_log_pos = env->log.end_pos; verbose(env, "%d: ", env->insn_idx); print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); + env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; + env->prev_log_pos = env->log.end_pos; } - if (bpf_prog_is_dev_bound(env->prog->aux)) { + if (bpf_prog_is_offloaded(env->prog->aux)) { err = bpf_prog_offload_verify_insn(env, env->insn_idx, env->prev_insn_idx); if (err) @@ -8699,7 +19036,7 @@ static int do_check(struct bpf_verifier_env *env) } regs = cur_regs(env); - env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; + sanitize_mark_insn_seen(env); prev_insn_idx = env->insn_idx; if (class == BPF_ALU || class == BPF_ALU64) { @@ -8708,7 +19045,7 @@ static int do_check(struct bpf_verifier_env *env) return err; } else if (class == BPF_LDX) { - enum bpf_reg_type *prev_src_type, src_reg_type; + enum bpf_reg_type src_reg_type; /* check for reserved fields is already done */ @@ -8728,42 +19065,28 @@ static int do_check(struct bpf_verifier_env *env) */ err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, BPF_SIZE(insn->code), - BPF_READ, insn->dst_reg, false); + BPF_READ, insn->dst_reg, false, + BPF_MODE(insn->code) == BPF_MEMSX); + err = err ?: save_aux_ptr_type(env, src_reg_type, true); + err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); if (err) return err; - - prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; - - if (*prev_src_type == NOT_INIT) { - /* saw a valid insn - * dst_reg = *(u32 *)(src_reg + off) - * save type to validate intersecting paths - */ - *prev_src_type = src_reg_type; - - } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { - /* ABuser program is trying to use the same insn - * dst_reg = *(u32*) (src_reg + off) - * with different pointer types: - * src_reg == ctx in one branch and - * src_reg == stack|map in some other branch. - * Reject it. - */ - verbose(env, "same insn cannot be used with different pointers\n"); - return -EINVAL; - } - } else if (class == BPF_STX) { - enum bpf_reg_type *prev_dst_type, dst_reg_type; + enum bpf_reg_type dst_reg_type; - if (BPF_MODE(insn->code) == BPF_XADD) { - err = check_xadd(env, env->insn_idx, insn); + if (BPF_MODE(insn->code) == BPF_ATOMIC) { + err = check_atomic(env, env->insn_idx, insn); if (err) return err; env->insn_idx++; continue; } + if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { + verbose(env, "BPF_STX uses reserved fields\n"); + return -EINVAL; + } + /* check src1 operand */ err = check_reg_arg(env, insn->src_reg, SRC_OP); if (err) @@ -8778,20 +19101,16 @@ static int do_check(struct bpf_verifier_env *env) /* check that memory (dst_reg + off) is writeable */ err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, BPF_SIZE(insn->code), - BPF_WRITE, insn->src_reg, false); + BPF_WRITE, insn->src_reg, false, false); if (err) return err; - prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; - - if (*prev_dst_type == NOT_INIT) { - *prev_dst_type = dst_reg_type; - } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { - verbose(env, "same insn cannot be used with different pointers\n"); - return -EINVAL; - } - + err = save_aux_ptr_type(env, dst_reg_type, false); + if (err) + return err; } else if (class == BPF_ST) { + enum bpf_reg_type dst_reg_type; + if (BPF_MODE(insn->code) != BPF_MEM || insn->src_reg != BPF_REG_0) { verbose(env, "BPF_ST uses reserved fields\n"); @@ -8802,59 +19121,72 @@ static int do_check(struct bpf_verifier_env *env) if (err) return err; - if (is_ctx_reg(env, insn->dst_reg)) { - verbose(env, "BPF_ST stores into R%d %s is not allowed\n", - insn->dst_reg, - reg_type_str[reg_state(env, insn->dst_reg)->type]); - return -EACCES; - } + dst_reg_type = regs[insn->dst_reg].type; /* check that memory (dst_reg + off) is writeable */ err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, BPF_SIZE(insn->code), - BPF_WRITE, -1, false); + BPF_WRITE, -1, false, false); if (err) return err; + err = save_aux_ptr_type(env, dst_reg_type, false); + if (err) + return err; } else if (class == BPF_JMP || class == BPF_JMP32) { u8 opcode = BPF_OP(insn->code); env->jmps_processed++; if (opcode == BPF_CALL) { if (BPF_SRC(insn->code) != BPF_K || - insn->off != 0 || + (insn->src_reg != BPF_PSEUDO_KFUNC_CALL + && insn->off != 0) || (insn->src_reg != BPF_REG_0 && - insn->src_reg != BPF_PSEUDO_CALL) || + insn->src_reg != BPF_PSEUDO_CALL && + insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { verbose(env, "BPF_CALL uses reserved fields\n"); return -EINVAL; } - if (env->cur_state->active_spin_lock && - (insn->src_reg == BPF_PSEUDO_CALL || - insn->imm != BPF_FUNC_spin_unlock)) { - verbose(env, "function calls are not allowed while holding a lock\n"); - return -EINVAL; + if (env->cur_state->active_locks) { + if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || + (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && + (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { + verbose(env, "function calls are not allowed while holding a lock\n"); + return -EINVAL; + } } - if (insn->src_reg == BPF_PSEUDO_CALL) + if (insn->src_reg == BPF_PSEUDO_CALL) { err = check_func_call(env, insn, &env->insn_idx); - else - err = check_helper_call(env, insn->imm, env->insn_idx); + } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { + err = check_kfunc_call(env, insn, &env->insn_idx); + if (!err && is_bpf_throw_kfunc(insn)) { + exception_exit = true; + goto process_bpf_exit_full; + } + } else { + err = check_helper_call(env, insn, &env->insn_idx); + } if (err) return err; + mark_reg_scratched(env, BPF_REG_0); } else if (opcode == BPF_JA) { if (BPF_SRC(insn->code) != BPF_K || - insn->imm != 0 || insn->src_reg != BPF_REG_0 || insn->dst_reg != BPF_REG_0 || - class == BPF_JMP32) { + (class == BPF_JMP && insn->imm != 0) || + (class == BPF_JMP32 && insn->off != 0)) { verbose(env, "BPF_JA uses reserved fields\n"); return -EINVAL; } - env->insn_idx += insn->off + 1; + if (class == BPF_JMP) + env->insn_idx += insn->off + 1; + else + env->insn_idx += insn->imm + 1; continue; } else if (opcode == BPF_EXIT) { @@ -8866,11 +19198,30 @@ static int do_check(struct bpf_verifier_env *env) verbose(env, "BPF_EXIT uses reserved fields\n"); return -EINVAL; } +process_bpf_exit_full: + /* We must do check_reference_leak here before + * prepare_func_exit to handle the case when + * state->curframe > 0, it may be a callback + * function, for which reference_state must + * match caller reference state when it exits. + */ + err = check_resource_leak(env, exception_exit, !env->cur_state->curframe, + "BPF_EXIT instruction in main prog"); + if (err) + return err; - if (env->cur_state->active_spin_lock) { - verbose(env, "bpf_spin_unlock is missing\n"); - return -EINVAL; - } + /* The side effect of the prepare_func_exit + * which is being skipped is that it frees + * bpf_func_state. Typically, process_bpf_exit + * will only be hit with outermost exit. + * copy_verifier_state in pop_stack will handle + * freeing of any extra bpf_func_state left over + * from not processing all nested function + * exits. We also skip return code checks as + * they are not needed for exceptional exits. + */ + if (exception_exit) + goto process_bpf_exit; if (state->curframe) { /* exit from nested function */ @@ -8881,14 +19232,11 @@ static int do_check(struct bpf_verifier_env *env) continue; } - err = check_reference_leak(env); - if (err) - return err; - - err = check_return_code(env); + err = check_return_code(env, BPF_REG_0, "R0"); if (err) return err; process_bpf_exit: + mark_verifier_state_scratched(env); update_branch_counts(env, env->cur_state); err = pop_stack(env, &prev_insn_idx, &env->insn_idx, pop_log); @@ -8919,7 +19267,7 @@ process_bpf_exit: return err; env->insn_idx++; - env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; + sanitize_mark_insn_seen(env); } else { verbose(env, "invalid BPF_LD mode\n"); return -EINVAL; @@ -8935,12 +19283,190 @@ process_bpf_exit: return 0; } -static int check_map_prealloc(struct bpf_map *map) +static int find_btf_percpu_datasec(struct btf *btf) +{ + const struct btf_type *t; + const char *tname; + int i, n; + + /* + * Both vmlinux and module each have their own ".data..percpu" + * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF + * types to look at only module's own BTF types. + */ + n = btf_nr_types(btf); + if (btf_is_module(btf)) + i = btf_nr_types(btf_vmlinux); + else + i = 1; + + for(; i < n; i++) { + t = btf_type_by_id(btf, i); + if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) + continue; + + tname = btf_name_by_offset(btf, t->name_off); + if (!strcmp(tname, ".data..percpu")) + return i; + } + + return -ENOENT; +} + +/* + * Add btf to the used_btfs array and return the index. (If the btf was + * already added, then just return the index.) Upon successful insertion + * increase btf refcnt, and, if present, also refcount the corresponding + * kernel module. + */ +static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) +{ + struct btf_mod_pair *btf_mod; + int i; + + /* check whether we recorded this BTF (and maybe module) already */ + for (i = 0; i < env->used_btf_cnt; i++) + if (env->used_btfs[i].btf == btf) + return i; + + if (env->used_btf_cnt >= MAX_USED_BTFS) + return -E2BIG; + + btf_get(btf); + + btf_mod = &env->used_btfs[env->used_btf_cnt]; + btf_mod->btf = btf; + btf_mod->module = NULL; + + /* if we reference variables from kernel module, bump its refcount */ + if (btf_is_module(btf)) { + btf_mod->module = btf_try_get_module(btf); + if (!btf_mod->module) { + btf_put(btf); + return -ENXIO; + } + } + + return env->used_btf_cnt++; +} + +/* replace pseudo btf_id with kernel symbol address */ +static int __check_pseudo_btf_id(struct bpf_verifier_env *env, + struct bpf_insn *insn, + struct bpf_insn_aux_data *aux, + struct btf *btf) +{ + const struct btf_var_secinfo *vsi; + const struct btf_type *datasec; + const struct btf_type *t; + const char *sym_name; + bool percpu = false; + u32 type, id = insn->imm; + s32 datasec_id; + u64 addr; + int i; + + t = btf_type_by_id(btf, id); + if (!t) { + verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); + return -ENOENT; + } + + if (!btf_type_is_var(t) && !btf_type_is_func(t)) { + verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); + return -EINVAL; + } + + sym_name = btf_name_by_offset(btf, t->name_off); + addr = kallsyms_lookup_name(sym_name); + if (!addr) { + verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", + sym_name); + return -ENOENT; + } + insn[0].imm = (u32)addr; + insn[1].imm = addr >> 32; + + if (btf_type_is_func(t)) { + aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; + aux->btf_var.mem_size = 0; + return 0; + } + + datasec_id = find_btf_percpu_datasec(btf); + if (datasec_id > 0) { + datasec = btf_type_by_id(btf, datasec_id); + for_each_vsi(i, datasec, vsi) { + if (vsi->type == id) { + percpu = true; + break; + } + } + } + + type = t->type; + t = btf_type_skip_modifiers(btf, type, NULL); + if (percpu) { + aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; + aux->btf_var.btf = btf; + aux->btf_var.btf_id = type; + } else if (!btf_type_is_struct(t)) { + const struct btf_type *ret; + const char *tname; + u32 tsize; + + /* resolve the type size of ksym. */ + ret = btf_resolve_size(btf, t, &tsize); + if (IS_ERR(ret)) { + tname = btf_name_by_offset(btf, t->name_off); + verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", + tname, PTR_ERR(ret)); + return -EINVAL; + } + aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; + aux->btf_var.mem_size = tsize; + } else { + aux->btf_var.reg_type = PTR_TO_BTF_ID; + aux->btf_var.btf = btf; + aux->btf_var.btf_id = type; + } + + return 0; +} + +static int check_pseudo_btf_id(struct bpf_verifier_env *env, + struct bpf_insn *insn, + struct bpf_insn_aux_data *aux) { - return (map->map_type != BPF_MAP_TYPE_HASH && - map->map_type != BPF_MAP_TYPE_PERCPU_HASH && - map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || - !(map->map_flags & BPF_F_NO_PREALLOC); + struct btf *btf; + int btf_fd; + int err; + + btf_fd = insn[1].imm; + if (btf_fd) { + CLASS(fd, f)(btf_fd); + + btf = __btf_get_by_fd(f); + if (IS_ERR(btf)) { + verbose(env, "invalid module BTF object FD specified.\n"); + return -EINVAL; + } + } else { + if (!btf_vmlinux) { + verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); + return -EINVAL; + } + btf = btf_vmlinux; + } + + err = __check_pseudo_btf_id(env, insn, aux, btf); + if (err) + return err; + + err = __add_used_btf(env, btf); + if (err < 0) + return err; + return 0; } static bool is_tracing_prog_type(enum bpf_prog_type type) @@ -8950,19 +19476,17 @@ static bool is_tracing_prog_type(enum bpf_prog_type type) case BPF_PROG_TYPE_TRACEPOINT: case BPF_PROG_TYPE_PERF_EVENT: case BPF_PROG_TYPE_RAW_TRACEPOINT: + case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: return true; default: return false; } } -static bool is_preallocated_map(struct bpf_map *map) +static bool bpf_map_is_cgroup_storage(struct bpf_map *map) { - if (!check_map_prealloc(map)) - return false; - if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) - return false; - return true; + return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || + map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); } static int check_map_prog_compatibility(struct bpf_verifier_env *env, @@ -8970,44 +19494,43 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env, struct bpf_prog *prog) { - /* - * Validate that trace type programs use preallocated hash maps. - * - * For programs attached to PERF events this is mandatory as the - * perf NMI can hit any arbitrary code sequence. - * - * All other trace types using preallocated hash maps are unsafe as - * well because tracepoint or kprobes can be inside locked regions - * of the memory allocator or at a place where a recursion into the - * memory allocator would see inconsistent state. - * - * On RT enabled kernels run-time allocation of all trace type - * programs is strictly prohibited due to lock type constraints. On - * !RT kernels it is allowed for backwards compatibility reasons for - * now, but warnings are emitted so developers are made aware of - * the unsafety and can fix their programs before this is enforced. - */ - if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { - if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { - verbose(env, "perf_event programs can only use preallocated hash map\n"); + enum bpf_prog_type prog_type = resolve_prog_type(prog); + + if (btf_record_has_field(map->record, BPF_LIST_HEAD) || + btf_record_has_field(map->record, BPF_RB_ROOT)) { + if (is_tracing_prog_type(prog_type)) { + verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); return -EINVAL; } - if (IS_ENABLED(CONFIG_PREEMPT_RT)) { - verbose(env, "trace type programs can only use preallocated hash map\n"); + } + + if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { + if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { + verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); + return -EINVAL; + } + + if (is_tracing_prog_type(prog_type)) { + verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); return -EINVAL; } - WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); - verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); } - if ((is_tracing_prog_type(prog->type) || - prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && - map_value_has_spin_lock(map)) { - verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); - return -EINVAL; + if (btf_record_has_field(map->record, BPF_TIMER)) { + if (is_tracing_prog_type(prog_type)) { + verbose(env, "tracing progs cannot use bpf_timer yet\n"); + return -EINVAL; + } } - if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && + if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { + if (is_tracing_prog_type(prog_type)) { + verbose(env, "tracing progs cannot use bpf_wq yet\n"); + return -EINVAL; + } + } + + if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && !bpf_offload_prog_map_match(prog, map)) { verbose(env, "offload device mismatch between prog and map\n"); return -EINVAL; @@ -9018,23 +19541,129 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env, return -EINVAL; } + if (prog->sleepable) + switch (map->map_type) { + case BPF_MAP_TYPE_HASH: + case BPF_MAP_TYPE_LRU_HASH: + case BPF_MAP_TYPE_ARRAY: + case BPF_MAP_TYPE_PERCPU_HASH: + case BPF_MAP_TYPE_PERCPU_ARRAY: + case BPF_MAP_TYPE_LRU_PERCPU_HASH: + case BPF_MAP_TYPE_ARRAY_OF_MAPS: + case BPF_MAP_TYPE_HASH_OF_MAPS: + case BPF_MAP_TYPE_RINGBUF: + case BPF_MAP_TYPE_USER_RINGBUF: + case BPF_MAP_TYPE_INODE_STORAGE: + case BPF_MAP_TYPE_SK_STORAGE: + case BPF_MAP_TYPE_TASK_STORAGE: + case BPF_MAP_TYPE_CGRP_STORAGE: + case BPF_MAP_TYPE_QUEUE: + case BPF_MAP_TYPE_STACK: + case BPF_MAP_TYPE_ARENA: + break; + default: + verbose(env, + "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); + return -EINVAL; + } + + if (bpf_map_is_cgroup_storage(map) && + bpf_cgroup_storage_assign(env->prog->aux, map)) { + verbose(env, "only one cgroup storage of each type is allowed\n"); + return -EBUSY; + } + + if (map->map_type == BPF_MAP_TYPE_ARENA) { + if (env->prog->aux->arena) { + verbose(env, "Only one arena per program\n"); + return -EBUSY; + } + if (!env->allow_ptr_leaks || !env->bpf_capable) { + verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); + return -EPERM; + } + if (!env->prog->jit_requested) { + verbose(env, "JIT is required to use arena\n"); + return -EOPNOTSUPP; + } + if (!bpf_jit_supports_arena()) { + verbose(env, "JIT doesn't support arena\n"); + return -EOPNOTSUPP; + } + env->prog->aux->arena = (void *)map; + if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { + verbose(env, "arena's user address must be set via map_extra or mmap()\n"); + return -EINVAL; + } + } + return 0; } -static bool bpf_map_is_cgroup_storage(struct bpf_map *map) +static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) { - return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || - map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); + int i, err; + + /* check whether we recorded this map already */ + for (i = 0; i < env->used_map_cnt; i++) + if (env->used_maps[i] == map) + return i; + + if (env->used_map_cnt >= MAX_USED_MAPS) { + verbose(env, "The total number of maps per program has reached the limit of %u\n", + MAX_USED_MAPS); + return -E2BIG; + } + + err = check_map_prog_compatibility(env, map, env->prog); + if (err) + return err; + + if (env->prog->sleepable) + atomic64_inc(&map->sleepable_refcnt); + + /* hold the map. If the program is rejected by verifier, + * the map will be released by release_maps() or it + * will be used by the valid program until it's unloaded + * and all maps are released in bpf_free_used_maps() + */ + bpf_map_inc(map); + + env->used_maps[env->used_map_cnt++] = map; + + return env->used_map_cnt - 1; } -/* look for pseudo eBPF instructions that access map FDs and - * replace them with actual map pointers +/* Add map behind fd to used maps list, if it's not already there, and return + * its index. + * Returns <0 on error, or >= 0 index, on success. */ -static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) +static int add_used_map(struct bpf_verifier_env *env, int fd) +{ + struct bpf_map *map; + CLASS(fd, f)(fd); + + map = __bpf_map_get(f); + if (IS_ERR(map)) { + verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); + return PTR_ERR(map); + } + + return __add_used_map(env, map); +} + +/* find and rewrite pseudo imm in ld_imm64 instructions: + * + * 1. if it accesses map FD, replace it with actual map pointer. + * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. + * + * NOTE: btf_vmlinux is required for converting pseudo btf_id. + */ +static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) { struct bpf_insn *insn = env->prog->insnsi; int insn_cnt = env->prog->len; - int i, j, err; + int i, err; err = bpf_prog_calc_tag(env->prog); if (err) @@ -9042,23 +19671,18 @@ static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) for (i = 0; i < insn_cnt; i++, insn++) { if (BPF_CLASS(insn->code) == BPF_LDX && - (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { + ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || + insn->imm != 0)) { verbose(env, "BPF_LDX uses reserved fields\n"); return -EINVAL; } - if (BPF_CLASS(insn->code) == BPF_STX && - ((BPF_MODE(insn->code) != BPF_MEM && - BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { - verbose(env, "BPF_STX uses reserved fields\n"); - return -EINVAL; - } - if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { struct bpf_insn_aux_data *aux; struct bpf_map *map; - struct fd f; + int map_idx; u64 addr; + u32 fd; if (i == insn_cnt - 1 || insn[1].code != 0 || insn[1].dst_reg != 0 || insn[1].src_reg != 0 || @@ -9071,47 +19695,75 @@ static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) /* valid generic load 64-bit imm */ goto next_insn; + if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { + aux = &env->insn_aux_data[i]; + err = check_pseudo_btf_id(env, insn, aux); + if (err) + return err; + goto next_insn; + } + + if (insn[0].src_reg == BPF_PSEUDO_FUNC) { + aux = &env->insn_aux_data[i]; + aux->ptr_type = PTR_TO_FUNC; + goto next_insn; + } + /* In final convert_pseudo_ld_imm64() step, this is * converted into regular 64-bit imm load insn. */ - if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && - insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || - (insn[0].src_reg == BPF_PSEUDO_MAP_FD && - insn[1].imm != 0)) { - verbose(env, - "unrecognized bpf_ld_imm64 insn\n"); + switch (insn[0].src_reg) { + case BPF_PSEUDO_MAP_VALUE: + case BPF_PSEUDO_MAP_IDX_VALUE: + break; + case BPF_PSEUDO_MAP_FD: + case BPF_PSEUDO_MAP_IDX: + if (insn[1].imm == 0) + break; + fallthrough; + default: + verbose(env, "unrecognized bpf_ld_imm64 insn\n"); return -EINVAL; } - f = fdget(insn[0].imm); - map = __bpf_map_get(f); - if (IS_ERR(map)) { - verbose(env, "fd %d is not pointing to valid bpf_map\n", - insn[0].imm); - return PTR_ERR(map); + switch (insn[0].src_reg) { + case BPF_PSEUDO_MAP_IDX_VALUE: + case BPF_PSEUDO_MAP_IDX: + if (bpfptr_is_null(env->fd_array)) { + verbose(env, "fd_idx without fd_array is invalid\n"); + return -EPROTO; + } + if (copy_from_bpfptr_offset(&fd, env->fd_array, + insn[0].imm * sizeof(fd), + sizeof(fd))) + return -EFAULT; + break; + default: + fd = insn[0].imm; + break; } - err = check_map_prog_compatibility(env, map, env->prog); - if (err) { - fdput(f); - return err; - } + map_idx = add_used_map(env, fd); + if (map_idx < 0) + return map_idx; + map = env->used_maps[map_idx]; aux = &env->insn_aux_data[i]; - if (insn->src_reg == BPF_PSEUDO_MAP_FD) { + aux->map_index = map_idx; + + if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || + insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { addr = (unsigned long)map; } else { u32 off = insn[1].imm; if (off >= BPF_MAX_VAR_OFF) { verbose(env, "direct value offset of %u is not allowed\n", off); - fdput(f); return -EINVAL; } if (!map->ops->map_direct_value_addr) { verbose(env, "no direct value access support for this map type\n"); - fdput(f); return -EINVAL; } @@ -9119,7 +19771,6 @@ static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) if (err) { verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", map->value_size, off); - fdput(f); return err; } @@ -9130,38 +19781,6 @@ static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) insn[0].imm = (u32)addr; insn[1].imm = addr >> 32; - /* check whether we recorded this map already */ - for (j = 0; j < env->used_map_cnt; j++) { - if (env->used_maps[j] == map) { - aux->map_index = j; - fdput(f); - goto next_insn; - } - } - - if (env->used_map_cnt >= MAX_USED_MAPS) { - fdput(f); - return -E2BIG; - } - - /* hold the map. If the program is rejected by verifier, - * the map will be released by release_maps() or it - * will be used by the valid program until it's unloaded - * and all maps are released in free_used_maps() - */ - bpf_map_inc(map); - - aux->map_index = env->used_map_cnt; - env->used_maps[env->used_map_cnt++] = map; - - if (bpf_map_is_cgroup_storage(map) && - bpf_cgroup_storage_assign(env->prog->aux, map)) { - verbose(env, "only one cgroup storage of each type is allowed\n"); - fdput(f); - return -EBUSY; - } - - fdput(f); next_insn: insn++; i++; @@ -9189,6 +19808,12 @@ static void release_maps(struct bpf_verifier_env *env) env->used_map_cnt); } +/* drop refcnt of maps used by the rejected program */ +static void release_btfs(struct bpf_verifier_env *env) +{ + __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); +} + /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) { @@ -9196,20 +19821,26 @@ static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) int insn_cnt = env->prog->len; int i; - for (i = 0; i < insn_cnt; i++, insn++) - if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) - insn->src_reg = 0; + for (i = 0; i < insn_cnt; i++, insn++) { + if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) + continue; + if (insn->src_reg == BPF_PSEUDO_FUNC) + continue; + insn->src_reg = 0; + } } /* single env->prog->insni[off] instruction was replaced with the range * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying * [0, off) and [off, end) to new locations, so the patched range stays zero */ -static int adjust_insn_aux_data(struct bpf_verifier_env *env, - struct bpf_prog *new_prog, u32 off, u32 cnt) +static void adjust_insn_aux_data(struct bpf_verifier_env *env, + struct bpf_insn_aux_data *new_data, + struct bpf_prog *new_prog, u32 off, u32 cnt) { - struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; + struct bpf_insn_aux_data *old_data = env->insn_aux_data; struct bpf_insn *insn = new_prog->insnsi; + u32 old_seen = old_data[off].seen; u32 prog_len; int i; @@ -9220,22 +19851,19 @@ static int adjust_insn_aux_data(struct bpf_verifier_env *env, old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); if (cnt == 1) - return 0; + return; prog_len = new_prog->len; - new_data = vzalloc(array_size(prog_len, - sizeof(struct bpf_insn_aux_data))); - if (!new_data) - return -ENOMEM; + memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); memcpy(new_data + off + cnt - 1, old_data + off, sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); for (i = off; i < off + cnt - 1; i++) { - new_data[i].seen = env->pass_cnt; + /* Expand insni[off]'s seen count to the patched range. */ + new_data[i].seen = old_seen; new_data[i].zext_dst = insn_has_def32(env, insn + i); } env->insn_aux_data = new_data; vfree(old_data); - return 0; } static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) @@ -9252,10 +19880,32 @@ static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len } } +static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) +{ + struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; + int i, sz = prog->aux->size_poke_tab; + struct bpf_jit_poke_descriptor *desc; + + for (i = 0; i < sz; i++) { + desc = &tab[i]; + if (desc->insn_idx <= off) + continue; + desc->insn_idx += len - 1; + } +} + static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, const struct bpf_insn *patch, u32 len) { struct bpf_prog *new_prog; + struct bpf_insn_aux_data *new_data = NULL; + + if (len > 1) { + new_data = vzalloc(array_size(env->prog->len + len - 1, + sizeof(struct bpf_insn_aux_data))); + if (!new_data) + return NULL; + } new_prog = bpf_patch_insn_single(env->prog, off, patch, len); if (IS_ERR(new_prog)) { @@ -9263,14 +19913,53 @@ static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 of verbose(env, "insn %d cannot be patched due to 16-bit range\n", env->insn_aux_data[off].orig_idx); + vfree(new_data); return NULL; } - if (adjust_insn_aux_data(env, new_prog, off, len)) - return NULL; + adjust_insn_aux_data(env, new_data, new_prog, off, len); adjust_subprog_starts(env, off, len); + adjust_poke_descs(new_prog, off, len); return new_prog; } +/* + * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the + * jump offset by 'delta'. + */ +static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) +{ + struct bpf_insn *insn = prog->insnsi; + u32 insn_cnt = prog->len, i; + s32 imm; + s16 off; + + for (i = 0; i < insn_cnt; i++, insn++) { + u8 code = insn->code; + + if (tgt_idx <= i && i < tgt_idx + delta) + continue; + + if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || + BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) + continue; + + if (insn->code == (BPF_JMP32 | BPF_JA)) { + if (i + 1 + insn->imm != tgt_idx) + continue; + if (check_add_overflow(insn->imm, delta, &imm)) + return -ERANGE; + insn->imm = imm; + } else { + if (i + 1 + insn->off != tgt_idx) + continue; + if (check_add_overflow(insn->off, delta, &off)) + return -ERANGE; + insn->off = off; + } + } + return 0; +} + static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, u32 off, u32 cnt) { @@ -9397,7 +20086,7 @@ static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) unsigned int orig_prog_len = env->prog->len; int err; - if (bpf_prog_is_dev_bound(env->prog->aux)) + if (bpf_prog_is_offloaded(env->prog->aux)) bpf_prog_offload_remove_insns(env, off, cnt); err = bpf_remove_insns(env->prog, off, cnt); @@ -9441,6 +20130,7 @@ static void sanitize_dead_code(struct bpf_verifier_env *env) if (aux_data[i].seen) continue; memcpy(insn + i, &trap, sizeof(trap)); + aux_data[i].zext_dst = false; } } @@ -9448,13 +20138,13 @@ static bool insn_is_cond_jump(u8 code) { u8 op; + op = BPF_OP(code); if (BPF_CLASS(code) == BPF_JMP32) - return true; + return op != BPF_JA; if (BPF_CLASS(code) != BPF_JMP) return false; - op = BPF_OP(code); return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; } @@ -9477,7 +20167,7 @@ static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) else continue; - if (bpf_prog_is_dev_bound(env->prog->aux)) + if (bpf_prog_is_offloaded(env->prog->aux)) bpf_prog_offload_replace_insn(env, i, &ja); memcpy(insn, &ja, sizeof(ja)); @@ -9508,22 +20198,29 @@ static int opt_remove_dead_code(struct bpf_verifier_env *env) return 0; } +static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); +static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); + static int opt_remove_nops(struct bpf_verifier_env *env) { - const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); struct bpf_insn *insn = env->prog->insnsi; int insn_cnt = env->prog->len; + bool is_may_goto_0, is_ja; int i, err; for (i = 0; i < insn_cnt; i++) { - if (memcmp(&insn[i], &ja, sizeof(ja))) + is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); + is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); + + if (!is_may_goto_0 && !is_ja) continue; err = verifier_remove_insns(env, i, 1); if (err) return err; insn_cnt--; - i--; + /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ + i -= (is_may_goto_0 && i > 0) ? 2 : 1; } return 0; @@ -9547,8 +20244,10 @@ static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, for (i = 0; i < len; i++) { int adj_idx = i + delta; struct bpf_insn insn; + int load_reg; insn = insns[adj_idx]; + load_reg = insn_def_regno(&insn); if (!aux[adj_idx].zext_dst) { u8 code, class; u32 imm_rnd; @@ -9558,14 +20257,14 @@ static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, code = insn.code; class = BPF_CLASS(code); - if (insn_no_def(&insn)) + if (load_reg == -1) continue; /* NOTE: arg "reg" (the fourth one) is only used for - * BPF_STX which has been ruled out in above - * check, it is safe to pass NULL here. + * BPF_STX + SRC_OP, so it is safe to pass NULL + * here. */ - if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { + if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { if (class == BPF_LD && BPF_MODE(code) == BPF_IMM) i++; @@ -9577,21 +20276,40 @@ static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, aux[adj_idx].ptr_type == PTR_TO_CTX) continue; - imm_rnd = get_random_int(); + imm_rnd = get_random_u32(); rnd_hi32_patch[0] = insn; rnd_hi32_patch[1].imm = imm_rnd; - rnd_hi32_patch[3].dst_reg = insn.dst_reg; + rnd_hi32_patch[3].dst_reg = load_reg; patch = rnd_hi32_patch; patch_len = 4; goto apply_patch_buffer; } - if (!bpf_jit_needs_zext()) + /* Add in an zero-extend instruction if a) the JIT has requested + * it or b) it's a CMPXCHG. + * + * The latter is because: BPF_CMPXCHG always loads a value into + * R0, therefore always zero-extends. However some archs' + * equivalent instruction only does this load when the + * comparison is successful. This detail of CMPXCHG is + * orthogonal to the general zero-extension behaviour of the + * CPU, so it's treated independently of bpf_jit_needs_zext. + */ + if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) continue; + /* Zero-extension is done by the caller. */ + if (bpf_pseudo_kfunc_call(&insn)) + continue; + + if (WARN_ON(load_reg == -1)) { + verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); + return -EFAULT; + } + zext_patch[0] = insn; - zext_patch[1].dst_reg = insn.dst_reg; - zext_patch[1].src_reg = insn.dst_reg; + zext_patch[1].dst_reg = load_reg; + zext_patch[1].src_reg = load_reg; patch = zext_patch; patch_len = 2; apply_patch_buffer: @@ -9614,14 +20332,39 @@ apply_patch_buffer: */ static int convert_ctx_accesses(struct bpf_verifier_env *env) { + struct bpf_subprog_info *subprogs = env->subprog_info; const struct bpf_verifier_ops *ops = env->ops; - int i, cnt, size, ctx_field_size, delta = 0; + int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0; const int insn_cnt = env->prog->len; - struct bpf_insn insn_buf[16], *insn; + struct bpf_insn *epilogue_buf = env->epilogue_buf; + struct bpf_insn *insn_buf = env->insn_buf; + struct bpf_insn *insn; u32 target_size, size_default, off; struct bpf_prog *new_prog; enum bpf_access_type type; bool is_narrower_load; + int epilogue_idx = 0; + + if (ops->gen_epilogue) { + epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, + -(subprogs[0].stack_depth + 8)); + if (epilogue_cnt >= INSN_BUF_SIZE) { + verbose(env, "bpf verifier is misconfigured\n"); + return -EINVAL; + } else if (epilogue_cnt) { + /* Save the ARG_PTR_TO_CTX for the epilogue to use */ + cnt = 0; + subprogs[0].stack_depth += 8; + insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, + -subprogs[0].stack_depth); + insn_buf[cnt++] = env->prog->insnsi[0]; + new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + env->prog = new_prog; + delta += cnt - 1; + } + } if (ops->gen_prologue || env->seen_direct_write) { if (!ops->gen_prologue) { @@ -9630,7 +20373,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) } cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, env->prog); - if (cnt >= ARRAY_SIZE(insn_buf)) { + if (cnt >= INSN_BUF_SIZE) { verbose(env, "bpf verifier is misconfigured\n"); return -EINVAL; } else if (cnt) { @@ -9643,42 +20386,69 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) } } - if (bpf_prog_is_dev_bound(env->prog->aux)) + if (delta) + WARN_ON(adjust_jmp_off(env->prog, 0, delta)); + + if (bpf_prog_is_offloaded(env->prog->aux)) return 0; insn = env->prog->insnsi + delta; for (i = 0; i < insn_cnt; i++, insn++) { bpf_convert_ctx_access_t convert_ctx_access; + u8 mode; if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || insn->code == (BPF_LDX | BPF_MEM | BPF_H) || insn->code == (BPF_LDX | BPF_MEM | BPF_W) || - insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) + insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || + insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || + insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || + insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { type = BPF_READ; - else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || - insn->code == (BPF_STX | BPF_MEM | BPF_H) || - insn->code == (BPF_STX | BPF_MEM | BPF_W) || - insn->code == (BPF_STX | BPF_MEM | BPF_DW)) + } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || + insn->code == (BPF_STX | BPF_MEM | BPF_H) || + insn->code == (BPF_STX | BPF_MEM | BPF_W) || + insn->code == (BPF_STX | BPF_MEM | BPF_DW) || + insn->code == (BPF_ST | BPF_MEM | BPF_B) || + insn->code == (BPF_ST | BPF_MEM | BPF_H) || + insn->code == (BPF_ST | BPF_MEM | BPF_W) || + insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { type = BPF_WRITE; - else + } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || + insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && + env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { + insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); + env->prog->aux->num_exentries++; continue; + } else if (insn->code == (BPF_JMP | BPF_EXIT) && + epilogue_cnt && + i + delta < subprogs[1].start) { + /* Generate epilogue for the main prog */ + if (epilogue_idx) { + /* jump back to the earlier generated epilogue */ + insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); + cnt = 1; + } else { + memcpy(insn_buf, epilogue_buf, + epilogue_cnt * sizeof(*epilogue_buf)); + cnt = epilogue_cnt; + /* epilogue_idx cannot be 0. It must have at + * least one ctx ptr saving insn before the + * epilogue. + */ + epilogue_idx = i + delta; + } + goto patch_insn_buf; + } else { + continue; + } if (type == BPF_WRITE && - env->insn_aux_data[i + delta].sanitize_stack_off) { + env->insn_aux_data[i + delta].sanitize_stack_spill) { struct bpf_insn patch[] = { - /* Sanitize suspicious stack slot with zero. - * There are no memory dependencies for this store, - * since it's only using frame pointer and immediate - * constant of zero - */ - BPF_ST_MEM(BPF_DW, BPF_REG_FP, - env->insn_aux_data[i + delta].sanitize_stack_off, - 0), - /* the original STX instruction will immediately - * overwrite the same stack slot with appropriate value - */ *insn, + BPF_ST_NOSPEC(), }; cnt = ARRAY_SIZE(patch); @@ -9692,7 +20462,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) continue; } - switch (env->insn_aux_data[i + delta].ptr_type) { + switch ((int)env->insn_aux_data[i + delta].ptr_type) { case PTR_TO_CTX: if (!ops->convert_ctx_access) continue; @@ -9709,21 +20479,39 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) convert_ctx_access = bpf_xdp_sock_convert_ctx_access; break; case PTR_TO_BTF_ID: + case PTR_TO_BTF_ID | PTR_UNTRUSTED: + /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike + * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot + * be said once it is marked PTR_UNTRUSTED, hence we must handle + * any faults for loads into such types. BPF_WRITE is disallowed + * for this case. + */ + case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: if (type == BPF_READ) { - insn->code = BPF_LDX | BPF_PROBE_MEM | - BPF_SIZE((insn)->code); + if (BPF_MODE(insn->code) == BPF_MEM) + insn->code = BPF_LDX | BPF_PROBE_MEM | + BPF_SIZE((insn)->code); + else + insn->code = BPF_LDX | BPF_PROBE_MEMSX | + BPF_SIZE((insn)->code); env->prog->aux->num_exentries++; - } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { - verbose(env, "Writes through BTF pointers are not allowed\n"); - return -EINVAL; } continue; + case PTR_TO_ARENA: + if (BPF_MODE(insn->code) == BPF_MEMSX) { + verbose(env, "sign extending loads from arena are not supported yet\n"); + return -EOPNOTSUPP; + } + insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); + env->prog->aux->num_exentries++; + continue; default: continue; } ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; size = BPF_LDST_BYTES(insn); + mode = BPF_MODE(insn->code); /* If the read access is a narrower load of the field, * convert to a 4/8-byte load, to minimum program type specific @@ -9754,7 +20542,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) target_size = 0; cnt = convert_ctx_access(type, insn, insn_buf, env->prog, &target_size); - if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || + if (cnt == 0 || cnt >= INSN_BUF_SIZE || (ctx_field_size && !target_size)) { verbose(env, "bpf verifier is misconfigured\n"); return -EINVAL; @@ -9763,6 +20551,10 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) if (is_narrower_load && size < target_size) { u8 shift = bpf_ctx_narrow_access_offset( off, size, size_default) * 8; + if (shift && cnt + 1 >= INSN_BUF_SIZE) { + verbose(env, "bpf verifier narrow ctx load misconfigured\n"); + return -EINVAL; + } if (ctx_field_size <= 4) { if (shift) insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, @@ -9775,11 +20567,16 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, insn->dst_reg, shift); - insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, + insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, (1ULL << size * 8) - 1); } } + if (mode == BPF_MEMSX) + insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, + insn->dst_reg, insn->dst_reg, + size * 8, 0); +patch_insn_buf: new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); if (!new_prog) return -ENOMEM; @@ -9798,6 +20595,7 @@ static int jit_subprogs(struct bpf_verifier_env *env) { struct bpf_prog *prog = env->prog, **func, *tmp; int i, j, subprog_start, subprog_end = 0, len, subprog; + struct bpf_map *map_ptr; struct bpf_insn *insn; void *old_bpf_func; int err, num_exentries; @@ -9806,9 +20604,9 @@ static int jit_subprogs(struct bpf_verifier_env *env) return 0; for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { - if (insn->code != (BPF_JMP | BPF_CALL) || - insn->src_reg != BPF_PSEUDO_CALL) + if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) continue; + /* Upon error here we cannot fall back to interpreter but * need a hard reject of the program. Thus -EFAULT is * propagated in any case. @@ -9829,6 +20627,19 @@ static int jit_subprogs(struct bpf_verifier_env *env) env->insn_aux_data[i].call_imm = insn->imm; /* point imm to __bpf_call_base+1 from JITs point of view */ insn->imm = 1; + if (bpf_pseudo_func(insn)) { +#if defined(MODULES_VADDR) + u64 addr = MODULES_VADDR; +#else + u64 addr = VMALLOC_START; +#endif + /* jit (e.g. x86_64) may emit fewer instructions + * if it learns a u32 imm is the same as a u64 imm. + * Set close enough to possible prog address. + */ + insn[0].imm = (u32)addr; + insn[1].imm = addr >> 32; + } } err = bpf_prog_alloc_jited_linfo(prog); @@ -9845,10 +20656,10 @@ static int jit_subprogs(struct bpf_verifier_env *env) subprog_end = env->subprog_info[i + 1].start; len = subprog_end - subprog_start; - /* BPF_PROG_RUN doesn't call subprogs directly, + /* bpf_prog_run() doesn't call subprogs directly, * hence main prog stats include the runtime of subprogs. * subprogs don't have IDs and not reachable via prog_get_next_id - * func[i]->aux->stats will never be accessed and stays NULL + * func[i]->stats will never be accessed and stays NULL */ func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); if (!func[i]) @@ -9860,29 +20671,60 @@ static int jit_subprogs(struct bpf_verifier_env *env) if (bpf_prog_calc_tag(func[i])) goto out_free; func[i]->is_func = 1; + func[i]->sleepable = prog->sleepable; func[i]->aux->func_idx = i; - /* the btf and func_info will be freed only at prog->aux */ + /* Below members will be freed only at prog->aux */ func[i]->aux->btf = prog->aux->btf; func[i]->aux->func_info = prog->aux->func_info; + func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; + func[i]->aux->poke_tab = prog->aux->poke_tab; + func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; + + for (j = 0; j < prog->aux->size_poke_tab; j++) { + struct bpf_jit_poke_descriptor *poke; + + poke = &prog->aux->poke_tab[j]; + if (poke->insn_idx < subprog_end && + poke->insn_idx >= subprog_start) + poke->aux = func[i]->aux; + } - /* Use bpf_prog_F_tag to indicate functions in stack traces. - * Long term would need debug info to populate names - */ func[i]->aux->name[0] = 'F'; func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; + if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) + func[i]->aux->jits_use_priv_stack = true; + func[i]->jit_requested = 1; + func[i]->blinding_requested = prog->blinding_requested; + func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; + func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; func[i]->aux->linfo = prog->aux->linfo; func[i]->aux->nr_linfo = prog->aux->nr_linfo; func[i]->aux->jited_linfo = prog->aux->jited_linfo; func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; + func[i]->aux->arena = prog->aux->arena; num_exentries = 0; insn = func[i]->insnsi; for (j = 0; j < func[i]->len; j++, insn++) { if (BPF_CLASS(insn->code) == BPF_LDX && - BPF_MODE(insn->code) == BPF_PROBE_MEM) + (BPF_MODE(insn->code) == BPF_PROBE_MEM || + BPF_MODE(insn->code) == BPF_PROBE_MEM32 || + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) + num_exentries++; + if ((BPF_CLASS(insn->code) == BPF_STX || + BPF_CLASS(insn->code) == BPF_ST) && + BPF_MODE(insn->code) == BPF_PROBE_MEM32) + num_exentries++; + if (BPF_CLASS(insn->code) == BPF_STX && + BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) num_exentries++; } func[i]->aux->num_exentries = num_exentries; + func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; + func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; + func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; + if (!i) + func[i]->aux->exception_boundary = env->seen_exception; func[i] = bpf_int_jit_compile(func[i]); if (!func[i]->jited) { err = -ENOTSUPP; @@ -9890,6 +20732,7 @@ static int jit_subprogs(struct bpf_verifier_env *env) } cond_resched(); } + /* at this point all bpf functions were successfully JITed * now populate all bpf_calls with correct addresses and * run last pass of JIT @@ -9897,12 +20740,16 @@ static int jit_subprogs(struct bpf_verifier_env *env) for (i = 0; i < env->subprog_cnt; i++) { insn = func[i]->insnsi; for (j = 0; j < func[i]->len; j++, insn++) { - if (insn->code != (BPF_JMP | BPF_CALL) || - insn->src_reg != BPF_PSEUDO_CALL) + if (bpf_pseudo_func(insn)) { + subprog = insn->off; + insn[0].imm = (u32)(long)func[subprog]->bpf_func; + insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; + continue; + } + if (!bpf_pseudo_call(insn)) continue; subprog = insn->off; - insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - - __bpf_call_base; + insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); } /* we use the aux data to keep a list of the start addresses @@ -9917,7 +20764,8 @@ static int jit_subprogs(struct bpf_verifier_env *env) * the call instruction, as an index for this list */ func[i]->aux->func = func; - func[i]->aux->func_cnt = env->subprog_cnt; + func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; + func[i]->aux->real_func_cnt = env->subprog_cnt; } for (i = 0; i < env->subprog_cnt; i++) { old_bpf_func = func[i]->bpf_func; @@ -9931,20 +20779,30 @@ static int jit_subprogs(struct bpf_verifier_env *env) } /* finally lock prog and jit images for all functions and - * populate kallsysm + * populate kallsysm. Begin at the first subprogram, since + * bpf_prog_load will add the kallsyms for the main program. */ - for (i = 0; i < env->subprog_cnt; i++) { - bpf_prog_lock_ro(func[i]); - bpf_prog_kallsyms_add(func[i]); + for (i = 1; i < env->subprog_cnt; i++) { + err = bpf_prog_lock_ro(func[i]); + if (err) + goto out_free; } + for (i = 1; i < env->subprog_cnt; i++) + bpf_prog_kallsyms_add(func[i]); + /* Last step: make now unused interpreter insns from main * prog consistent for later dump requests, so they can * later look the same as if they were interpreted only. */ for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { - if (insn->code != (BPF_JMP | BPF_CALL) || - insn->src_reg != BPF_PSEUDO_CALL) + if (bpf_pseudo_func(insn)) { + insn[0].imm = env->insn_aux_data[i].call_imm; + insn[1].imm = insn->off; + insn->off = 0; + continue; + } + if (!bpf_pseudo_call(insn)) continue; insn->off = env->insn_aux_data[i].call_imm; subprog = find_subprog(env, i + insn->off + 1); @@ -9953,26 +20811,47 @@ static int jit_subprogs(struct bpf_verifier_env *env) prog->jited = 1; prog->bpf_func = func[0]->bpf_func; + prog->jited_len = func[0]->jited_len; + prog->aux->extable = func[0]->aux->extable; + prog->aux->num_exentries = func[0]->aux->num_exentries; prog->aux->func = func; - prog->aux->func_cnt = env->subprog_cnt; - bpf_prog_free_unused_jited_linfo(prog); + prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; + prog->aux->real_func_cnt = env->subprog_cnt; + prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; + prog->aux->exception_boundary = func[0]->aux->exception_boundary; + bpf_prog_jit_attempt_done(prog); return 0; out_free: - for (i = 0; i < env->subprog_cnt; i++) - if (func[i]) - bpf_jit_free(func[i]); + /* We failed JIT'ing, so at this point we need to unregister poke + * descriptors from subprogs, so that kernel is not attempting to + * patch it anymore as we're freeing the subprog JIT memory. + */ + for (i = 0; i < prog->aux->size_poke_tab; i++) { + map_ptr = prog->aux->poke_tab[i].tail_call.map; + map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); + } + /* At this point we're guaranteed that poke descriptors are not + * live anymore. We can just unlink its descriptor table as it's + * released with the main prog. + */ + for (i = 0; i < env->subprog_cnt; i++) { + if (!func[i]) + continue; + func[i]->aux->poke_tab = NULL; + bpf_jit_free(func[i]); + } kfree(func); out_undo_insn: /* cleanup main prog to be interpreted */ prog->jit_requested = 0; + prog->blinding_requested = 0; for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { - if (insn->code != (BPF_JMP | BPF_CALL) || - insn->src_reg != BPF_PSEUDO_CALL) + if (!bpf_pseudo_call(insn)) continue; insn->off = 0; insn->imm = env->insn_aux_data[i].call_imm; } - bpf_prog_free_jited_linfo(prog); + bpf_prog_jit_attempt_done(prog); return err; } @@ -9981,12 +20860,13 @@ static int fixup_call_args(struct bpf_verifier_env *env) #ifndef CONFIG_BPF_JIT_ALWAYS_ON struct bpf_prog *prog = env->prog; struct bpf_insn *insn = prog->insnsi; + bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); int i, depth; #endif int err = 0; if (env->prog->jit_requested && - !bpf_prog_is_dev_bound(env->prog->aux)) { + !bpf_prog_is_offloaded(env->prog->aux)) { err = jit_subprogs(env); if (err == 0) return 0; @@ -9994,9 +20874,27 @@ static int fixup_call_args(struct bpf_verifier_env *env) return err; } #ifndef CONFIG_BPF_JIT_ALWAYS_ON + if (has_kfunc_call) { + verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); + return -EINVAL; + } + if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { + /* When JIT fails the progs with bpf2bpf calls and tail_calls + * have to be rejected, since interpreter doesn't support them yet. + */ + verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); + return -EINVAL; + } for (i = 0; i < prog->len; i++, insn++) { - if (insn->code != (BPF_JMP | BPF_CALL) || - insn->src_reg != BPF_PSEUDO_CALL) + if (bpf_pseudo_func(insn)) { + /* When JIT fails the progs with callback calls + * have to be rejected, since interpreter doesn't support them yet. + */ + verbose(env, "callbacks are not allowed in non-JITed programs\n"); + return -EINVAL; + } + + if (!bpf_pseudo_call(insn)) continue; depth = get_callee_stack_depth(env, insn, i); if (depth < 0) @@ -10008,54 +20906,358 @@ static int fixup_call_args(struct bpf_verifier_env *env) return err; } -/* fixup insn->imm field of bpf_call instructions - * and inline eligible helpers as explicit sequence of BPF instructions - * - * this function is called after eBPF program passed verification +/* replace a generic kfunc with a specialized version if necessary */ +static void specialize_kfunc(struct bpf_verifier_env *env, + u32 func_id, u16 offset, unsigned long *addr) +{ + struct bpf_prog *prog = env->prog; + bool seen_direct_write; + void *xdp_kfunc; + bool is_rdonly; + + if (bpf_dev_bound_kfunc_id(func_id)) { + xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); + if (xdp_kfunc) { + *addr = (unsigned long)xdp_kfunc; + return; + } + /* fallback to default kfunc when not supported by netdev */ + } + + if (offset) + return; + + if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { + seen_direct_write = env->seen_direct_write; + is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); + + if (is_rdonly) + *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; + + /* restore env->seen_direct_write to its original value, since + * may_access_direct_pkt_data mutates it + */ + env->seen_direct_write = seen_direct_write; + } +} + +static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, + u16 struct_meta_reg, + u16 node_offset_reg, + struct bpf_insn *insn, + struct bpf_insn *insn_buf, + int *cnt) +{ + struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; + struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; + + insn_buf[0] = addr[0]; + insn_buf[1] = addr[1]; + insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); + insn_buf[3] = *insn; + *cnt = 4; +} + +static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + struct bpf_insn *insn_buf, int insn_idx, int *cnt) +{ + const struct bpf_kfunc_desc *desc; + + if (!insn->imm) { + verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); + return -EINVAL; + } + + *cnt = 0; + + /* insn->imm has the btf func_id. Replace it with an offset relative to + * __bpf_call_base, unless the JIT needs to call functions that are + * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). + */ + desc = find_kfunc_desc(env->prog, insn->imm, insn->off); + if (!desc) { + verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", + insn->imm); + return -EFAULT; + } + + if (!bpf_jit_supports_far_kfunc_call()) + insn->imm = BPF_CALL_IMM(desc->addr); + if (insn->off) + return 0; + if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || + desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { + struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; + struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; + u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; + + if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { + verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", + insn_idx); + return -EFAULT; + } + + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); + insn_buf[1] = addr[0]; + insn_buf[2] = addr[1]; + insn_buf[3] = *insn; + *cnt = 4; + } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || + desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || + desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { + struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; + struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; + + if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { + verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", + insn_idx); + return -EFAULT; + } + + if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && + !kptr_struct_meta) { + verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", + insn_idx); + return -EFAULT; + } + + insn_buf[0] = addr[0]; + insn_buf[1] = addr[1]; + insn_buf[2] = *insn; + *cnt = 3; + } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || + desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || + desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; + int struct_meta_reg = BPF_REG_3; + int node_offset_reg = BPF_REG_4; + + /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ + if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + struct_meta_reg = BPF_REG_4; + node_offset_reg = BPF_REG_5; + } + + if (!kptr_struct_meta) { + verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", + insn_idx); + return -EFAULT; + } + + __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, + node_offset_reg, insn, insn_buf, cnt); + } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || + desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { + insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); + *cnt = 1; + } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { + struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; + + insn_buf[0] = ld_addrs[0]; + insn_buf[1] = ld_addrs[1]; + insn_buf[2] = *insn; + *cnt = 3; + } + return 0; +} + +/* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ +static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) +{ + struct bpf_subprog_info *info = env->subprog_info; + int cnt = env->subprog_cnt; + struct bpf_prog *prog; + + /* We only reserve one slot for hidden subprogs in subprog_info. */ + if (env->hidden_subprog_cnt) { + verbose(env, "verifier internal error: only one hidden subprog supported\n"); + return -EFAULT; + } + /* We're not patching any existing instruction, just appending the new + * ones for the hidden subprog. Hence all of the adjustment operations + * in bpf_patch_insn_data are no-ops. + */ + prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); + if (!prog) + return -ENOMEM; + env->prog = prog; + info[cnt + 1].start = info[cnt].start; + info[cnt].start = prog->len - len + 1; + env->subprog_cnt++; + env->hidden_subprog_cnt++; + return 0; +} + +/* Do various post-verification rewrites in a single program pass. + * These rewrites simplify JIT and interpreter implementations. */ -static int fixup_bpf_calls(struct bpf_verifier_env *env) +static int do_misc_fixups(struct bpf_verifier_env *env) { struct bpf_prog *prog = env->prog; - bool expect_blinding = bpf_jit_blinding_enabled(prog); + enum bpf_attach_type eatype = prog->expected_attach_type; + enum bpf_prog_type prog_type = resolve_prog_type(prog); struct bpf_insn *insn = prog->insnsi; const struct bpf_func_proto *fn; const int insn_cnt = prog->len; const struct bpf_map_ops *ops; struct bpf_insn_aux_data *aux; - struct bpf_insn insn_buf[16]; + struct bpf_insn *insn_buf = env->insn_buf; struct bpf_prog *new_prog; struct bpf_map *map_ptr; - int i, ret, cnt, delta = 0; + int i, ret, cnt, delta = 0, cur_subprog = 0; + struct bpf_subprog_info *subprogs = env->subprog_info; + u16 stack_depth = subprogs[cur_subprog].stack_depth; + u16 stack_depth_extra = 0; + + if (env->seen_exception && !env->exception_callback_subprog) { + struct bpf_insn patch[] = { + env->prog->insnsi[insn_cnt - 1], + BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), + BPF_EXIT_INSN(), + }; + + ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); + if (ret < 0) + return ret; + prog = env->prog; + insn = prog->insnsi; + + env->exception_callback_subprog = env->subprog_cnt - 1; + /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ + mark_subprog_exc_cb(env, env->exception_callback_subprog); + } + + for (i = 0; i < insn_cnt;) { + if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { + if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || + (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { + /* convert to 32-bit mov that clears upper 32-bit */ + insn->code = BPF_ALU | BPF_MOV | BPF_X; + /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ + insn->off = 0; + insn->imm = 0; + } /* cast from as(0) to as(1) should be handled by JIT */ + goto next_insn; + } - for (i = 0; i < insn_cnt; i++, insn++) { + if (env->insn_aux_data[i + delta].needs_zext) + /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ + insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); + + /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ + if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || + insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || + insn->code == (BPF_ALU | BPF_MOD | BPF_K) || + insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && + insn->off == 1 && insn->imm == -1) { + bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; + bool isdiv = BPF_OP(insn->code) == BPF_DIV; + struct bpf_insn *patchlet; + struct bpf_insn chk_and_sdiv[] = { + BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_NEG | BPF_K, insn->dst_reg, + 0, 0, 0), + }; + struct bpf_insn chk_and_smod[] = { + BPF_MOV32_IMM(insn->dst_reg, 0), + }; + + patchlet = isdiv ? chk_and_sdiv : chk_and_smod; + cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); + + new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || insn->code == (BPF_ALU | BPF_MOD | BPF_X) || insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; - struct bpf_insn mask_and_div[] = { - BPF_MOV32_REG(insn->src_reg, insn->src_reg), - /* Rx div 0 -> 0 */ - BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), + bool isdiv = BPF_OP(insn->code) == BPF_DIV; + bool is_sdiv = isdiv && insn->off == 1; + bool is_smod = !isdiv && insn->off == 1; + struct bpf_insn *patchlet; + struct bpf_insn chk_and_div[] = { + /* [R,W]x div 0 -> 0 */ + BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JNE | BPF_K, insn->src_reg, + 0, 2, 0), BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), BPF_JMP_IMM(BPF_JA, 0, 0, 1), *insn, }; - struct bpf_insn mask_and_mod[] = { - BPF_MOV32_REG(insn->src_reg, insn->src_reg), - /* Rx mod 0 -> Rx */ - BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), + struct bpf_insn chk_and_mod[] = { + /* [R,W]x mod 0 -> [R,W]x */ + BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JEQ | BPF_K, insn->src_reg, + 0, 1 + (is64 ? 0 : 1), 0), *insn, + BPF_JMP_IMM(BPF_JA, 0, 0, 1), + BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), + }; + struct bpf_insn chk_and_sdiv[] = { + /* [R,W]x sdiv 0 -> 0 + * LLONG_MIN sdiv -1 -> LLONG_MIN + * INT_MIN sdiv -1 -> INT_MIN + */ + BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), + BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_ADD | BPF_K, BPF_REG_AX, + 0, 0, 1), + BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JGT | BPF_K, BPF_REG_AX, + 0, 4, 1), + BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JEQ | BPF_K, BPF_REG_AX, + 0, 1, 0), + BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_MOV | BPF_K, insn->dst_reg, + 0, 0, 0), + /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ + BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_NEG | BPF_K, insn->dst_reg, + 0, 0, 0), + BPF_JMP_IMM(BPF_JA, 0, 0, 1), + *insn, + }; + struct bpf_insn chk_and_smod[] = { + /* [R,W]x mod 0 -> [R,W]x */ + /* [R,W]x mod -1 -> 0 */ + BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), + BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_ADD | BPF_K, BPF_REG_AX, + 0, 0, 1), + BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JGT | BPF_K, BPF_REG_AX, + 0, 3, 1), + BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JEQ | BPF_K, BPF_REG_AX, + 0, 3 + (is64 ? 0 : 1), 1), + BPF_MOV32_IMM(insn->dst_reg, 0), + BPF_JMP_IMM(BPF_JA, 0, 0, 1), + *insn, + BPF_JMP_IMM(BPF_JA, 0, 0, 1), + BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), }; - struct bpf_insn *patchlet; - if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || - insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { - patchlet = mask_and_div + (is64 ? 1 : 0); - cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); + if (is_sdiv) { + patchlet = chk_and_sdiv; + cnt = ARRAY_SIZE(chk_and_sdiv); + } else if (is_smod) { + patchlet = chk_and_smod; + cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); } else { - patchlet = mask_and_mod + (is64 ? 1 : 0); - cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); + patchlet = isdiv ? chk_and_div : chk_and_mod; + cnt = isdiv ? ARRAY_SIZE(chk_and_div) : + ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); } new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); @@ -10065,14 +21267,45 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) delta += cnt - 1; env->prog = prog = new_prog; insn = new_prog->insnsi + i + delta; - continue; + goto next_insn; + } + + /* Make it impossible to de-reference a userspace address */ + if (BPF_CLASS(insn->code) == BPF_LDX && + (BPF_MODE(insn->code) == BPF_PROBE_MEM || + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { + struct bpf_insn *patch = &insn_buf[0]; + u64 uaddress_limit = bpf_arch_uaddress_limit(); + + if (!uaddress_limit) + goto next_insn; + + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); + if (insn->off) + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); + *patch++ = *insn; + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); + + cnt = patch - insn_buf; + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; } + /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ if (BPF_CLASS(insn->code) == BPF_LD && (BPF_MODE(insn->code) == BPF_ABS || BPF_MODE(insn->code) == BPF_IND)) { cnt = env->ops->gen_ld_abs(insn, insn_buf); - if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { + if (cnt == 0 || cnt >= INSN_BUF_SIZE) { verbose(env, "bpf verifier is misconfigured\n"); return -EINVAL; } @@ -10084,48 +21317,49 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) delta += cnt - 1; env->prog = prog = new_prog; insn = new_prog->insnsi + i + delta; - continue; + goto next_insn; } + /* Rewrite pointer arithmetic to mitigate speculation attacks. */ if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; - struct bpf_insn insn_buf[16]; struct bpf_insn *patch = &insn_buf[0]; - bool issrc, isneg; + bool issrc, isneg, isimm; u32 off_reg; aux = &env->insn_aux_data[i + delta]; if (!aux->alu_state || aux->alu_state == BPF_ALU_NON_POINTER) - continue; + goto next_insn; isneg = aux->alu_state & BPF_ALU_NEG_VALUE; issrc = (aux->alu_state & BPF_ALU_SANITIZE) == BPF_ALU_SANITIZE_SRC; + isimm = aux->alu_state & BPF_ALU_IMMEDIATE; off_reg = issrc ? insn->src_reg : insn->dst_reg; - if (isneg) - *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); - *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); - *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); - *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); - *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); - *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); - if (issrc) { - *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, - off_reg); - insn->src_reg = BPF_REG_AX; + if (isimm) { + *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); } else { - *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, - BPF_REG_AX); + if (isneg) + *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); + *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); + *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); + *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); + *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); + *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); + *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); } + if (!issrc) + *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); + insn->src_reg = BPF_REG_AX; if (isneg) insn->code = insn->code == code_add ? code_sub : code_add; *patch++ = *insn; - if (issrc && isneg) + if (issrc && isneg && !isimm) *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); cnt = patch - insn_buf; @@ -10136,13 +21370,56 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) delta += cnt - 1; env->prog = prog = new_prog; insn = new_prog->insnsi + i + delta; - continue; + goto next_insn; + } + + if (is_may_goto_insn(insn)) { + int stack_off = -stack_depth - 8; + + stack_depth_extra = 8; + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); + if (insn->off >= 0) + insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); + else + insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); + insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); + insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); + cnt = 4; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; } if (insn->code != (BPF_JMP | BPF_CALL)) - continue; + goto next_insn; if (insn->src_reg == BPF_PSEUDO_CALL) - continue; + goto next_insn; + if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { + ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); + if (ret) + return ret; + if (cnt == 0) + goto next_insn; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Skip inlining the helper call if the JIT does it. */ + if (bpf_jit_inlines_helper_call(insn->imm)) + goto next_insn; if (insn->imm == BPF_FUNC_get_route_realm) prog->dst_needed = 1; @@ -10157,11 +21434,12 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) * the program array. */ prog->cb_access = 1; - env->prog->aux->stack_depth = MAX_BPF_STACK; - env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; + if (!allow_tail_call_in_subprogs(env)) + prog->aux->stack_depth = MAX_BPF_STACK; + prog->aux->max_pkt_offset = MAX_PACKET_OFF; /* mark bpf_tail_call as different opcode to avoid - * conditional branch in the interpeter for every normal + * conditional branch in the interpreter for every normal * call and to prevent accidental JITing by JIT compiler * that doesn't support bpf_tail_call yet */ @@ -10169,15 +21447,16 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) insn->code = BPF_JMP | BPF_TAIL_CALL; aux = &env->insn_aux_data[i + delta]; - if (env->bpf_capable && !expect_blinding && + if (env->bpf_capable && !prog->blinding_requested && prog->jit_requested && !bpf_map_key_poisoned(aux) && !bpf_map_ptr_poisoned(aux) && !bpf_map_ptr_unpriv(aux)) { struct bpf_jit_poke_descriptor desc = { .reason = BPF_POKE_REASON_TAIL_CALL, - .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), + .tail_call.map = aux->map_ptr_state.map_ptr, .tail_call.key = bpf_map_key_immediate(aux), + .insn_idx = i + delta, }; ret = bpf_jit_add_poke_descriptor(prog, &desc); @@ -10187,11 +21466,11 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) } insn->imm = ret + 1; - continue; + goto next_insn; } if (!bpf_map_ptr_unpriv(aux)) - continue; + goto next_insn; /* instead of changing every JIT dealing with tail_call * emit two extra insns: @@ -10204,7 +21483,7 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) return -EINVAL; } - map_ptr = BPF_MAP_PTR(aux->map_ptr_state); + map_ptr = aux->map_ptr_state.map_ptr; insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, map_ptr->max_entries, 2); insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, @@ -10220,7 +21499,78 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) delta += cnt - 1; env->prog = prog = new_prog; insn = new_prog->insnsi + i + delta; - continue; + goto next_insn; + } + + if (insn->imm == BPF_FUNC_timer_set_callback) { + /* The verifier will process callback_fn as many times as necessary + * with different maps and the register states prepared by + * set_timer_callback_state will be accurate. + * + * The following use case is valid: + * map1 is shared by prog1, prog2, prog3. + * prog1 calls bpf_timer_init for some map1 elements + * prog2 calls bpf_timer_set_callback for some map1 elements. + * Those that were not bpf_timer_init-ed will return -EINVAL. + * prog3 calls bpf_timer_start for some map1 elements. + * Those that were not both bpf_timer_init-ed and + * bpf_timer_set_callback-ed will return -EINVAL. + */ + struct bpf_insn ld_addrs[2] = { + BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), + }; + + insn_buf[0] = ld_addrs[0]; + insn_buf[1] = ld_addrs[1]; + insn_buf[2] = *insn; + cnt = 3; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto patch_call_imm; + } + + if (is_storage_get_function(insn->imm)) { + if (!in_sleepable(env) || + env->insn_aux_data[i + delta].storage_get_func_atomic) + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); + else + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); + insn_buf[1] = *insn; + cnt = 2; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto patch_call_imm; + } + + /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ + if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { + /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, + * bpf_mem_alloc() returns a ptr to the percpu data ptr. + */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); + insn_buf[1] = *insn; + cnt = 2; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto patch_call_imm; } /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup @@ -10233,17 +21583,22 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) insn->imm == BPF_FUNC_map_delete_elem || insn->imm == BPF_FUNC_map_push_elem || insn->imm == BPF_FUNC_map_pop_elem || - insn->imm == BPF_FUNC_map_peek_elem)) { + insn->imm == BPF_FUNC_map_peek_elem || + insn->imm == BPF_FUNC_redirect_map || + insn->imm == BPF_FUNC_for_each_map_elem || + insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { aux = &env->insn_aux_data[i + delta]; if (bpf_map_ptr_poisoned(aux)) goto patch_call_imm; - map_ptr = BPF_MAP_PTR(aux->map_ptr_state); + map_ptr = aux->map_ptr_state.map_ptr; ops = map_ptr->ops; if (insn->imm == BPF_FUNC_map_lookup_elem && ops->map_gen_lookup) { cnt = ops->map_gen_lookup(map_ptr, insn_buf); - if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { + if (cnt == -EOPNOTSUPP) + goto patch_map_ops_generic; + if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { verbose(env, "bpf verifier is misconfigured\n"); return -EINVAL; } @@ -10256,54 +21611,68 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) delta += cnt - 1; env->prog = prog = new_prog; insn = new_prog->insnsi + i + delta; - continue; + goto next_insn; } BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, (void *(*)(struct bpf_map *map, void *key))NULL)); BUILD_BUG_ON(!__same_type(ops->map_delete_elem, - (int (*)(struct bpf_map *map, void *key))NULL)); + (long (*)(struct bpf_map *map, void *key))NULL)); BUILD_BUG_ON(!__same_type(ops->map_update_elem, - (int (*)(struct bpf_map *map, void *key, void *value, + (long (*)(struct bpf_map *map, void *key, void *value, u64 flags))NULL)); BUILD_BUG_ON(!__same_type(ops->map_push_elem, - (int (*)(struct bpf_map *map, void *value, + (long (*)(struct bpf_map *map, void *value, u64 flags))NULL)); BUILD_BUG_ON(!__same_type(ops->map_pop_elem, - (int (*)(struct bpf_map *map, void *value))NULL)); + (long (*)(struct bpf_map *map, void *value))NULL)); BUILD_BUG_ON(!__same_type(ops->map_peek_elem, - (int (*)(struct bpf_map *map, void *value))NULL)); + (long (*)(struct bpf_map *map, void *value))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_redirect, + (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, + (long (*)(struct bpf_map *map, + bpf_callback_t callback_fn, + void *callback_ctx, + u64 flags))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, + (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); +patch_map_ops_generic: switch (insn->imm) { case BPF_FUNC_map_lookup_elem: - insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - - __bpf_call_base; - continue; + insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); + goto next_insn; case BPF_FUNC_map_update_elem: - insn->imm = BPF_CAST_CALL(ops->map_update_elem) - - __bpf_call_base; - continue; + insn->imm = BPF_CALL_IMM(ops->map_update_elem); + goto next_insn; case BPF_FUNC_map_delete_elem: - insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - - __bpf_call_base; - continue; + insn->imm = BPF_CALL_IMM(ops->map_delete_elem); + goto next_insn; case BPF_FUNC_map_push_elem: - insn->imm = BPF_CAST_CALL(ops->map_push_elem) - - __bpf_call_base; - continue; + insn->imm = BPF_CALL_IMM(ops->map_push_elem); + goto next_insn; case BPF_FUNC_map_pop_elem: - insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - - __bpf_call_base; - continue; + insn->imm = BPF_CALL_IMM(ops->map_pop_elem); + goto next_insn; case BPF_FUNC_map_peek_elem: - insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - - __bpf_call_base; - continue; + insn->imm = BPF_CALL_IMM(ops->map_peek_elem); + goto next_insn; + case BPF_FUNC_redirect_map: + insn->imm = BPF_CALL_IMM(ops->map_redirect); + goto next_insn; + case BPF_FUNC_for_each_map_elem: + insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); + goto next_insn; + case BPF_FUNC_map_lookup_percpu_elem: + insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); + goto next_insn; } goto patch_call_imm; } + /* Implement bpf_jiffies64 inline. */ if (prog->jit_requested && BITS_PER_LONG == 64 && insn->imm == BPF_FUNC_jiffies64) { struct bpf_insn ld_jiffies_addr[2] = { @@ -10325,9 +21694,193 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env) delta += cnt - 1; env->prog = prog = new_prog; insn = new_prog->insnsi + i + delta; - continue; + goto next_insn; + } + +#if defined(CONFIG_X86_64) && !defined(CONFIG_UML) + /* Implement bpf_get_smp_processor_id() inline. */ + if (insn->imm == BPF_FUNC_get_smp_processor_id && + verifier_inlines_helper_call(env, insn->imm)) { + /* BPF_FUNC_get_smp_processor_id inlining is an + * optimization, so if pcpu_hot.cpu_number is ever + * changed in some incompatible and hard to support + * way, it's fine to back out this inlining logic + */ +#ifdef CONFIG_SMP + insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); + insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); + insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); + cnt = 3; +#else + insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); + cnt = 1; +#endif + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } +#endif + /* Implement bpf_get_func_arg inline. */ + if (prog_type == BPF_PROG_TYPE_TRACING && + insn->imm == BPF_FUNC_get_func_arg) { + /* Load nr_args from ctx - 8 */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); + insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); + insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); + insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); + insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); + insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); + insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); + insn_buf[7] = BPF_JMP_A(1); + insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); + cnt = 9; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement bpf_get_func_ret inline. */ + if (prog_type == BPF_PROG_TYPE_TRACING && + insn->imm == BPF_FUNC_get_func_ret) { + if (eatype == BPF_TRACE_FEXIT || + eatype == BPF_MODIFY_RETURN) { + /* Load nr_args from ctx - 8 */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); + insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); + insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); + insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); + insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); + insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); + cnt = 6; + } else { + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); + cnt = 1; + } + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement get_func_arg_cnt inline. */ + if (prog_type == BPF_PROG_TYPE_TRACING && + insn->imm == BPF_FUNC_get_func_arg_cnt) { + /* Load nr_args from ctx - 8 */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); + if (!new_prog) + return -ENOMEM; + + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement bpf_get_func_ip inline. */ + if (prog_type == BPF_PROG_TYPE_TRACING && + insn->imm == BPF_FUNC_get_func_ip) { + /* Load IP address from ctx - 16 */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); + if (!new_prog) + return -ENOMEM; + + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement bpf_get_branch_snapshot inline. */ + if (IS_ENABLED(CONFIG_PERF_EVENTS) && + prog->jit_requested && BITS_PER_LONG == 64 && + insn->imm == BPF_FUNC_get_branch_snapshot) { + /* We are dealing with the following func protos: + * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); + * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); + */ + const u32 br_entry_size = sizeof(struct perf_branch_entry); + + /* struct perf_branch_entry is part of UAPI and is + * used as an array element, so extremely unlikely to + * ever grow or shrink + */ + BUILD_BUG_ON(br_entry_size != 24); + + /* if (unlikely(flags)) return -EINVAL */ + insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); + + /* Transform size (bytes) into number of entries (cnt = size / 24). + * But to avoid expensive division instruction, we implement + * divide-by-3 through multiplication, followed by further + * division by 8 through 3-bit right shift. + * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., + * p. 227, chapter "Unsigned Division by 3" for details and proofs. + * + * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. + */ + insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); + insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); + insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); + + /* call perf_snapshot_branch_stack implementation */ + insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); + /* if (entry_cnt == 0) return -ENOENT */ + insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); + /* return entry_cnt * sizeof(struct perf_branch_entry) */ + insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); + insn_buf[7] = BPF_JMP_A(3); + /* return -EINVAL; */ + insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); + insn_buf[9] = BPF_JMP_A(1); + /* return -ENOENT; */ + insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); + cnt = 11; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; } + /* Implement bpf_kptr_xchg inline */ + if (prog->jit_requested && BITS_PER_LONG == 64 && + insn->imm == BPF_FUNC_kptr_xchg && + bpf_jit_supports_ptr_xchg()) { + insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); + insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); + cnt = 2; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } patch_call_imm: fn = env->ops->get_func_proto(insn->imm, env->prog); /* all functions that have prototype and verifier allowed @@ -10340,6 +21893,47 @@ patch_call_imm: return -EFAULT; } insn->imm = fn->func - __bpf_call_base; +next_insn: + if (subprogs[cur_subprog + 1].start == i + delta + 1) { + subprogs[cur_subprog].stack_depth += stack_depth_extra; + subprogs[cur_subprog].stack_extra = stack_depth_extra; + cur_subprog++; + stack_depth = subprogs[cur_subprog].stack_depth; + stack_depth_extra = 0; + } + i++; + insn++; + } + + env->prog->aux->stack_depth = subprogs[0].stack_depth; + for (i = 0; i < env->subprog_cnt; i++) { + int subprog_start = subprogs[i].start; + int stack_slots = subprogs[i].stack_extra / 8; + + if (!stack_slots) + continue; + if (stack_slots > 1) { + verbose(env, "verifier bug: stack_slots supports may_goto only\n"); + return -EFAULT; + } + + /* Add ST insn to subprog prologue to init extra stack */ + insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, + -subprogs[i].stack_depth, BPF_MAX_LOOPS); + /* Copy first actual insn to preserve it */ + insn_buf[1] = env->prog->insnsi[subprog_start]; + + new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); + if (!new_prog) + return -ENOMEM; + env->prog = prog = new_prog; + /* + * If may_goto is a first insn of a prog there could be a jmp + * insn that points to it, hence adjust all such jmps to point + * to insn after BPF_ST that inits may_goto count. + * Adjustment will succeed because bpf_patch_insn_data() didn't fail. + */ + WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1)); } /* Since poke tab is now finalized, publish aux to tracker. */ @@ -10359,6 +21953,179 @@ patch_call_imm: } } + sort_kfunc_descs_by_imm_off(env->prog); + + return 0; +} + +static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, + int position, + s32 stack_base, + u32 callback_subprogno, + u32 *total_cnt) +{ + s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; + s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; + s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; + int reg_loop_max = BPF_REG_6; + int reg_loop_cnt = BPF_REG_7; + int reg_loop_ctx = BPF_REG_8; + + struct bpf_insn *insn_buf = env->insn_buf; + struct bpf_prog *new_prog; + u32 callback_start; + u32 call_insn_offset; + s32 callback_offset; + u32 cnt = 0; + + /* This represents an inlined version of bpf_iter.c:bpf_loop, + * be careful to modify this code in sync. + */ + + /* Return error and jump to the end of the patch if + * expected number of iterations is too big. + */ + insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); + insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); + insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); + /* spill R6, R7, R8 to use these as loop vars */ + insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); + insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); + insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); + /* initialize loop vars */ + insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); + insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); + insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); + /* loop header, + * if reg_loop_cnt >= reg_loop_max skip the loop body + */ + insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); + /* callback call, + * correct callback offset would be set after patching + */ + insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); + insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); + insn_buf[cnt++] = BPF_CALL_REL(0); + /* increment loop counter */ + insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); + /* jump to loop header if callback returned 0 */ + insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); + /* return value of bpf_loop, + * set R0 to the number of iterations + */ + insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); + /* restore original values of R6, R7, R8 */ + insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); + insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); + insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); + + *total_cnt = cnt; + new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); + if (!new_prog) + return new_prog; + + /* callback start is known only after patching */ + callback_start = env->subprog_info[callback_subprogno].start; + /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ + call_insn_offset = position + 12; + callback_offset = callback_start - call_insn_offset - 1; + new_prog->insnsi[call_insn_offset].imm = callback_offset; + + return new_prog; +} + +static bool is_bpf_loop_call(struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_CALL) && + insn->src_reg == 0 && + insn->imm == BPF_FUNC_loop; +} + +/* For all sub-programs in the program (including main) check + * insn_aux_data to see if there are bpf_loop calls that require + * inlining. If such calls are found the calls are replaced with a + * sequence of instructions produced by `inline_bpf_loop` function and + * subprog stack_depth is increased by the size of 3 registers. + * This stack space is used to spill values of the R6, R7, R8. These + * registers are used to store the loop bound, counter and context + * variables. + */ +static int optimize_bpf_loop(struct bpf_verifier_env *env) +{ + struct bpf_subprog_info *subprogs = env->subprog_info; + int i, cur_subprog = 0, cnt, delta = 0; + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + u16 stack_depth = subprogs[cur_subprog].stack_depth; + u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; + u16 stack_depth_extra = 0; + + for (i = 0; i < insn_cnt; i++, insn++) { + struct bpf_loop_inline_state *inline_state = + &env->insn_aux_data[i + delta].loop_inline_state; + + if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { + struct bpf_prog *new_prog; + + stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; + new_prog = inline_bpf_loop(env, + i + delta, + -(stack_depth + stack_depth_extra), + inline_state->callback_subprogno, + &cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = new_prog; + insn = new_prog->insnsi + i + delta; + } + + if (subprogs[cur_subprog + 1].start == i + delta + 1) { + subprogs[cur_subprog].stack_depth += stack_depth_extra; + cur_subprog++; + stack_depth = subprogs[cur_subprog].stack_depth; + stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; + stack_depth_extra = 0; + } + } + + env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; + + return 0; +} + +/* Remove unnecessary spill/fill pairs, members of fastcall pattern, + * adjust subprograms stack depth when possible. + */ +static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) +{ + struct bpf_subprog_info *subprog = env->subprog_info; + struct bpf_insn_aux_data *aux = env->insn_aux_data; + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + u32 spills_num; + bool modified = false; + int i, j; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (aux[i].fastcall_spills_num > 0) { + spills_num = aux[i].fastcall_spills_num; + /* NOPs would be removed by opt_remove_nops() */ + for (j = 1; j <= spills_num; ++j) { + *(insn - j) = NOP; + *(insn + j) = NOP; + } + modified = true; + } + if ((subprog + 1)->start == i + 1) { + if (modified && !subprog->keep_fastcall_stack) + subprog->stack_depth = -subprog->fastcall_stack_off; + subprog++; + modified = false; + } + } + return 0; } @@ -10392,37 +22159,10 @@ static void free_states(struct bpf_verifier_env *env) } } -/* The verifier is using insn_aux_data[] to store temporary data during - * verification and to store information for passes that run after the - * verification like dead code sanitization. do_check_common() for subprogram N - * may analyze many other subprograms. sanitize_insn_aux_data() clears all - * temporary data after do_check_common() finds that subprogram N cannot be - * verified independently. pass_cnt counts the number of times - * do_check_common() was run and insn->aux->seen tells the pass number - * insn_aux_data was touched. These variables are compared to clear temporary - * data from failed pass. For testing and experiments do_check_common() can be - * run multiple times even when prior attempt to verify is unsuccessful. - */ -static void sanitize_insn_aux_data(struct bpf_verifier_env *env) -{ - struct bpf_insn *insn = env->prog->insnsi; - struct bpf_insn_aux_data *aux; - int i, class; - - for (i = 0; i < env->prog->len; i++) { - class = BPF_CLASS(insn[i].code); - if (class != BPF_LDX && class != BPF_STX) - continue; - aux = &env->insn_aux_data[i]; - if (aux->seen != env->pass_cnt) - continue; - memset(aux, 0, offsetof(typeof(*aux), orig_idx)); - } -} - static int do_check_common(struct bpf_verifier_env *env, int subprog) { bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); + struct bpf_subprog_info *sub = subprog_info(env, subprog); struct bpf_verifier_state *state; struct bpf_reg_state *regs; int ret, i; @@ -10446,34 +22186,88 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog) BPF_MAIN_FUNC /* callsite */, 0 /* frameno */, subprog); + state->first_insn_idx = env->subprog_info[subprog].start; + state->last_insn_idx = -1; regs = state->frame[state->curframe]->regs; if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { - ret = btf_prepare_func_args(env, subprog, regs); + const char *sub_name = subprog_name(env, subprog); + struct bpf_subprog_arg_info *arg; + struct bpf_reg_state *reg; + + verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); + ret = btf_prepare_func_args(env, subprog); if (ret) goto out; - for (i = BPF_REG_1; i <= BPF_REG_5; i++) { - if (regs[i].type == PTR_TO_CTX) + + if (subprog_is_exc_cb(env, subprog)) { + state->frame[0]->in_exception_callback_fn = true; + /* We have already ensured that the callback returns an integer, just + * like all global subprogs. We need to determine it only has a single + * scalar argument. + */ + if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { + verbose(env, "exception cb only supports single integer argument\n"); + ret = -EINVAL; + goto out; + } + } + for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { + arg = &sub->args[i - BPF_REG_1]; + reg = ®s[i]; + + if (arg->arg_type == ARG_PTR_TO_CTX) { + reg->type = PTR_TO_CTX; mark_reg_known_zero(env, regs, i); - else if (regs[i].type == SCALAR_VALUE) + } else if (arg->arg_type == ARG_ANYTHING) { + reg->type = SCALAR_VALUE; mark_reg_unknown(env, regs, i); + } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { + /* assume unspecial LOCAL dynptr type */ + __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); + } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { + reg->type = PTR_TO_MEM; + if (arg->arg_type & PTR_MAYBE_NULL) + reg->type |= PTR_MAYBE_NULL; + mark_reg_known_zero(env, regs, i); + reg->mem_size = arg->mem_size; + reg->id = ++env->id_gen; + } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { + reg->type = PTR_TO_BTF_ID; + if (arg->arg_type & PTR_MAYBE_NULL) + reg->type |= PTR_MAYBE_NULL; + if (arg->arg_type & PTR_UNTRUSTED) + reg->type |= PTR_UNTRUSTED; + if (arg->arg_type & PTR_TRUSTED) + reg->type |= PTR_TRUSTED; + mark_reg_known_zero(env, regs, i); + reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ + reg->btf_id = arg->btf_id; + reg->id = ++env->id_gen; + } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { + /* caller can pass either PTR_TO_ARENA or SCALAR */ + mark_reg_unknown(env, regs, i); + } else { + WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", + i - BPF_REG_1, arg->arg_type); + ret = -EFAULT; + goto out; + } } } else { + /* if main BPF program has associated BTF info, validate that + * it's matching expected signature, and otherwise mark BTF + * info for main program as unreliable + */ + if (env->prog->aux->func_info_aux) { + ret = btf_prepare_func_args(env, 0); + if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) + env->prog->aux->func_info_aux[0].unreliable = true; + } + /* 1st arg to a function */ regs[BPF_REG_1].type = PTR_TO_CTX; mark_reg_known_zero(env, regs, BPF_REG_1); - ret = btf_check_func_arg_match(env, subprog, regs); - if (ret == -EFAULT) - /* unlikely verifier bug. abort. - * ret == 0 and ret < 0 are sadly acceptable for - * main() function due to backward compatibility. - * Like socket filter program may be written as: - * int bpf_prog(struct pt_regs *ctx) - * and never dereference that ctx in the program. - * 'struct pt_regs' is a type mismatch for socket - * filter that should be using 'struct __sk_buff'. - */ - goto out; } ret = do_check(env); @@ -10489,14 +22283,14 @@ out: if (!ret && pop_log) bpf_vlog_reset(&env->log, 0); free_states(env); - if (ret) - /* clean aux data in case subprog was rejected */ - sanitize_insn_aux_data(env); return ret; } -/* Verify all global functions in a BPF program one by one based on their BTF. - * All global functions must pass verification. Otherwise the whole program is rejected. +/* Lazily verify all global functions based on their BTF, if they are called + * from main BPF program or any of subprograms transitively. + * BPF global subprogs called from dead code are not validated. + * All callable global functions must pass verification. + * Otherwise the whole program is rejected. * Consider: * int bar(int); * int foo(int f) @@ -10515,25 +22309,50 @@ out: static int do_check_subprogs(struct bpf_verifier_env *env) { struct bpf_prog_aux *aux = env->prog->aux; - int i, ret; + struct bpf_func_info_aux *sub_aux; + int i, ret, new_cnt; if (!aux->func_info) return 0; + /* exception callback is presumed to be always called */ + if (env->exception_callback_subprog) + subprog_aux(env, env->exception_callback_subprog)->called = true; + +again: + new_cnt = 0; for (i = 1; i < env->subprog_cnt; i++) { - if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) + if (!subprog_is_global(env, i)) + continue; + + sub_aux = subprog_aux(env, i); + if (!sub_aux->called || sub_aux->verified) continue; + env->insn_idx = env->subprog_info[i].start; WARN_ON_ONCE(env->insn_idx == 0); ret = do_check_common(env, i); if (ret) { return ret; } else if (env->log.level & BPF_LOG_LEVEL) { - verbose(env, - "Func#%d is safe for any args that match its prototype\n", - i); + verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", + i, subprog_name(env, i)); } + + /* We verified new global subprog, it might have called some + * more global subprogs that we haven't verified yet, so we + * need to do another pass over subprogs to verify those. + */ + sub_aux->verified = true; + new_cnt++; } + + /* We can't loop forever as we verify at least one global subprog on + * each pass. + */ + if (new_cnt) + goto again; + return 0; } @@ -10576,21 +22395,44 @@ static void print_verification_stats(struct bpf_verifier_env *env) static int check_struct_ops_btf_id(struct bpf_verifier_env *env) { const struct btf_type *t, *func_proto; + const struct bpf_struct_ops_desc *st_ops_desc; const struct bpf_struct_ops *st_ops; const struct btf_member *member; struct bpf_prog *prog = env->prog; u32 btf_id, member_idx; + struct btf *btf; const char *mname; + int err; + + if (!prog->gpl_compatible) { + verbose(env, "struct ops programs must have a GPL compatible license\n"); + return -EINVAL; + } + + if (!prog->aux->attach_btf_id) + return -ENOTSUPP; + + btf = prog->aux->attach_btf; + if (btf_is_module(btf)) { + /* Make sure st_ops is valid through the lifetime of env */ + env->attach_btf_mod = btf_try_get_module(btf); + if (!env->attach_btf_mod) { + verbose(env, "struct_ops module %s is not found\n", + btf_get_name(btf)); + return -ENOTSUPP; + } + } btf_id = prog->aux->attach_btf_id; - st_ops = bpf_struct_ops_find(btf_id); - if (!st_ops) { + st_ops_desc = bpf_struct_ops_find(btf, btf_id); + if (!st_ops_desc) { verbose(env, "attach_btf_id %u is not a supported struct\n", btf_id); return -ENOTSUPP; } + st_ops = st_ops_desc->st_ops; - t = st_ops->type; + t = st_ops_desc->type; member_idx = prog->expected_attach_type; if (member_idx >= btf_type_vlen(t)) { verbose(env, "attach to invalid member idx %u of struct %s\n", @@ -10599,8 +22441,8 @@ static int check_struct_ops_btf_id(struct bpf_verifier_env *env) } member = &btf_type_member(t)[member_idx]; - mname = btf_name_by_offset(btf_vmlinux, member->name_off); - func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, + mname = btf_name_by_offset(btf, member->name_off); + func_proto = btf_type_resolve_func_ptr(btf, member->type, NULL); if (!func_proto) { verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", @@ -10608,8 +22450,15 @@ static int check_struct_ops_btf_id(struct bpf_verifier_env *env) return -EINVAL; } + err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8); + if (err) { + verbose(env, "attach to unsupported member %s of struct %s\n", + mname, st_ops->name); + return err; + } + if (st_ops->check_member) { - int err = st_ops->check_member(t, member); + err = st_ops->check_member(t, member, prog); if (err) { verbose(env, "attach to unsupported member %s of struct %s\n", @@ -10618,6 +22467,17 @@ static int check_struct_ops_btf_id(struct bpf_verifier_env *env) } } + if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { + verbose(env, "Private stack not supported by jit\n"); + return -EACCES; + } + + /* btf_ctx_access() used this to provide argument type info */ + prog->aux->ctx_arg_info = + st_ops_desc->arg_info[member_idx].info; + prog->aux->ctx_arg_info_size = + st_ops_desc->arg_info[member_idx].cnt; + prog->aux->attach_func_proto = func_proto; prog->aux->attach_func_name = mname; env->ops = st_ops->verifier_ops; @@ -10626,63 +22486,84 @@ static int check_struct_ops_btf_id(struct bpf_verifier_env *env) } #define SECURITY_PREFIX "security_" -static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr) +static int check_attach_modify_return(unsigned long addr, const char *func_name) { if (within_error_injection_list(addr) || - !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, - sizeof(SECURITY_PREFIX) - 1)) + !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) return 0; return -EINVAL; } -static int check_attach_btf_id(struct bpf_verifier_env *env) +/* list of non-sleepable functions that are otherwise on + * ALLOW_ERROR_INJECTION list + */ +BTF_SET_START(btf_non_sleepable_error_inject) +/* Three functions below can be called from sleepable and non-sleepable context. + * Assume non-sleepable from bpf safety point of view. + */ +BTF_ID(func, __filemap_add_folio) +#ifdef CONFIG_FAIL_PAGE_ALLOC +BTF_ID(func, should_fail_alloc_page) +#endif +#ifdef CONFIG_FAILSLAB +BTF_ID(func, should_failslab) +#endif +BTF_SET_END(btf_non_sleepable_error_inject) + +static int check_non_sleepable_error_inject(u32 btf_id) +{ + return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); +} + +int bpf_check_attach_target(struct bpf_verifier_log *log, + const struct bpf_prog *prog, + const struct bpf_prog *tgt_prog, + u32 btf_id, + struct bpf_attach_target_info *tgt_info) { - struct bpf_prog *prog = env->prog; bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; - struct bpf_prog *tgt_prog = prog->aux->linked_prog; - u32 btf_id = prog->aux->attach_btf_id; + bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; + char trace_symbol[KSYM_SYMBOL_LEN]; const char prefix[] = "btf_trace_"; - struct btf_func_model fmodel; + struct bpf_raw_event_map *btp; int ret = 0, subprog = -1, i; - struct bpf_trampoline *tr; const struct btf_type *t; bool conservative = true; - const char *tname; + const char *tname, *fname; struct btf *btf; - long addr; - u64 key; - - if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) - return check_struct_ops_btf_id(env); - - if (prog->type != BPF_PROG_TYPE_TRACING && - prog->type != BPF_PROG_TYPE_LSM && - !prog_extension) - return 0; + long addr = 0; + struct module *mod = NULL; if (!btf_id) { - verbose(env, "Tracing programs must provide btf_id\n"); + bpf_log(log, "Tracing programs must provide btf_id\n"); return -EINVAL; } - btf = bpf_prog_get_target_btf(prog); + btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; if (!btf) { - verbose(env, + bpf_log(log, "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); return -EINVAL; } t = btf_type_by_id(btf, btf_id); if (!t) { - verbose(env, "attach_btf_id %u is invalid\n", btf_id); + bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); return -EINVAL; } tname = btf_name_by_offset(btf, t->name_off); if (!tname) { - verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); + bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); return -EINVAL; } if (tgt_prog) { struct bpf_prog_aux *aux = tgt_prog->aux; + bool tgt_changes_pkt_data; + + if (bpf_prog_is_dev_bound(prog->aux) && + !bpf_prog_dev_bound_match(prog, tgt_prog)) { + bpf_log(log, "Target program bound device mismatch"); + return -EINVAL; + } for (i = 0; i < aux->func_info_cnt; i++) if (aux->func_info[i].type_id == btf_id) { @@ -10690,34 +22571,57 @@ static int check_attach_btf_id(struct bpf_verifier_env *env) break; } if (subprog == -1) { - verbose(env, "Subprog %s doesn't exist\n", tname); + bpf_log(log, "Subprog %s doesn't exist\n", tname); + return -EINVAL; + } + if (aux->func && aux->func[subprog]->aux->exception_cb) { + bpf_log(log, + "%s programs cannot attach to exception callback\n", + prog_extension ? "Extension" : "FENTRY/FEXIT"); return -EINVAL; } conservative = aux->func_info_aux[subprog].unreliable; if (prog_extension) { if (conservative) { - verbose(env, + bpf_log(log, "Cannot replace static functions\n"); return -EINVAL; } if (!prog->jit_requested) { - verbose(env, + bpf_log(log, "Extension programs should be JITed\n"); return -EINVAL; } - env->ops = bpf_verifier_ops[tgt_prog->type]; - prog->expected_attach_type = tgt_prog->expected_attach_type; + tgt_changes_pkt_data = aux->func + ? aux->func[subprog]->aux->changes_pkt_data + : aux->changes_pkt_data; + if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { + bpf_log(log, + "Extension program changes packet data, while original does not\n"); + return -EINVAL; + } } if (!tgt_prog->jited) { - verbose(env, "Can attach to only JITed progs\n"); + bpf_log(log, "Can attach to only JITed progs\n"); return -EINVAL; } - if (tgt_prog->type == prog->type) { - /* Cannot fentry/fexit another fentry/fexit program. - * Cannot attach program extension to another extension. - * It's ok to attach fentry/fexit to extension program. + if (prog_tracing) { + if (aux->attach_tracing_prog) { + /* + * Target program is an fentry/fexit which is already attached + * to another tracing program. More levels of nesting + * attachment are not allowed. + */ + bpf_log(log, "Cannot nest tracing program attach more than once\n"); + return -EINVAL; + } + } else if (tgt_prog->type == prog->type) { + /* + * To avoid potential call chain cycles, prevent attaching of a + * program extension to another extension. It's ok to attach + * fentry/fexit to extension program. */ - verbose(env, "Cannot recursively attach\n"); + bpf_log(log, "Cannot recursively attach\n"); return -EINVAL; } if (tgt_prog->type == BPF_PROG_TYPE_TRACING && @@ -10728,165 +22632,416 @@ static int check_attach_btf_id(struct bpf_verifier_env *env) * except fentry/fexit. The reason is the following. * The fentry/fexit programs are used for performance * analysis, stats and can be attached to any program - * type except themselves. When extension program is - * replacing XDP function it is necessary to allow - * performance analysis of all functions. Both original - * XDP program and its program extension. Hence - * attaching fentry/fexit to BPF_PROG_TYPE_EXT is - * allowed. If extending of fentry/fexit was allowed it - * would be possible to create long call chain - * fentry->extension->fentry->extension beyond - * reasonable stack size. Hence extending fentry is not - * allowed. + * type. When extension program is replacing XDP function + * it is necessary to allow performance analysis of all + * functions. Both original XDP program and its program + * extension. Hence attaching fentry/fexit to + * BPF_PROG_TYPE_EXT is allowed. If extending of + * fentry/fexit was allowed it would be possible to create + * long call chain fentry->extension->fentry->extension + * beyond reasonable stack size. Hence extending fentry + * is not allowed. */ - verbose(env, "Cannot extend fentry/fexit\n"); + bpf_log(log, "Cannot extend fentry/fexit\n"); return -EINVAL; } - key = ((u64)aux->id) << 32 | btf_id; } else { if (prog_extension) { - verbose(env, "Cannot replace kernel functions\n"); + bpf_log(log, "Cannot replace kernel functions\n"); return -EINVAL; } - key = btf_id; } switch (prog->expected_attach_type) { case BPF_TRACE_RAW_TP: if (tgt_prog) { - verbose(env, + bpf_log(log, "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); return -EINVAL; } if (!btf_type_is_typedef(t)) { - verbose(env, "attach_btf_id %u is not a typedef\n", + bpf_log(log, "attach_btf_id %u is not a typedef\n", btf_id); return -EINVAL; } if (strncmp(prefix, tname, sizeof(prefix) - 1)) { - verbose(env, "attach_btf_id %u points to wrong type name %s\n", + bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", btf_id, tname); return -EINVAL; } tname += sizeof(prefix) - 1; - t = btf_type_by_id(btf, t->type); - if (!btf_type_is_ptr(t)) - /* should never happen in valid vmlinux build */ + + /* The func_proto of "btf_trace_##tname" is generated from typedef without argument + * names. Thus using bpf_raw_event_map to get argument names. + */ + btp = bpf_get_raw_tracepoint(tname); + if (!btp) return -EINVAL; + fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, + trace_symbol); + bpf_put_raw_tracepoint(btp); + + if (fname) + ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); + + if (!fname || ret < 0) { + bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", + prefix, tname); + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_ptr(t)) + /* should never happen in valid vmlinux build */ + return -EINVAL; + } else { + t = btf_type_by_id(btf, ret); + if (!btf_type_is_func(t)) + /* should never happen in valid vmlinux build */ + return -EINVAL; + } + t = btf_type_by_id(btf, t->type); if (!btf_type_is_func_proto(t)) /* should never happen in valid vmlinux build */ return -EINVAL; - /* remember two read only pointers that are valid for - * the life time of the kernel - */ - prog->aux->attach_func_name = tname; - prog->aux->attach_func_proto = t; - prog->aux->attach_btf_trace = true; - return 0; + break; case BPF_TRACE_ITER: if (!btf_type_is_func(t)) { - verbose(env, "attach_btf_id %u is not a function\n", + bpf_log(log, "attach_btf_id %u is not a function\n", btf_id); return -EINVAL; } t = btf_type_by_id(btf, t->type); if (!btf_type_is_func_proto(t)) return -EINVAL; - prog->aux->attach_func_name = tname; - prog->aux->attach_func_proto = t; - if (!bpf_iter_prog_supported(prog)) - return -EINVAL; - ret = btf_distill_func_proto(&env->log, btf, t, - tname, &fmodel); - return ret; + ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); + if (ret) + return ret; + break; default: if (!prog_extension) return -EINVAL; - /* fallthrough */ + fallthrough; case BPF_MODIFY_RETURN: case BPF_LSM_MAC: + case BPF_LSM_CGROUP: case BPF_TRACE_FENTRY: case BPF_TRACE_FEXIT: - prog->aux->attach_func_name = tname; - if (prog->type == BPF_PROG_TYPE_LSM) { - ret = bpf_lsm_verify_prog(&env->log, prog); - if (ret < 0) - return ret; - } - if (!btf_type_is_func(t)) { - verbose(env, "attach_btf_id %u is not a function\n", + bpf_log(log, "attach_btf_id %u is not a function\n", btf_id); return -EINVAL; } if (prog_extension && - btf_check_type_match(env, prog, btf, t)) + btf_check_type_match(log, prog, btf, t)) return -EINVAL; t = btf_type_by_id(btf, t->type); if (!btf_type_is_func_proto(t)) return -EINVAL; - tr = bpf_trampoline_lookup(key); - if (!tr) - return -ENOMEM; - /* t is either vmlinux type or another program's type */ - prog->aux->attach_func_proto = t; - mutex_lock(&tr->mutex); - if (tr->func.addr) { - prog->aux->trampoline = tr; - goto out; - } - if (tgt_prog && conservative) { - prog->aux->attach_func_proto = NULL; + + if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && + (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || + prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) + return -EINVAL; + + if (tgt_prog && conservative) t = NULL; - } - ret = btf_distill_func_proto(&env->log, btf, t, - tname, &tr->func.model); + + ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); if (ret < 0) - goto out; + return ret; + if (tgt_prog) { if (subprog == 0) addr = (long) tgt_prog->bpf_func; else addr = (long) tgt_prog->aux->func[subprog]->bpf_func; } else { - addr = kallsyms_lookup_name(tname); + if (btf_is_module(btf)) { + mod = btf_try_get_module(btf); + if (mod) + addr = find_kallsyms_symbol_value(mod, tname); + else + addr = 0; + } else { + addr = kallsyms_lookup_name(tname); + } if (!addr) { - verbose(env, + module_put(mod); + bpf_log(log, "The address of function %s cannot be found\n", tname); - ret = -ENOENT; - goto out; + return -ENOENT; } } - if (prog->expected_attach_type == BPF_MODIFY_RETURN) { - ret = check_attach_modify_return(prog, addr); - if (ret) - verbose(env, "%s() is not modifiable\n", - prog->aux->attach_func_name); + if (prog->sleepable) { + ret = -EINVAL; + switch (prog->type) { + case BPF_PROG_TYPE_TRACING: + + /* fentry/fexit/fmod_ret progs can be sleepable if they are + * attached to ALLOW_ERROR_INJECTION and are not in denylist. + */ + if (!check_non_sleepable_error_inject(btf_id) && + within_error_injection_list(addr)) + ret = 0; + /* fentry/fexit/fmod_ret progs can also be sleepable if they are + * in the fmodret id set with the KF_SLEEPABLE flag. + */ + else { + u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, + prog); + + if (flags && (*flags & KF_SLEEPABLE)) + ret = 0; + } + break; + case BPF_PROG_TYPE_LSM: + /* LSM progs check that they are attached to bpf_lsm_*() funcs. + * Only some of them are sleepable. + */ + if (bpf_lsm_is_sleepable_hook(btf_id)) + ret = 0; + break; + default: + break; + } + if (ret) { + module_put(mod); + bpf_log(log, "%s is not sleepable\n", tname); + return ret; + } + } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { + if (tgt_prog) { + module_put(mod); + bpf_log(log, "can't modify return codes of BPF programs\n"); + return -EINVAL; + } + ret = -EINVAL; + if (btf_kfunc_is_modify_return(btf, btf_id, prog) || + !check_attach_modify_return(addr, tname)) + ret = 0; + if (ret) { + module_put(mod); + bpf_log(log, "%s() is not modifiable\n", tname); + return ret; + } } - if (ret) - goto out; - tr->func.addr = (void *)addr; - prog->aux->trampoline = tr; -out: - mutex_unlock(&tr->mutex); - if (ret) - bpf_trampoline_put(tr); + break; + } + tgt_info->tgt_addr = addr; + tgt_info->tgt_name = tname; + tgt_info->tgt_type = t; + tgt_info->tgt_mod = mod; + return 0; +} + +BTF_SET_START(btf_id_deny) +BTF_ID_UNUSED +#ifdef CONFIG_SMP +BTF_ID(func, migrate_disable) +BTF_ID(func, migrate_enable) +#endif +#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU +BTF_ID(func, rcu_read_unlock_strict) +#endif +#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) +BTF_ID(func, preempt_count_add) +BTF_ID(func, preempt_count_sub) +#endif +#ifdef CONFIG_PREEMPT_RCU +BTF_ID(func, __rcu_read_lock) +BTF_ID(func, __rcu_read_unlock) +#endif +BTF_SET_END(btf_id_deny) + +static bool can_be_sleepable(struct bpf_prog *prog) +{ + if (prog->type == BPF_PROG_TYPE_TRACING) { + switch (prog->expected_attach_type) { + case BPF_TRACE_FENTRY: + case BPF_TRACE_FEXIT: + case BPF_MODIFY_RETURN: + case BPF_TRACE_ITER: + return true; + default: + return false; + } + } + return prog->type == BPF_PROG_TYPE_LSM || + prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || + prog->type == BPF_PROG_TYPE_STRUCT_OPS; +} + +static int check_attach_btf_id(struct bpf_verifier_env *env) +{ + struct bpf_prog *prog = env->prog; + struct bpf_prog *tgt_prog = prog->aux->dst_prog; + struct bpf_attach_target_info tgt_info = {}; + u32 btf_id = prog->aux->attach_btf_id; + struct bpf_trampoline *tr; + int ret; + u64 key; + + if (prog->type == BPF_PROG_TYPE_SYSCALL) { + if (prog->sleepable) + /* attach_btf_id checked to be zero already */ + return 0; + verbose(env, "Syscall programs can only be sleepable\n"); + return -EINVAL; + } + + if (prog->sleepable && !can_be_sleepable(prog)) { + verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); + return -EINVAL; + } + + if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) + return check_struct_ops_btf_id(env); + + if (prog->type != BPF_PROG_TYPE_TRACING && + prog->type != BPF_PROG_TYPE_LSM && + prog->type != BPF_PROG_TYPE_EXT) + return 0; + + ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); + if (ret) return ret; + + if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { + /* to make freplace equivalent to their targets, they need to + * inherit env->ops and expected_attach_type for the rest of the + * verification + */ + env->ops = bpf_verifier_ops[tgt_prog->type]; + prog->expected_attach_type = tgt_prog->expected_attach_type; + } + + /* store info about the attachment target that will be used later */ + prog->aux->attach_func_proto = tgt_info.tgt_type; + prog->aux->attach_func_name = tgt_info.tgt_name; + prog->aux->mod = tgt_info.tgt_mod; + + if (tgt_prog) { + prog->aux->saved_dst_prog_type = tgt_prog->type; + prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; + } + + if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { + prog->aux->attach_btf_trace = true; + return 0; + } else if (prog->expected_attach_type == BPF_TRACE_ITER) { + if (!bpf_iter_prog_supported(prog)) + return -EINVAL; + return 0; + } + + if (prog->type == BPF_PROG_TYPE_LSM) { + ret = bpf_lsm_verify_prog(&env->log, prog); + if (ret < 0) + return ret; + } else if (prog->type == BPF_PROG_TYPE_TRACING && + btf_id_set_contains(&btf_id_deny, btf_id)) { + return -EINVAL; + } + + key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); + tr = bpf_trampoline_get(key, &tgt_info); + if (!tr) + return -ENOMEM; + + if (tgt_prog && tgt_prog->aux->tail_call_reachable) + tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; + + prog->aux->dst_trampoline = tr; + return 0; +} + +struct btf *bpf_get_btf_vmlinux(void) +{ + if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { + mutex_lock(&bpf_verifier_lock); + if (!btf_vmlinux) + btf_vmlinux = btf_parse_vmlinux(); + mutex_unlock(&bpf_verifier_lock); } + return btf_vmlinux; } -int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, - union bpf_attr __user *uattr) +/* + * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In + * this case expect that every file descriptor in the array is either a map or + * a BTF. Everything else is considered to be trash. + */ +static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) +{ + struct bpf_map *map; + struct btf *btf; + CLASS(fd, f)(fd); + int err; + + map = __bpf_map_get(f); + if (!IS_ERR(map)) { + err = __add_used_map(env, map); + if (err < 0) + return err; + return 0; + } + + btf = __btf_get_by_fd(f); + if (!IS_ERR(btf)) { + err = __add_used_btf(env, btf); + if (err < 0) + return err; + return 0; + } + + verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); + return PTR_ERR(map); +} + +static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) +{ + size_t size = sizeof(int); + int ret; + int fd; + u32 i; + + env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); + + /* + * The only difference between old (no fd_array_cnt is given) and new + * APIs is that in the latter case the fd_array is expected to be + * continuous and is scanned for map fds right away + */ + if (!attr->fd_array_cnt) + return 0; + + /* Check for integer overflow */ + if (attr->fd_array_cnt >= (U32_MAX / size)) { + verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); + return -EINVAL; + } + + for (i = 0; i < attr->fd_array_cnt; i++) { + if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) + return -EFAULT; + + ret = add_fd_from_fd_array(env, fd); + if (ret) + return ret; + } + + return 0; +} + +int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) { u64 start_time = ktime_get_ns(); struct bpf_verifier_env *env; - struct bpf_verifier_log *log; - int i, len, ret = -EINVAL; + int i, len, ret = -EINVAL, err; + u32 log_true_size; bool is_priv; /* no program is valid */ @@ -10896,10 +23051,11 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, /* 'struct bpf_verifier_env' can be global, but since it's not small, * allocate/free it every time bpf_check() is called */ - env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); + env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); if (!env) return -ENOMEM; - log = &env->log; + + env->bt.env = env; len = (*prog)->len; env->insn_aux_data = @@ -10911,33 +23067,33 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, env->insn_aux_data[i].orig_idx = i; env->prog = *prog; env->ops = bpf_verifier_ops[env->prog->type]; - is_priv = bpf_capable(); - if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { - mutex_lock(&bpf_verifier_lock); - if (!btf_vmlinux) - btf_vmlinux = btf_parse_vmlinux(); - mutex_unlock(&bpf_verifier_lock); - } + env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); + env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); + env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); + env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); + env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); + + bpf_get_btf_vmlinux(); /* grab the mutex to protect few globals used by verifier */ if (!is_priv) mutex_lock(&bpf_verifier_lock); - if (attr->log_level || attr->log_buf || attr->log_size) { - /* user requested verbose verifier output - * and supplied buffer to store the verification trace - */ - log->level = attr->log_level; - log->ubuf = (char __user *) (unsigned long) attr->log_buf; - log->len_total = attr->log_size; + /* user could have requested verbose verifier output + * and supplied buffer to store the verification trace + */ + ret = bpf_vlog_init(&env->log, attr->log_level, + (char __user *) (unsigned long) attr->log_buf, + attr->log_size); + if (ret) + goto err_unlock; - ret = -EINVAL; - /* log attributes have to be sane */ - if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || - !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) - goto err_unlock; - } + ret = process_fd_array(env, attr, uattr); + if (ret) + goto skip_full_check; + + mark_verifier_state_clean(env); if (IS_ERR(btf_vmlinux)) { /* Either gcc or pahole or kernel are broken. */ @@ -10952,23 +23108,9 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) env->strict_alignment = false; - env->allow_ptr_leaks = bpf_allow_ptr_leaks(); - env->bypass_spec_v1 = bpf_bypass_spec_v1(); - env->bypass_spec_v4 = bpf_bypass_spec_v4(); - env->bpf_capable = bpf_capable(); - if (is_priv) env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; - - ret = replace_map_fd_with_map_ptr(env); - if (ret < 0) - goto skip_full_check; - - if (bpf_prog_is_dev_bound(env->prog->aux)) { - ret = bpf_prog_offload_verifier_prep(env->prog); - if (ret) - goto skip_full_check; - } + env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; env->explored_states = kvcalloc(state_htab_size(env), sizeof(struct bpf_verifier_state_list *), @@ -10977,6 +23119,14 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, if (!env->explored_states) goto skip_full_check; + ret = check_btf_info_early(env, attr, uattr); + if (ret < 0) + goto skip_full_check; + + ret = add_subprog_and_kfunc(env); + if (ret < 0) + goto skip_full_check; + ret = check_subprogs(env); if (ret < 0) goto skip_full_check; @@ -10985,27 +23135,50 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, if (ret < 0) goto skip_full_check; + ret = resolve_pseudo_ldimm64(env); + if (ret < 0) + goto skip_full_check; + + if (bpf_prog_is_offloaded(env->prog->aux)) { + ret = bpf_prog_offload_verifier_prep(env->prog); + if (ret) + goto skip_full_check; + } + + ret = check_cfg(env); + if (ret < 0) + goto skip_full_check; + ret = check_attach_btf_id(env); if (ret) goto skip_full_check; - ret = check_cfg(env); + ret = mark_fastcall_patterns(env); if (ret < 0) goto skip_full_check; - ret = do_check_subprogs(env); - ret = ret ?: do_check_main(env); + ret = do_check_main(env); + ret = ret ?: do_check_subprogs(env); - if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) + if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) ret = bpf_prog_offload_finalize(env); skip_full_check: kvfree(env->explored_states); + /* might decrease stack depth, keep it before passes that + * allocate additional slots. + */ + if (ret == 0) + ret = remove_fastcall_spills_fills(env); + if (ret == 0) ret = check_max_stack_depth(env); /* instruction rewrites happen after this point */ + if (ret == 0) + ret = optimize_bpf_loop(env); + if (is_priv) { if (ret == 0) opt_hard_wire_dead_code_branches(env); @@ -11023,12 +23196,12 @@ skip_full_check: ret = convert_ctx_accesses(env); if (ret == 0) - ret = fixup_bpf_calls(env); + ret = do_misc_fixups(env); /* do 32-bit optimization after insn patching has done so those patched * insns could be handled correctly. */ - if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { + if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret : false; @@ -11039,15 +23212,24 @@ skip_full_check: env->verification_time = ktime_get_ns() - start_time; print_verification_stats(env); + env->prog->aux->verified_insns = env->insn_processed; - if (log->level && bpf_verifier_log_full(log)) - ret = -ENOSPC; - if (log->level && !log->ubuf) { + /* preserve original error even if log finalization is successful */ + err = bpf_vlog_finalize(&env->log, &log_true_size); + if (err) + ret = err; + + if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && + copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), + &log_true_size, sizeof(log_true_size))) { ret = -EFAULT; goto err_release_maps; } - if (ret == 0 && env->used_map_cnt) { + if (ret) + goto err_release_maps; + + if (env->used_map_cnt) { /* if program passed verifier, update used_maps in bpf_prog_info */ env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, sizeof(env->used_maps[0]), @@ -11061,15 +23243,29 @@ skip_full_check: memcpy(env->prog->aux->used_maps, env->used_maps, sizeof(env->used_maps[0]) * env->used_map_cnt); env->prog->aux->used_map_cnt = env->used_map_cnt; + } + if (env->used_btf_cnt) { + /* if program passed verifier, update used_btfs in bpf_prog_aux */ + env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, + sizeof(env->used_btfs[0]), + GFP_KERNEL); + if (!env->prog->aux->used_btfs) { + ret = -ENOMEM; + goto err_release_maps; + } + memcpy(env->prog->aux->used_btfs, env->used_btfs, + sizeof(env->used_btfs[0]) * env->used_btf_cnt); + env->prog->aux->used_btf_cnt = env->used_btf_cnt; + } + if (env->used_map_cnt || env->used_btf_cnt) { /* program is valid. Convert pseudo bpf_ld_imm64 into generic * bpf_ld_imm64 instructions */ convert_pseudo_ld_imm64(env); } - if (ret == 0) - adjust_btf_func(env); + adjust_btf_func(env); err_release_maps: if (!env->prog->aux->used_maps) @@ -11077,6 +23273,8 @@ err_release_maps: * them now. Otherwise free_used_maps() will release them. */ release_maps(env); + if (!env->prog->aux->used_btfs) + release_btfs(env); /* extension progs temporarily inherit the attach_type of their targets for verification purposes, so set it back to zero before returning @@ -11085,11 +23283,14 @@ err_release_maps: env->prog->expected_attach_type = 0; *prog = env->prog; + + module_put(env->attach_btf_mod); err_unlock: if (!is_priv) mutex_unlock(&bpf_verifier_lock); vfree(env->insn_aux_data); + kvfree(env->insn_hist); err_free_env: - kfree(env); + kvfree(env); return ret; } |