summaryrefslogtreecommitdiff
path: root/kernel/dma/direct.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/dma/direct.c')
-rw-r--r--kernel/dma/direct.c407
1 files changed, 273 insertions, 134 deletions
diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c
index 002268262c9a..b8fe0b3d0ffb 100644
--- a/kernel/dma/direct.c
+++ b/kernel/dma/direct.c
@@ -20,7 +20,7 @@
* it for entirely different regions. In that case the arch code needs to
* override the variable below for dma-direct to work properly.
*/
-unsigned int zone_dma_bits __ro_after_init = 24;
+u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
phys_addr_t phys)
@@ -44,10 +44,11 @@ u64 dma_direct_get_required_mask(struct device *dev)
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
}
-static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
- u64 *phys_limit)
+static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
{
- u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
+ u64 dma_limit = min_not_zero(
+ dev->coherent_dma_mask,
+ dev->bus_dma_limit);
/*
* Optimistically try the zone that the physical address mask falls
@@ -58,14 +59,14 @@ static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
* zones.
*/
*phys_limit = dma_to_phys(dev, dma_limit);
- if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
+ if (*phys_limit <= zone_dma_limit)
return GFP_DMA;
if (*phys_limit <= DMA_BIT_MASK(32))
return GFP_DMA32;
return 0;
}
-static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
+bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
@@ -75,8 +76,47 @@ static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
}
+static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
+{
+ if (!force_dma_unencrypted(dev))
+ return 0;
+ return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
+}
+
+static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
+{
+ int ret;
+
+ if (!force_dma_unencrypted(dev))
+ return 0;
+ ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
+ if (ret)
+ pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
+ return ret;
+}
+
+static void __dma_direct_free_pages(struct device *dev, struct page *page,
+ size_t size)
+{
+ if (swiotlb_free(dev, page, size))
+ return;
+ dma_free_contiguous(dev, page, size);
+}
+
+static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
+{
+ struct page *page = swiotlb_alloc(dev, size);
+
+ if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
+ swiotlb_free(dev, page, size);
+ return NULL;
+ }
+
+ return page;
+}
+
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
- gfp_t gfp)
+ gfp_t gfp, bool allow_highmem)
{
int node = dev_to_node(dev);
struct page *page = NULL;
@@ -84,18 +124,23 @@ static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
WARN_ON_ONCE(!PAGE_ALIGNED(size));
- gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
- &phys_limit);
+ if (is_swiotlb_for_alloc(dev))
+ return dma_direct_alloc_swiotlb(dev, size);
+
+ gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
page = dma_alloc_contiguous(dev, size, gfp);
- if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
- dma_free_contiguous(dev, page, size);
- page = NULL;
+ if (page) {
+ if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
+ (!allow_highmem && PageHighMem(page))) {
+ dma_free_contiguous(dev, page, size);
+ page = NULL;
+ }
}
again:
if (!page)
page = alloc_pages_node(node, gfp, get_order(size));
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
- dma_free_contiguous(dev, page, size);
+ __free_pages(page, get_order(size));
page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
@@ -114,15 +159,26 @@ again:
return page;
}
+/*
+ * Check if a potentially blocking operations needs to dip into the atomic
+ * pools for the given device/gfp.
+ */
+static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
+{
+ return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
+}
+
static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
struct page *page;
- u64 phys_mask;
+ u64 phys_limit;
void *ret;
- gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
- &phys_mask);
+ if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
+ return NULL;
+
+ gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
if (!page)
return NULL;
@@ -130,114 +186,128 @@ static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
return ret;
}
+static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
+ dma_addr_t *dma_handle, gfp_t gfp)
+{
+ struct page *page;
+
+ page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
+ if (!page)
+ return NULL;
+
+ /* remove any dirty cache lines on the kernel alias */
+ if (!PageHighMem(page))
+ arch_dma_prep_coherent(page, size);
+
+ /* return the page pointer as the opaque cookie */
+ *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
+ return page;
+}
+
void *dma_direct_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
+ bool remap = false, set_uncached = false;
struct page *page;
void *ret;
- int err;
size = PAGE_ALIGN(size);
if (attrs & DMA_ATTR_NO_WARN)
gfp |= __GFP_NOWARN;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
- !force_dma_unencrypted(dev)) {
- page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
- if (!page)
+ !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
+ return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
+
+ if (!dev_is_dma_coherent(dev)) {
+ if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
+ !is_swiotlb_for_alloc(dev))
+ return arch_dma_alloc(dev, size, dma_handle, gfp,
+ attrs);
+
+ /*
+ * If there is a global pool, always allocate from it for
+ * non-coherent devices.
+ */
+ if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
+ return dma_alloc_from_global_coherent(dev, size,
+ dma_handle);
+
+ /*
+ * Otherwise we require the architecture to either be able to
+ * mark arbitrary parts of the kernel direct mapping uncached,
+ * or remapped it uncached.
+ */
+ set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
+ remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
+ if (!set_uncached && !remap) {
+ pr_warn_once("coherent DMA allocations not supported on this platform.\n");
return NULL;
- /* remove any dirty cache lines on the kernel alias */
- if (!PageHighMem(page))
- arch_dma_prep_coherent(page, size);
- *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
- /* return the page pointer as the opaque cookie */
- return page;
+ }
}
- if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
- !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
- !dev_is_dma_coherent(dev))
- return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
-
/*
- * Remapping or decrypting memory may block. If either is required and
- * we can't block, allocate the memory from the atomic pools.
+ * Remapping or decrypting memory may block, allocate the memory from
+ * the atomic pools instead if we aren't allowed block.
*/
- if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
- !gfpflags_allow_blocking(gfp) &&
- (force_dma_unencrypted(dev) ||
- (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
+ if ((remap || force_dma_unencrypted(dev)) &&
+ dma_direct_use_pool(dev, gfp))
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
/* we always manually zero the memory once we are done */
- page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
+ page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
if (!page)
return NULL;
- if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
- !dev_is_dma_coherent(dev)) ||
- (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
+ /*
+ * dma_alloc_contiguous can return highmem pages depending on a
+ * combination the cma= arguments and per-arch setup. These need to be
+ * remapped to return a kernel virtual address.
+ */
+ if (PageHighMem(page)) {
+ remap = true;
+ set_uncached = false;
+ }
+
+ if (remap) {
+ pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
+
+ if (force_dma_unencrypted(dev))
+ prot = pgprot_decrypted(prot);
+
/* remove any dirty cache lines on the kernel alias */
arch_dma_prep_coherent(page, size);
/* create a coherent mapping */
- ret = dma_common_contiguous_remap(page, size,
- dma_pgprot(dev, PAGE_KERNEL, attrs),
+ ret = dma_common_contiguous_remap(page, size, prot,
__builtin_return_address(0));
if (!ret)
goto out_free_pages;
- if (force_dma_unencrypted(dev)) {
- err = set_memory_decrypted((unsigned long)ret,
- 1 << get_order(size));
- if (err)
- goto out_free_pages;
- }
- memset(ret, 0, size);
- goto done;
- }
-
- if (PageHighMem(page)) {
- /*
- * Depending on the cma= arguments and per-arch setup
- * dma_alloc_contiguous could return highmem pages.
- * Without remapping there is no way to return them here,
- * so log an error and fail.
- */
- dev_info(dev, "Rejecting highmem page from CMA.\n");
- goto out_free_pages;
- }
-
- ret = page_address(page);
- if (force_dma_unencrypted(dev)) {
- err = set_memory_decrypted((unsigned long)ret,
- 1 << get_order(size));
- if (err)
- goto out_free_pages;
+ } else {
+ ret = page_address(page);
+ if (dma_set_decrypted(dev, ret, size))
+ goto out_leak_pages;
}
memset(ret, 0, size);
- if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
- !dev_is_dma_coherent(dev)) {
+ if (set_uncached) {
arch_dma_prep_coherent(page, size);
ret = arch_dma_set_uncached(ret, size);
if (IS_ERR(ret))
goto out_encrypt_pages;
}
-done:
+
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return ret;
out_encrypt_pages:
- if (force_dma_unencrypted(dev)) {
- err = set_memory_encrypted((unsigned long)page_address(page),
- 1 << get_order(size));
- /* If memory cannot be re-encrypted, it must be leaked */
- if (err)
- return NULL;
- }
+ if (dma_set_encrypted(dev, page_address(page), size))
+ return NULL;
out_free_pages:
- dma_free_contiguous(dev, page, size);
+ __dma_direct_free_pages(dev, page, size);
+ return NULL;
+out_leak_pages:
return NULL;
}
@@ -247,33 +317,41 @@ void dma_direct_free(struct device *dev, size_t size,
unsigned int page_order = get_order(size);
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
- !force_dma_unencrypted(dev)) {
+ !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
/* cpu_addr is a struct page cookie, not a kernel address */
dma_free_contiguous(dev, cpu_addr, size);
return;
}
- if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
- !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
- !dev_is_dma_coherent(dev)) {
+ if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
+ !dev_is_dma_coherent(dev) &&
+ !is_swiotlb_for_alloc(dev)) {
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
return;
}
+ if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
+ !dev_is_dma_coherent(dev)) {
+ if (!dma_release_from_global_coherent(page_order, cpu_addr))
+ WARN_ON_ONCE(1);
+ return;
+ }
+
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
return;
- if (force_dma_unencrypted(dev))
- set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
-
- if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
+ if (is_vmalloc_addr(cpu_addr)) {
vunmap(cpu_addr);
- else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
- arch_dma_clear_uncached(cpu_addr, size);
+ } else {
+ if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
+ arch_dma_clear_uncached(cpu_addr, size);
+ if (dma_set_encrypted(dev, cpu_addr, size))
+ return;
+ }
- dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
+ __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
}
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
@@ -282,35 +360,20 @@ struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
struct page *page;
void *ret;
- if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
- force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
+ if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
- page = __dma_direct_alloc_pages(dev, size, gfp);
+ page = __dma_direct_alloc_pages(dev, size, gfp, false);
if (!page)
return NULL;
- if (PageHighMem(page)) {
- /*
- * Depending on the cma= arguments and per-arch setup
- * dma_alloc_contiguous could return highmem pages.
- * Without remapping there is no way to return them here,
- * so log an error and fail.
- */
- dev_info(dev, "Rejecting highmem page from CMA.\n");
- goto out_free_pages;
- }
ret = page_address(page);
- if (force_dma_unencrypted(dev)) {
- if (set_memory_decrypted((unsigned long)ret,
- 1 << get_order(size)))
- goto out_free_pages;
- }
+ if (dma_set_decrypted(dev, ret, size))
+ goto out_leak_pages;
memset(ret, 0, size);
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return page;
-out_free_pages:
- dma_free_contiguous(dev, page, size);
+out_leak_pages:
return NULL;
}
@@ -318,7 +381,6 @@ void dma_direct_free_pages(struct device *dev, size_t size,
struct page *page, dma_addr_t dma_addr,
enum dma_data_direction dir)
{
- unsigned int page_order = get_order(size);
void *vaddr = page_address(page);
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
@@ -326,10 +388,9 @@ void dma_direct_free_pages(struct device *dev, size_t size,
dma_free_from_pool(dev, vaddr, size))
return;
- if (force_dma_unencrypted(dev))
- set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
-
- dma_free_contiguous(dev, page, size);
+ if (dma_set_encrypted(dev, vaddr, size))
+ return;
+ __dma_direct_free_pages(dev, page, size);
}
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
@@ -343,9 +404,7 @@ void dma_direct_sync_sg_for_device(struct device *dev,
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
- if (unlikely(is_swiotlb_buffer(paddr)))
- swiotlb_tbl_sync_single(dev, paddr, sg->length,
- dir, SYNC_FOR_DEVICE);
+ swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, sg->length,
@@ -369,9 +428,7 @@ void dma_direct_sync_sg_for_cpu(struct device *dev,
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(paddr, sg->length, dir);
- if (unlikely(is_swiotlb_buffer(paddr)))
- swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
- SYNC_FOR_CPU);
+ swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
if (dir == DMA_FROM_DEVICE)
arch_dma_mark_clean(paddr, sg->length);
@@ -381,29 +438,60 @@ void dma_direct_sync_sg_for_cpu(struct device *dev,
arch_sync_dma_for_cpu_all();
}
+/*
+ * Unmaps segments, except for ones marked as pci_p2pdma which do not
+ * require any further action as they contain a bus address.
+ */
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i;
- for_each_sg(sgl, sg, nents, i)
- dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
- attrs);
+ for_each_sg(sgl, sg, nents, i) {
+ if (sg_dma_is_bus_address(sg))
+ sg_dma_unmark_bus_address(sg);
+ else
+ dma_direct_unmap_page(dev, sg->dma_address,
+ sg_dma_len(sg), dir, attrs);
+ }
}
#endif
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
- int i;
+ struct pci_p2pdma_map_state p2pdma_state = {};
+ enum pci_p2pdma_map_type map;
struct scatterlist *sg;
+ int i, ret;
for_each_sg(sgl, sg, nents, i) {
+ if (is_pci_p2pdma_page(sg_page(sg))) {
+ map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
+ switch (map) {
+ case PCI_P2PDMA_MAP_BUS_ADDR:
+ continue;
+ case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
+ /*
+ * Any P2P mapping that traverses the PCI
+ * host bridge must be mapped with CPU physical
+ * address and not PCI bus addresses. This is
+ * done with dma_direct_map_page() below.
+ */
+ break;
+ default:
+ ret = -EREMOTEIO;
+ goto out_unmap;
+ }
+ }
+
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
sg->offset, sg->length, dir, attrs);
- if (sg->dma_address == DMA_MAPPING_ERROR)
+ if (sg->dma_address == DMA_MAPPING_ERROR) {
+ ret = -EIO;
goto out_unmap;
+ }
sg_dma_len(sg) = sg->length;
}
@@ -411,7 +499,7 @@ int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
out_unmap:
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
- return 0;
+ return ret;
}
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
@@ -459,9 +547,13 @@ int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
int ret = -ENXIO;
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
+ if (force_dma_unencrypted(dev))
+ vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
+ if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
+ return ret;
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
return -ENXIO;
@@ -488,15 +580,63 @@ int dma_direct_supported(struct device *dev, u64 mask)
* part of the check.
*/
if (IS_ENABLED(CONFIG_ZONE_DMA))
- min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
+ min_mask = min_t(u64, min_mask, zone_dma_limit);
return mask >= phys_to_dma_unencrypted(dev, min_mask);
}
+static const struct bus_dma_region *dma_find_range(struct device *dev,
+ unsigned long start_pfn)
+{
+ const struct bus_dma_region *m;
+
+ for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
+ unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
+
+ if (start_pfn >= cpu_start_pfn &&
+ start_pfn - cpu_start_pfn < PFN_DOWN(m->size))
+ return m;
+ }
+
+ return NULL;
+}
+
+/*
+ * To check whether all ram resource ranges are covered by dma range map
+ * Returns 0 when further check is needed
+ * Returns 1 if there is some RAM range can't be covered by dma_range_map
+ */
+static int check_ram_in_range_map(unsigned long start_pfn,
+ unsigned long nr_pages, void *data)
+{
+ unsigned long end_pfn = start_pfn + nr_pages;
+ struct device *dev = data;
+
+ while (start_pfn < end_pfn) {
+ const struct bus_dma_region *bdr;
+
+ bdr = dma_find_range(dev, start_pfn);
+ if (!bdr)
+ return 1;
+
+ start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
+ }
+
+ return 0;
+}
+
+bool dma_direct_all_ram_mapped(struct device *dev)
+{
+ if (!dev->dma_range_map)
+ return true;
+ return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
+ check_ram_in_range_map);
+}
+
size_t dma_direct_max_mapping_size(struct device *dev)
{
/* If SWIOTLB is active, use its maximum mapping size */
- if (is_swiotlb_active() &&
- (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
+ if (is_swiotlb_active(dev) &&
+ (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
return swiotlb_max_mapping_size(dev);
return SIZE_MAX;
}
@@ -504,7 +644,7 @@ size_t dma_direct_max_mapping_size(struct device *dev)
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
{
return !dev_is_dma_coherent(dev) ||
- is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
+ swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
}
/**
@@ -542,7 +682,6 @@ int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
return -ENOMEM;
map[0].cpu_start = cpu_start;
map[0].dma_start = dma_start;
- map[0].offset = offset;
map[0].size = size;
dev->dma_range_map = map;
return 0;